
Trying to fuse the basic mathematical ideas of

quantum TGD to a single coherent whole

August 31, 2022

Matti Pitkänen

Email: matpitka6@gmail.com.
http://tgdtheory.com/public_html/.

Recent postal address: Rinnekatu 2-4 A 8, 03620, Karkkila, Finland.

Abstract

The theoretical framework behind TGD involves several different strands and the goal is
to unify them to a single coherent whole. TGD involves number theoretic and geometric
visions about physics and M8 − H duality, analogous to Langlands duality, is proposed to
unify them. Also quantum classical correspondence (QCC) is a central aspect of TGD. One
should understand both the M8 −H duality and QCC at the level of detail.

The following mathematical notions are expected to be of relevance for this goal.

1. Von Neumann algebras, call them M , in particular hyperfinite factors of type II1 (HFFs),
are in a central role. A both the geometric and number theoretic side, QCC could
mathematically correspond to the relationship between M and its commutant M ′.

For instance, symplectic transformations leave induced Kähler form invariant and vari-
ous fluxes of Kähler form are symplectic invariants and correspond to classical physics
commuting with quantum physics coded by the super symplectic algebra (SSA). On the
number theoretic side, the Galois invariants assignable to the polynomials determining
space-time surfaces are analogous classical invariants.

2. The generalization of ordinary arithmetics to quantum arithmetics obtained by replacing
+ and × with ⊕ and ⊗ allows us to replace the notions of finite and p-adic number fields
with their quantum variants. The same applies to various algebras.

3. Number theoretic vision leads to adelic physics involving a fusion of various p-adic physics
and real physics and to hierarchies of extensions of rationals involving hierarchies of
Galois groups involving inclusions of normal subgroups. The notion of adele can be
generalized by replacing various p-adic number fields with the p-adic representations of
various algebras.

4. The physical interpretation of the notion of infinite prime has remained elusive although a
formal interpretation in terms of a repeated quantization of a supersymmetric arithmetic
QFT is highly suggestive. One can also generalize infinite primes to their quantum
variants. The proposal is that the hierarchy of infinite primes generalizes the notion of
adele.

The formulation of physics as Kähler geometry of the ”world of classical worlds” (WCW)
involves of 3 kinds of algebras A; supersymplectic isometries SSA acting on δM4

+×CP2 SSAn,
affine algebras Aff acting on light-like partonic orbits, and isometries I of light-cone boundary
δM4

+, allowing hierarchies hierarchies An.
The braided Galois group algebras at the number theory side and algebras {An} at the

geometric side define excellent candidates for inclusion hierarchies of HFFs. M8 −H duality
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suggests that n corresponds to the degree nof the polynomial P defining space-time surface
and that the n roots of P correspond to n braid strands at H side. Braided Galois group
would act in An and hierarchies of Galois groups would induce hierarchies of inclusions of
HFFs. The ramified primes of P would correspond to physically preferred p-adic primes in
the adelic structure formed by p-adic variants of An with + and × replaced with ⊕ and ⊗.
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1 Introduction

I have had a very interesting discussions with Baba Ilya Iyo Azza about von Neumann alge-
bras [A10]. I have a background of physicist and have suffered a lot of frustration in trying to
understand hyperfinite factors of type II1 (HFFs, https://cutt.ly/OX8uP32) by trying to read
mathematicians’ articles.

I cannot understand without a physical interpretation and associations to my own big vision
TGD. Again I stared at the basic definitions, ideas and concepts trying to build a physical in-
terpretation. This is not my first attempt to understand the possible role of HFFs in TGD: I
have written already earlier of the possible role of von Neumann algebras in the TGD frame-
work [K12, K9]. In the sequel I try to summarize what I have possibly understood with my meager
technical background.

In the first section I will redescribe the basic notions and ideas related to von Neumann algebras
as I see them now, in particular HFFs, which seem to be especially relevant for TGD because of
their ”hyperfiniteness” property implying that they are effectively finite-D matrix algebras.

There are also more general factors of type II1, in particular those related to the notion
of free probability (hhttps://cutt.ly/SX2ftyx), which is a notion related to a theory of non-
commutative random variables. The free group generated by a finite number of generators is basic
notion and the group algebras associated with free groups are factors of type II1. The isomorphism
problem asks whether these algebras are isomorphic for different numbers of generators. These
algebras are not hyperfinite and from the physics point of view this is not a good news.

1.1 Basic notions of HFFs from TGD perspective

In this section I will describe my recent, still rather primitive physicist’s understanding of HFFs.
Factor M and its commutant M ′ are central notions in the theory of von Neumann algebras. An
important question, not discussed earlier, concerns the physical counterparts of M and M ′. I will
not discuss technical details: I have made at least a noble attempt to do this earlier [K12, K9].

1. In the TGD framework, one can distinguish between quantum degrees of freedom and classical
ones, and classical physics can be said to be an exact part of quantum physics.

2. The formulation of physics as Kähler geometry of the ”world of classical worlds” (WCW)
involves hierarchies An of 3 kinds of algebras; supersymplectic algebras acting on δM4

+×CP2

SSAn assumed to induce isometries of WCW, affine algebras Affn associated with isometries
and holonomies of H = M4 × CP2 acting on light-like partonic orbits, and isometries In of
the light-cone boundary δM4

+.

At the H-side, quantum degrees of freedom are assignable to An, which would correspond to
M .

In zero energy ontology (ZEO) [K13] states are quantum superpositions of preferred ex-
tremals. Preferred extremals depend on zero modes, which are symplectic invariants and
do not appear in the line element of WCW. Zero modes serve as classical variables, which
commute with super symplectic transformations and could correspond to M ′ for SSAn at
H-side. Similar identification of analogs of zero modes should be possible for Affn and In.

