
Long length scale limit of TGD as General Relativity with
sub-manifold constraint

What is the precise relationship of the long length scale limit of TGD to General Relativity as a
description of gravitational interactions? On basis of physical intuition it is clear that Einstein’s
equations hold true for the matter topologically condensed around vacuum extremals of Kähler
action and that energy momentum tensor can be described as average description for small defor-
mations of vacuum extremals. The question is what happens in case of non-vacuum extremals.
Does a simple variational principle leading to Einstein’s equations at long length scale limit exist
and allow to identify the solutions as extremals of Kähler action?

The answer to the question is affirmative. It has been clear from the beginning that TGD in long
length scales as a theory of gravitational interactions is General Relativity with a sub-manifold
constraint. The problem is to formulate this statement so that extremals of Kähler action are
consistent with Einstein’s equations.
Consider first a simpler situation for which Kähler action is replaced with four-volume.

1. Let us start from an action containing curvature scalar and a part describing matter. The
simplest that one can try is to add just a constraint term

Λαβ(gαβ − hkl∂αhk∂βh
l) (1)

telling that the metric is induced metric.

2. The resulting gravitational field equations obtained by varying with respect to gαβ would be
Einstein equations Tαβ − kGαβ = 0 modified to

Tαβ − kGαβ = Λαβ .

(2)

Einstein’s equations would be modified by the vacuum energy term which satisfies an ad-
ditional constraint equation following from the variation with respect to imbedding space
coordinates.

3. The variation with respect to imbedding space coordinates gives

Dβ(Λαβ∂βhl) = 0 . (3)

The latter equation is satisfied if space-time surface is an extremal of general coordinate in-
variant action constructed from the induced metric only. Volume term would be the simplest
possibility and this would give

Λαβ = Kgαβ ,

and Eq. 2 would give Einstein’s equations with cosmological constant. One can get rid
of cosmological constant simply by adding to the curvature scalar part cosmological term
compensating it. It is essential that the energy momentum current Tαk = Kgαβ∂βh

k is
parallel to the space-time surfaces as an imbedding space-vector field: this is true for actions
involving only the induced metric.
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In the case Kähler action both induced metric and induced Kähler form appear as field variables
expressible in terms of the imbedding space coordinates. The energy momentum currents Tαk =
∂LK/∂αhk appearing in the field equations for Kähler action contains a part orthogonal to the
space-time surface so that one cannot have

Tαk = Tαβ∂βh
k

since the right hand side is parallel to the space-time surface. This makes the situation more
complex.

1. One can express the sub-manifold constraint using the projections of vielbein of H rather
than metric so that one obtains the constraint term

ΛαA(eAα − eAk∂αhk) . (4)

2. Besides this the action contains the constraint terms

Λαβ(gαβ − eAαeAβ ) ,

Fαβ(Jαβ − JABeAαeBβ )
(5)

with an obvious interpretation.

3. One must also add to the action Kähler action density

LK =
1

2g2
K

JαβJαβ
√

g , (6)

where Jαβ is treated as as a primary gauge field in the variation.

The resulting field equations give field equations for an extremal of Kähler action and Einstein’s
equations.

1. The gravitational field equations are obtained by varying with respect to gαβ regarded as a
primary field

Λαβ = Tαβ − kGαβ + TαβK . (7)

Here TαβK is standard energy momentum tensor associated with Kähler action treating Jαβ
as a primary field.

2. The variation with respect to Jαβ regarded as a primary field gives

Fαβ = Jαβ
√

g . (8)
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3. The variation with respect to eAα gives

2ΛαβeAβ + JαβJABeBβ + ΛAα = 0 . (9)

4. Finally, the variation with respect to hk gives

Dβ(ΛAαekA) = 0 . (10)

These equations require a variational principle and are equivalent with those for the extremals
of Kähler action if one make the identification

ΛAα = eAk Tαk , Tαk =
∂LK
∂αhk

. (11)

5. Substituting Λαβ as given by Eq. 11 and Λαβ as given by Eq. 7 to Eq. 9, one finds that the
terms involving Kähler gauge field cancel each other neatly, and one obtains

(Tαβ − kGαβ)eAβ = 0 . (12)

Which is equivalent with Einstein’s equations. Note that the addition of Kähler action is nec-
essary in order to compensate the terms orthogonal to the space-time surface and -somewhat
paradoxically- implies that Kähler action does not contribute to the energy momentum ten-
sor. This is as it should be.
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