3. In the number theoretic sector at the M8-side, braided group algebras would correspond to
quantum degrees of freedom, that is M . M ′ would correspond to some number theoretic
invariants of polynomials P determining the space-time surface in H by M8 − H duality
[L11, L12]. The set of roots of P and ramified primes dividing the discriminant of P are such
invariants.

1.2 Bird’s eye view of HFFs in TGD

A rough bird’s eye view of HFFs is discussed with an emphasis on their physical interpretation.
There are two visions of TGD: the number theoretic view [L5, L6] and the geometric view [K2,
K1, K5, K7] and M8 −H duality relates these views [L18, L11, L12].

https://cutt.ly/OX8uP32
hhttps://cutt.ly/SX2ftyx
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1. At the M8 side, the p-adic representations of braided group algebras of Galois groups asso-
ciated with hierarchies of extensions of rationals define natural candidates for the inclusion
hierarchies of HFFs.

Braid groups represent basically permutations of tensor factors and the same applies to the
braided Galois groups with Sn restricted to the Galois group.

A good guess is that braid strands correspond to the roots of a polynomial labelling mass
shells H3 in M4 ⊂M8. The 3-D mass shells define a 4-surface in M8 by holography based on
associativity, which makes possible holography. The condition that the normal space of the 4-
surface in M8 is associative and contains 2-D commutative sub-space guarantees holography
both holography and M8 −H duality mapping this 4-surface to space-time surface in H.

2. At the H side there are 3 algebras.

(a) The subalgebras SSAn of super-symplectic algebra (SSA) are assumed to induce isome-
tries of WCW. Since SSA and also other algebras have non-negative conformal weights,
it has a hierarchy of subalgebras SSAn with conformal weights coming as n-multiples
of those for SSA.

(b) There are also affine algebras Aff associated with H isometries acting on light-like
orbits of partonic 2-surfaces and having similar hierarchy of Affn. Both isometries and
holonomies of H are involved.

(c) Light-cone boundary allows infinite dimensional isometry group I consisting of general-
ized conformal transformation combined with a local scaling allowing similar hierarchy
In.

One should understand how the number theoretic and geometric hierarchies relate to each
other and a good guess is that braided group algebras act on braids assignable to SSAn with
n interpreted as the number of braid strands and thus the degree n of P .

Also the interpretational problems related to quantum measurement theory and probability
interpretation are discussed from the TGD point of view, in which zero energy ontology (ZEO)
allows us to solve the basic problem of quantum measurement theory.

1.3 M8 −H duality and HFFS

M8 −H duality [L11, L12] suggests that the hierarchies of extensions of rationals at the number
theoretic side and hierarchies of HFFs at the geometric side are closely related.

The key idea is that the braided Galois groups atM8-side interact on algebrasAn ∈ {SSAn, Affn, In}
at H level as number theoretic braid groups permuting the tensor factors assignable to the braid
strands, which correspond to the roots of the polynomial P .

The basic notions associated with a polynomial P with rational coefficients having degree n
are its n roots, ramified primes as factors of the discriminant defined by the difference of its roots,
and Galois group plus a set of Galois invariants such as symmetric polynomials of roots. The
Galois group is the same for a very large number of polynomials P . The question concerns the
counterparts of these notions at the level of H?

An educated guess is that the n roots of P label the strands of an n-braid in H assignable to
An, ramified primes correspond to physically preferred p-adic primes in the adelic structure formed
by various p-adic representations An,p of the algebras An and the Galois group algebra associated
with the polynomial P with degree n.

This picture suggests a generalization of arithmetics to quantum arithmetics based on the
replacement of + and × with ⊕ and ⊗ and replacement of numbers with representations of groups
or algebras [L23]. This implies a generalization of adele by replacing p-adic numbers with the
p-adic quantum counterparts of algebras An.

The mysterious McKay correspondence [A13] has inspired several articles during years [L4,
L10, L9, L23] but it is fair to say that I do not really understand it. Hence I could not avoid the
temptation to attack this mystery also in this article.
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1.4 Infinite primes

The notion of infinite primes [K11, K6] is one of the ideas inspired by TGD, which has waited for a
long time for its application. Their construction is analogous to a quantization of supersymmetric
arithmetic quantum field theory.

1. The analog of Dirac sea X is defined by the product of finite primes and one ”kicks” from
sea a subset of primes defining a square free integer nF to get the sum X/nF + nF . One
can also add bosons to X/nF resp. nF multiplying it with integer nB1

resp. nB2
, which is

divisible only by primes dividing Z/nF resp. nF .

2. This construction generalizes and one can form polynomials of X to get infinite primes
analogous to bound states. One can consider instead of P (X) a polynomial P (X,Y ), where
Y is the product of all primes at the first level thus involving the product of all infinite primes
already constructed, and repeat the procedure. One can repeat the procedure indefinitely
and the formal interpretation is as a repeated quantization. The interpretation could be
in terms of many-sheeted space-time or abstraction process involving formation of logical
statements about statements about ...

3. The polynomials Q could also be interpreted as ordinary polynomials. If Q(X) = P (X),
where P (X) is the polynomial defining a 4-surface in M8, the space-time surface X4 in
H would correspond to infinite prime. This would give a ”quantization” of P defining the
space-time surface.

The polynomial P defining 4-surface in H would fix various quantum algebras associated
with it. The polynomials P (X1, X2, ...Xn) could be interpreted as n− 1-parameter families
defining surfaces in the ”world of classical worlds” (WCW) [L18] (for the development of the
notion see [K2, K1, K5, K7]).

4. X is analogous to adele and infinite primes could be perhaps seen as a generalization of the
notion of adele. One could assign p-adic variants of various HFFs to the primes defining the
adele and + and × could be replaced with ⊕ and ⊗. The physical interpretation of ramified
primes of P is highly interesting.

In the last section, I try to guess how the fusion of these building blocks by using the ideas
introduced in the previous sections could give rise to what might be called quantum TGD. It must
be made clear that the twistor lift of TGD [L20, L21] is not considered in this work.

2 Basic notions related to hyperfinite factors of type II1

from TGD point of view

In this section, the basic notions of hyperfinite factors (HFFs) as a physicists from the TGD point
of view will be discussed. I have considered HFFs earlier several times [K12, K9] and will not
discuss here the technical details of various notions.

2.1 Basic concepts related to von Neumann algebras

John von Neumann proposed that the algebras, which now carry his name are central for quantum
theory [A10]. Von Neumann algebra decomposes to a direct integral of factors appearing and there
are 3 types of factors corresponding to types I, II, and III.

2.1.1 Inclusion/embedding as a basic aspect of physics

Inclusion (https://cutt.ly/NX8eWwa, https://cutt.ly/cX8eUuf, https://cutt.ly/4X8ePn6))
is a central notion in the theory of factors. Inclusion/imbedding involving induction of various
geometric structures is a key element of classical and quantum TGD.

One starts from the algebra B(H) of bounded operators in Hilbert space. This algebra has
naturally hermitian conjugation ∗ as an antiunitary operation and therefore one talks of C∗ al-
gebras. von Neumann algebra is a subalgebra of B(H). Already here an analog of inclusion is

https://cutt.ly/NX8eWwa
https://cutt.ly/cX8eUuf
https://cutt.ly/4X8ePn6
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involved (https://cutt.ly/3XkPO2s). There are also inclusions between von Neumann algebras,
in particular HFFs.

What could the inclusion of von Neumann algebra to B(H) as subalgebra mean physically? In
the TGD framework, one can identify several analogies.

1. Space-time is a 4-surface in H = M4×CP2: analog of inclusion reducing degrees of freedom.

2. Space-time is not only an extremal of an action [K8] [L19] but a preferred extremal (PE),
which satisfies holography so that it is almost uniquely defined by a 3-surface. This guarantees
general coordinate invariance at the level of H without path integral. I talk about preferred
extremals (PEs) analogous to Bohr orbits. Space-time surface as PE is a 4-D minimal surface
with singularities [L19]: there is an analogy with a soap film spanned by frames. This implies
a small failure of determinism localizable at the analogs of frames so that holography is not
completely unique.

Holography means that very few extremals are physically possible. This Bohr orbit property
conforms with the Uncertainty Principle. Also HFFs correspond to small sub-spaces of B(H).
Quantum classical correspondence suggests that this analogy is not accidental.

2.1.2 The notion of commutant and its physical interpretation in the TGD framework

The notion of the commutant M ′ of M , which also defines HFF, is also essential. What could be
the physical interpretation of M ′? TGD suggests 3 important hierarchies of HFFs as algebras An.
An could correspond to super-symplectic algebras SSAn acting at δM4

−×CP2; to an affine algebras
Affn acting at the light-like partonic orbits; or to an isometry algebra In acting at δM4

+. All these
HFF candidates have commutants and would have interpretation in terms of quantum-classical
correspondence.

One can consider SSA as an example.

1. In TGD, one has indeed an excellent candidate for the commutant. Supersymplectic symme-
try algebra (SSA) of δM4

+×CP2 (δM4
+ denotes the boundary of a future directed light-cone)

is proposed to act as isometries of the ”world of classical worlds” (WCW) consisting of
space-time surfaces as PEs (very, very roughly).

Symplectic symmetries would be generated by Hamiltonians, which are products of Hamil-
tonians associated with δM4

+ (metrically sphere S2) and CP2. Symplectic symmetries are
conjectured to act as isometries of WCW and gamma matrices of WCW extend symplectic
symmetries to super-symplectic ones.

Hamiltonians and their super-counterparts generate the super-symplectic algebra (SSA) and
quantum states are created by using them. SSA is a candidate for HFF. Call it M . What
about M?

2. The symplectic symmetries leave invariant the induced Kähler forms of CP2 and contact
form of δM4

+ (assignable to the analog of Kähler structure in M4).

3. The wave functions in WCW depending of magnetic fluxes defined by these Kähler forms
over 2-surfaces are physically observables which commute SSA and with M . These fluxes are
in a central role in the classical view about TGD and define what might perhaps be regarded
as a dual description necessary to interpret quantum measurements.

Could M ′ correspond or at least include the WCW wave functions (actually the scalar parts
multiplying WCW spinor fields with WCW spinor for a given 4-surface a fermionic Fock state)
depending on these fluxes only? I have previously talked of these degrees of freedom as zero
modes commuting with quantum degrees of freedom and of quantum classical correspondence.

4. There isM−M ′ correspondence also for number theoretic degrees of freedom, which naturally
appear from the number theoretic M8 description mapped to H-description. Polynomials
P associated with a given Galois group are analogous to symplectic degrees of freedom with
given fluxes as symplectic invariants. Galois groups and Galois invariants are ”classical”
invariants at the M8 side and should have counterparts on the H side. For instance, the
degree n of polynomial P could correspond to the number of braid stran

https://cutt.ly/3XkPO2s
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2.1.3 More algebraic notions

There are further algebraic notions involved. The article of John Baez (https://cutt.ly/VXlQyqD)
describes these notions nicely.

1. The condition M ′′ = M is a defining algebraic condition for von Neumann algebras. What
does this mean? Or what could its failure mean? Could M ′′ be larger than M? It would
seem that this condition is achieved by replacing M with M ′′.

M ′′ = M codes algebraically the notion of weak continuity, which is motivated by the idea
that functions of operators obtained by replacing classical observable by its quantum counter-
part are also observables. This requires the notion of continuity. Every sequence of operators
must approach an operator belonging to the von Neumann algebra and this can be required
in a weak sense, that is for matrix elements of the operators.

Does M ′′ = M mean that the classical descriptions and quantum descriptions are somehow
equivalent? At first, this looks nonsensical but when one notices that the scalar parts of
WCW spinor fields correspond to wave functions in the zero mode of WCW which do not
appear in the line element of WCW, this idea starts to look more sensible. In quantum
measurements the outcome is indeed expressed in terms of classical variables. Zero modes
and quantum fluctuating modes would provide dual descriptions of physics.

2. There is also the notion of hermitian conjugation defined by an antiunitary operator J : a† =
JAJ . This operator is absolutely essential in quantum theory and in the TGD framework it
is geometrized in terms of the Kähler form of WCW. The idea is that entire quantum theory,
rather than only gravitation or gravitation and gauge interactions should be geometrized.
Left multiplication by JaJ corresponds to right multiplication by a.

2.1.4 Connes tensor product and category theoretic notions

Connes tensor product (Connes fusion) [A2] appears in the construction of the hierarchy of inclu-
sions of HFFs. For instance, matrix multiplication has an interpretation as Connes tensor product
reduct tensor product of matrices to a matrix product. The number of degrees of freedom is re-
duced. The tensor product A⊗RB depends on the coefficient ring R acting as right multiplication
in A and left multiplication in B. If the dimension of R increases, the dimension of A (B) as a
left/right R module is reduced. For instance, A as an A-module is 1-dimensional.

Also category theory related algebraic notions appear. I still do not have an intuitive grasp
about category theory. In any case, one would have a so-called 2-category (https://cutt.ly/
3XkPO2s). M and N correspond to 0-morphisms (objects). One can multiply arguments of func-
tions in L2(M) and L2(N) by M or N .

Bimodule (https://cutt.ly/EX885WA) is a key notion. For instance the set of Rm,n of m× n
matrices is a bimodule, which is a left (right) module with respect to m × m (n × n) matrices.
One can replace matrices with algebras. The bimodule MMM resp. NNN is analogous to m×m
resp. n × n matrices. They correspond to 1-morphisms, which behave like units. The bimodule

MNN resp. NNM is analogous to m × n resp. n ×m matrices. These two bimodules correspond
to a generating 1-morphisms mapping N to M resp. M to N . Bimodule map corresponds to
2-morphisms. Connes tensor product defines what category theorists call a tensor functory.

2.1.5 The notions of factor and trace

The notion of factor as a building block of more complex structures is central and analogous to the
notion of simple group or prime. Factor is a von Neumann algebra, which is simple in the sense
that it has a trivial center consisting of multiples of unit operators. The algebra is direct sum or
integral over different factors.

The notion of trace is fundamental and highly counter intuitive. For the factors of type I, it is
just the ordinary trace and the trace Tr(I) of the unit operator is equal to the dimension n of the
Hilbert space. This notion is natural when direct sum is the key notion. For the other factors, the
situation is different.

Factors can be classified into three types: I, II, andIII.

https://cutt.ly/VXlQyqD
https://cutt.ly/3XkPO2s
https://cutt.ly/3XkPO2s
https://cutt.ly/EX885WA
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1. For factors of type I associated with three bosons, the trace equals n in the n-D case and ∞
in the infinite-D case.

2. A highly non-intuitive and non-trivial axiom relating to HFFs as hyperfinite factors of type
II1 is that the trace of the unit operator satisfies Tr(Id) = 1: for factors of type II (see the
article of Popa at https://cutt.ly/KX8y0Fs). This definition is natural in the sense that
being a subsystem means being a tensor factor rather than subspace.

The intuitive idea is that the density matrix for an infinite-D system identified as a unit
operator gives as its trace total probability equal to one. These factors emerge naturally for
free fermions. ”Hyperfinite” expresses the fact that the approximation of a factor with its
finite-D cutoff is an excellent approximation.

HFFs are extremely flexible and can look like arbitrarily high-dimensional factor In. For
instance, one can extract any matrix algebra Mn(C) as a tensor factor so that one has
M = Mn(C)⊗M1/n by the multiplicativity of dimensions in the tensor product. Should one
interpret this by saying that measurement can separate from a factor an n−D Hilbert space
and that M1/n is something that remains inaccessible to the measurements considered?
If one introduces the notion of measurement resolution in this manner, the description of
measurement could be based on factors of tyoe In.

3. The factors of type II∞ are tensor products of infinite-D factors of type I and HFFs and
could describe free bosons and fermions.

4. In quantum field theory (QFT), factors of type III appear and in this case the notion of
trace becomes useless. These factors are pathological and in QFT they lead to divergence
difficulties. The physical reason is the idea about point-like particles, which is too strong an
idealization.

In the TGD framework, the generalization of a point-like particle to 3-surface saves from these
difficulties and leads to factors of type I and HFFs. In TGD, finite measurement resolution
is realized in terms of a unique number theoretic discretization, which further simplifies the
situation in the TGD framework.

2.2 Standard construction for the hierarchy of HFFs

Consider now the standard construction leading to a hierarchy of HFFs and their inclusions.

1. One starts from an inclusion M ⊂ N of HFFs. I will later consider what these algebras could
be in the TGD framework.

2. One introduces the spaces L2(M) resp. L2(N) of square integrable functions in M resp. N .

From the physics point of view, bringing in ”L2” is something extremely non-trivial. Space is
replaced with wave functions in space: this corresponds to what is done in wave mechanics,
that is quantization! One quantizes in M , particles as points of M are replaced by wave
functions in M , one might say.

3. At the next step one introduces the projection operator e as a projection from L2(N) to
L2(M): this is like projecting wave functions in N to wave functions in M . I wish I could
really understand the physical meaning of this. The induction procedure for second quantized
spinor fields in H to the space-time surface by restriction is completely analogous to this
procedure.

After that one generates a HFF as an algebra generated by e and L2(N): call it 〈L2(N), e〉.
One has now 3 HFFs and their inclusions: M0 ≡M , M1 ≡ N , and 〈L2(N), e〉 ≡M2.

An interesting question is whether this process could generalize to the level of induced spinor
fields?

4. Even this is not enough! One constructs L2(M2) ≡M3 including M2. One can continue this
indefinitely. Physically this means a repeated quantization.

https://cutt.ly/KX8y0Fs
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One could ask whether one could build a hierarchy M0, L2(M0),..., L2(L2...(M0))..): why is
this not done?

The hierarchy of projectors ei to Mi defines what is called Temperley-Lieb algebra [A14]
involving quantum phase q = exp(iπ/n) as a parameter. This algebra resembles that of
S∞ but differs from it in that one has projectors instead of group elements. For the braid
group e2i = 1 is replaced with a sum of terms proportional to ei and unit matrix: mixture of
projector and permutation is in question.

5. There is a fascinating connection in TGD and theory of consciousness. The construction of
what I call infinite primes [K11, K6] is structurally like a repeated second quantization of a
supersymmetric arithmetic quantum field theory involving fermions and bosons labelled by
the primes of a given level I conjectured that it corresponds physically to quantum theory in
the many-sheeted space-time.

Also an interpretation in terms of a hierarchy of statements about statements about ....
bringing in mind hierarchy of logics comes to mind. Cognition involves generation of reflective
levels and this could have the quantization in the proposed sense as a quantum physical
correlate.

2.3 Classification of inclusions of HFFs using extended ADE diagrams

Extended ADE Dynkin diagrams for ADE Lie groups, which correspond to finite subgroups of
SU(2) by McKay correspondence [A13, A12, A9], discussed from the TGD point of view in [L23],
characterize inclusions of HFFs.

For a subset of ADE groups not containing E7 andD2n+1, there are inclusions, which correspond
to Dynkin diagrams corresponding quantum groups. What is interesting that E6 (tetrahedron)
and E8 (icosahedron/dodecahedron) appear in the TGD based model of bioharmony and genetic
code but not E7 (cube and octahedron) [L15].

1. Why finite subgroups of SU(2) (or SU(2)q) should characterize the inclusions in the tunnel
hierarchies with the same value of the quantum dimension Mn+1 : Mn of quantum group?

In the TGD interpretation Mn+1 reduces to a tensor product of Mn and quantum group,
when Mn represents reduced measurement resolution and quantum group the added degrees
of freedom. Quantum groups would represent the reduced degrees of freedom. This has a
number theoretical counterpart in terms of finite measurement resolution obtained when an
extension of ... of rationals is reduced to a smaller extension. The braided relative Galois
group would represent the new degrees of freedom.

2. One can algebraically identify HFF as a ”tunnel” obtained by iterated standard construction
as an infinite tensor power of GL(2, c) or GL(n,C). The analog of the McKay graph for the
irreps of a closed subgroup of GL(2, C) defines an invariant characterizing the fusion rules
involved with the reduction of the Connes tensor products. This invariant reduces to the
McKay graph for the tensor products of the canonical 2-D representation with the irreps of
a finite rather than only closed subgroups of SU(2). This must take place also for GL(n,C).
Why?

The reduction of degrees of freedom implied by the Connes tensor product seems to imply
a discretization at the level of SU(2) and replace closed subgroups of SU(2) with finite
subgroups. This conforms with the similarity of the representation theories of discrete and
closed groups. In the case of quantum group representations only a finite number of ordinary
finite-D group representations survive.

All this conforms with the TGD view about the equivalence of number-theoretic discretization
and inclusions as descriptions of finite measurement resolution.

In the TGD framework, SU(2) could correspond to a covering group of quaternionic auto-
morphisms and number theoretic discretization (cognitive representations) would naturally lead to
discrete and finite subgroups of SU(2).
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3 TGD and hyperfinite factors of type II1: a bird’s eye of
view

In this section, a tentative identification of hyperfinite factors of type II1 (HFFS) in the TGD
framework [K12, K9] is discussed. Also some general related to the interpretation of HFFs and
their possible resolution in the TGD framework are considered.

3.1 Identification of HFFs in the TGD framework

3.1.1 Inclusion hierarchies of extensions of rationals and of HFFs

I have enjoyed discussions with Baba Ilya Iyo Azza about von Neumann algebras. Hyperfinite
factors of type II1 (HFF) (https://cutt.ly/lXp6MDB) are the most interesting von Neumann
algebras from the TGD point of view. One of the conjectures motivated by TGD based physics,
is that the inclusion sequences of extensions of rationals defined by compositions of polynomials
define inclusion sequences of hyperfinite factors. It seems that this conjecture might hold true!

Already von Neumann demonstrated that group algebras of groups G satisfying certain addi-
tional constraints give rise to von Neuman algebras. For finite groups they correspond to factors
of type I in finite-D Hilbert spaces.

The group G must have an infinite number of elements and satisfy some additional conditions
to give a HFF. First of all, all its conjugacy classes must have an infinite number of elements.
Secondly, G must be amenable. This condition is not anymore algebraic. Braid groups define
HFFs.

To see what is involved, let us start from the group algebra of a finite group G. It gives a
finite-D Hilbert space, factor of type I.

1. Consider next the braid groups Bn, which are coverings of Sn. One can check from Wikipedia
that the relations for the braid group Bn are obtained as a covering group of Sn by giving
up the condition that the permutations σi of nearby elements ei, ei+1 are idempotent. Could
the corresponding braid group algebra define HFF?

It is. The number of conjugacy classes giσig
−1
i , gi == σi+1 is infinite. If one poses the

additional condition σ2
i = U × 1, U a root of unity, the number is finite. Amenability is too

technical a property for me but from Wikipedia one learns that all group algebras, also those
of the braid group, are hyperfinite factors of type II1 (HFFs).

2. Any finite group is a subgroup G of some Sn. Could one obtain the braid group of G and
corresponding group algebra as a sub-algebra of group algebra of Bn, which is HFF. This
looks plausible.

3. Could the inclusion for HFFs correspond to an inclusion for braid variants of corresponding
finite group algebras? Or should some additional conditions be satisfied? What the conditions
could be?

Here the number theoretic view of TGD could comes to the rescue.

1. In the TGD framework, I am primarily interested in Galois groups. The vision/conjecture is
that the inclusion hierarchies of extensions of rationals correspond to the inclusion hierarchies
for hyperfinite factors. The hierarchies of extensions of rationals defined by the hierarchies
of composite polynomials Pn ◦ ...◦P1 have Galois groups, which define a hierarchy of relative
Galois groups such that the Galois group Gk is a normal subgroup of Gk+1. One can say
that the Galois group G is a semidirect product of the relative Galois groups.

2. One can decompose any finite subgroup to a maximal number of normal subgroups, which are
simple and therefore do not have a further decomposition. They are primes in the category
of groups.

3. Could the prime HFFs correspond to the braid group algebras of simple finite groups acting
as Galois groups? Therefore prime groups would map to prime HFFs and the inclusion hier-
archies of Galois groups induced by composite polynomials would define inclusion hierarchies
of HFFs just as speculated.

https://cutt.ly/lXp6MDB
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One would have a deep connection between number theory and HFFs.

3.1.2 How could HFFs emerge in TGD?

What could HFFs correspond to in the TGD framework? Consider first the situation at the level
of M8.

1. Braid group B(G) of group (say Galois group as subgroup of Sn) and its group algebra
would correspond to B(G) and L2(B(G) ). Braided Galois group and its group algebra could
correspond to B(G) and L2(B(G)).

The inclusion of Galois group algebra of extension to its extension could naturally define
a Connes tensor product. The additional degrees of freedom brought in by extension of
extension would be below measurement resolution.

2. Composite polynomials Pn ◦ .... ◦ P1 are used instead of a product of polynomials naturally
characterizing free n-particle states. Composition would describe interaction physically: the
degree is the product of degrees of factors for a composite polynomial and sum for the product
of polynomials.

The multiplication rule for the dimensions holds also for the tensor product so that functional
composition could be also seen as a number theoretic correlate for the formation of interacting
many particle states.

3. Compositeness implies correlations and formation of bound states so that the number of
degrees of freedom is reduced. The interpretation as bound state entanglement is suggestive.
This hierarchical entanglement could be assigned with directed attention in the TGD inspired
theory of consciousness [L13].

An alternative interpretation is in terms of braids of braids of ... of braids with braid strands
at a given level characterized by the roots of Pi. These interpretations could be actually
consistent with each other.

4. Composite polynomials define hierarchies of Galois groups such that the included Galois
group is a normal subgroup. This kind of hierarchy could define an increasing sequence of
inclusions of braided Galois groups.

Consider the situation at the H level.

1. At the level of H, elements of the algebras A ∈ {SSA,Aff, I}a associated with super-
symplectic symmetries acting at δM4

+, affine isometries acting at light-like partonic orbites,
isometries of δM4

+, are labelled by conformal weights coming as non-negative integers. Also
algebraic integers can be considered but for physical states conformal confinement requires
integer valued conformal weights.

2. One can construct a hierarchy of representations of A such that subalgebras An with con-
formal weights h ≥ 0 coming as multiples of n and the commutator [An, A] annihilate the
physical states. These representations are analogous to quantum groups and one can say
that An defines a finite measurement resolution in A. Ank, k ≥ 1 is included by An for and
one has a reversed sequence of inclusions.

One can construct inclusion hierarchies defined by the sequences 1÷n1÷n2÷ .... ”n−1 = 1”
corresponds to SSA. The factor spaces Ank

/Ank+1
are analogs of quantum group-like objects

associated with Jones inclusions and the interpretation is in terms of finite measurement
resolution defined by Ank+1

.

The factor spaces A/Ank
define inclusion hierarchies with an increasing measurement reso-

lution.

3.2 Some objections against HFFs

One cannot avoid philosophical considerations related to the notion of probability and to the
interpretations of quantum measurement theory (https://cutt.ly/YXxSLS1).

https://cutt.ly/YXxSLS1
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3.2.1 Standard measurement theory and HFFs

The standard interpretations of quantum measurement theory are known to lead to problems in
the case of HFFs.

1. An important aspect related to the probabilistic interpretation is that physical states are
characterized by a density matrix so that quantum theory reduces to a purely statistical
theory. Therefore the phenomenon of interference central in the wave mechanics does not
have a direct description.

Another problem is that for HFFs, pure states do not exist as so-called normal states, which
are such that it is possible to assign a density operator to them. This is easy to understand
intuitively since by the Tr(Id) = 1 property of the unit matrix, there is no minimal projection.
Selection of a ray would correspond to an infinite precision and delta function type density
operator. The axiom of choices in mathematics is quite a precise analogy.

One can of course argue that even if pure states as normal states are possible, in practice
the studied system is entangled with the environment and that this forces the description in
terms of a density matrix even when pure states are realized at the fundamental level.

2. In the purely statistical approach, the notion of quantum measurement must be formulated in
terms of what occurs for the density matrix in quantum measurement. The expectation value
of any observable A for the new density matrix generated in the measurement of observable
O with a discrete spectrum must be a weighted sum for the expectations for the eigenstates
of the observable with weights given by the state function reduction probabilities.

Problems are however encountered when the spectrum contains discrete parts. In the TGD
framework, the number theoretic discretization would make it possible to avoid these prob-
lems.

3.2.2 Should density matrix be replaced with a more quantal object?

These problems force us to ask whether there could be something deeply wrong with the notion
of density matrix? The TGD inspired view of HFFs [K12, K9] suggests a generalization of the
state as a density matrix to a ”complex square root” of the density matrix. At the level of WCW
as vacuum functional, it would be proportional to exponent of a real valued Kähler function of
WCW identified as Kähler action for the space-time region as a preferred extremal and a phase
factor defined by the analog of of action exponential. Zero energy state would be proportional to
an exponent of Kähler function of WCW identified as Kähler action for space-time surface as a
preferred extrema.

3.2.3 Problems with the interpretations of quantum theory

HFFs based probability concept has also problems with the interpretations of quantum theory,
which actually strongly suggest that something is badly wrong with the standard ontology.

1. In TGD, this requires a generalization of quantum measurement theory [L8] [K13] based on
zero energy ontology (ZEO) and Negentropy Maximization Principle (NMP) [K4] [L3], which
is consistent with the second law [L16]. What is essential is that physics is extended to what
I call adelic physics [L5, L6] to describe also the correlates of cognition. This brings in a
measure for conscious information based on a p-adic generalization of Shannon entropy.

2. ZEO [K13] is forced by an almost exact holography in turn implied by general coordinate
invariance for space-time as 4-surface. States in ZEO are superpositions of classical time
evolutions and and is replaced by a new one in a state function reduction (SFR) [L8, L22].
The determinism of the unitary time evolution is consistent with the non-determinism of
SFR. The basic problem of quantum measurement theory disappears since there are two
times and two causalities. Causality of field equations and geometric time of physicists can
be assigned to the classical time evolutions. The causality of free will and flow of experienced
time can be assigned to a sequence of SFRs. The findings of Minev et al [L7] provide support
for ZEO [L7].
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Quantum measurement as a reduction of entanglement can in principle occur for any entan-
gled system pair if NMP favors it. There is no need to assume mysterious decoherence as a
separate postulate. By NMP, entanglement negentropy can also increase by the formation of
entangled states. Since entanglement negentropy is the sum of positive p-adic contribution
and negative contribution from real entanglement and is positive, the increase of negentropy
is consistent with the increase of real entanglement entropy.

However, since classical determinism is slightly broken [L19] (there is analogy with the non-
uniqueness of the minimal surfaces spanned by frames), the holography is not quite exact.
This has important implications for the understanding of the space-time correlates of cogni-
tion and intentionality in the TGD framework.

3.2.4 The notion of finite measurement resolution and probabilistic interpretation

One can also ask whether something could go wrong with the quantum measurement theory itself.
This notion of quantum measurement does not take into account the fact that the measurement
resolution is finite.

The notion of finite measurement resolution realized in terms of inclusion, replacing Hilbert
space ray with the included factor and reducing state space to quantum group like object, could
allow us to overcome the problems due to the absence of minimal projectors for HFFs implying
that the notion of Hilbert space ray does not make sense.

Quantum group like object would represent the degrees of freedom modulo finite measurement
resolution described by the included factor. The quantum group representations form a finite
subset of corresponding group representations and the state function reductions could occur to
quantum group representations and the standard quantum measurement theory for factors of type
I would generalize.

3.2.5 Connes tensor product and finite measurement resolution

In the TGD framework Connes tensor product could provide a description of finite measurement
resolution in terms of inclusion.

1. In the TGD framework, inclusion of HFFs are interpreted in terms of measurement resolution.
The included factor M ⊂ N would represent the degrees of freedom below measurement
resolution. N as M module would mean that M degrees of freedom are absorbed to the
coefficient ring and are not visible in the physical states. Complex numbers as a coefficient
ring of the Hilbert space are effectively replaced with M . In the number theoretic description
of the measurement resolution, the extension of extension is replaced with the extension. The
quantum group, N as M , quantum group with quantum dimension N : M would characterize
the observable degrees of freedom.

This fits with the hierarchy of SSAn:s. SSAn+1 would take the role of M and SSAn that
of N . This conforms with the physical intuition. Since n corresponds to conformal weight,
the large values of n would naturally correspond to degrees of freedom below UV cutoff.

Could also IR cutoff have a description in the super symplectic hierarchy of SSAn:s. It
should correspond to a minimal value for conformal weight. The finite size of CD defining
a momentum unit gives a natural IR cutoff. The proposal is that the total momentum
assignable to the either half-cone of CD defines by M8 − H duality the size scale L as
L = heff/M [L11, L12].

2. For the hierarchies of extensions of rationals the upper levels of the extension hierarchy would
not be observed. The larger the value of n = heff/h0, n a dimension of extension of rationals
associated with polynomial P defining the space-time region by M8 −H duality, the longer
the quantum coherence scale.

In this case large values for the dimension of extension would correspond to IR cutoff. There-
fore UV and IR cutoffs would correspond to number theoretic and geometric cutoffs. This
conforms with the view that M8 −H duality as an analog of Langlands duality is between
number theoretic and geometric descriptions.
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3. Duality suggests that also UV cutoff should have a number theoretic description. In the
number theoretic situation, Galois confinement for these levels might imply that they are
indeed unobservable, just like color-confined quarks. In fact, the hypothesis n = heff/h0, n
a dimension of extension of rationals associated with polynomial P defining the space-time
region by M8 − H duality, for the effective Planck constant leads to estimate for ordinary
Planck constant as h = n0h0 where n0 corresponds to the order of permutation group S7.

Could the interpretation be that these degrees of freedom are Galois confined and unobserv-
able in the scales at which measurements are performed. Smaller values of heff would appear
only in length scales much below the electroweak scale and at the limit of CP2 scale?

3.2.6 How finite measurement resolution could be realized using inclusions of HFFs?

The basic ideas are that finite measurement resolution corresponds to inclusions of HFFs on one
hand, and to number theoretic discretizations defined by extensions of rationals. In both cases one
has inclusion hierarchies.

One can consider realizations at the level of WCW (geometry) and at the level of number
theory in terms of adelic structures assignable to the extensions of rationals. Space-time surfaces
can be discretized and this induces discretization of WCW. Even more, WCW should be in some
natural manner effectively discrete.

In [K2, K1, K7] the construction WCW Kähler metric is considered and the mere existence of
the K ”ahler metric is expected to require infinite-D isometry group and imply constant curvature
property. The Kähler function K is defined in terms of action consisting of the Kähler action and
volume part for a preferred extremal (PE). There are however zero modes present and the metric
depends on the zero modes. Twistor lift fixes the choices of H uniquely [L20, L21].

How to define WCW functional integral and how to discretize it? I have proposed that the
Gaussian approximation to WCW integration is exact and allows to define a discretization in
terms of the maxima (maybe also other extrema) of Kähler function. The proposal is that
the exponential of Kähler function should correspond to a number theoretic invariant, perhaps the
discriminant of the polynomial P defining Pe by M8 −H duality.

Consider first the standard realization of the restriction P : N →M reducing the measurement
resolution.

1. The definition of a unitary S-matrix for HFFs is non-trivial. Usually one considers only
density matrices expressible in terms of projection operators P to subspaces of HFF.

I have earlier proposed the notion of a complex square root of the density matrix as a
generalization of the density matrix. In a direct sum representation of S over projections,
in which S-matrix is diagonal, and the projection operators would be multiplied by phase
factors. This definition looks sensible at the level of WCW but perhaps as a generalization
of the density matrix rather than the S-matrix.

The exponent of Kähler function could have a modulus multiplied by a phase factor. Also
an additional state dependent phase factor can be considered. The mathematical existence of
the WCW integral fixes the modulus essentially uniquely to an exponent of Kähler function
K multiplied by the metric volume element. K could also have an imaginary part.

2. The projected S-matrix PSP is unitary if the projection operator P must commute with S.
S-matrix is realized at the level of HFFs so that the matrix representation does not make
sense in a strict sense since the notion of ray is not sensical.

3. Projection N → M respects unitarity only if P commutes with S and S†. The S-matrix
does not have matrix elements between M and N . This is a very tough condition.

How the finite measurement resolution could be realized in the TGD framework?

1. In WCW spin degrees of freedom plus algebras An. Number theoretic degrees of freedom
are discrete and correspond to various p-adic degrees of freedom. Continuous WCW is
associated with the real part of the adelic structure. Its number theoretic parts correspond
to the p-adic degrees of freedom, which are discrete.
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2. Discretization could be a natural and necessary part of the definition of WCW. Could dis-
crete WCW degrees of freedom be identified in terms of symplectic and number theoretic
invariants? They would represent for WCW spinor fields scalar degrees scalar degrees
of freedom separable from spin degrees of freedom representable in terms of algebras An.
These two kinds of degrees of freedom correspond to M and M ′ if the proposed general
picture is correct.

Measurement resolution would be realized in terms of braid group algebras and algebras An

defining the measurement resolution. What does this mean at the level of WCW?

1. Bosonic generators of SSAn and possible other algebras An define tangent space basis for
WCW. The gauge conditions stating that An and [An, A] annihilate WCW spinor fields
define a finite measurement resolution selecting only a subset of tangent space-generators
and their super counterparts.

2. Consider first ideal measurement resolution in a function space. There is a complete basis of
scalar functions Φm in a given space. The sum Φm(x)Φm(y) = δ(x, y) would hold true for
an infinite measurement resolution.

In a finite measurement resolution one uses only a finite subset of the scalar function basis,
and completeness relation becomes non-local and is smoothed out: δ(x, y)→ D(x, y), which
is non-vanishing for different point pairs x, y.

3. The condition of finite measurement resolution should define a partition of WCW to disjoint
sets. In real topology, the condition |x− y|2 would define a natural measurement resolution
but would not define a partition.

In p-adic topology, the situation is different: the p-adic distance function d(x−y) has values
p−n and the sets d(x − y) < d are either disjoint or identical. One would have the desired
partition. Therefore it seems that p-adicization is essential and the p-adic variants of WCW,
or rather regions of WCW, obtained by discretization could allow partitions corresponding to
various p-adic number fields forming the adele. Different p-adic representations of algebras
An would define measurement resolutions.

There is a connection with spin glasses where spin energy landscape consisting of free energy
minima allows ultrametric topology: p-adic topologies are indeed ultrametric. The TGD view
of spin glasses is discussed in [L17]. One expects the decomposition of WCW to different
p-adic topologies with ramified primes of polynomial P defining the p-adic sectors to which
a given space-time surface can belong.

4. The consistency condition is that the transition probabilities P (m → n) between the
states satisfying the gauge conditions representing finite measurement resolution, predicted
by S-matrix or its TGD counterpat, should be constant should be constant in the subsets of
WCW for which the completeness relation gives a non-vanishing D(x, y) for the point pairs
(x, y).

5. Does WCW have hierarchies of partitions such that the constancy of P (m → n) holds
true within each partition?

Do these partitions correspond to hierarchies of inclusions of HFFs defining increasing res-
olution? M8 −H duality does not allow all kinds of hierarchies. The hierarchies should be
induced by the hierarchies of extensions of rationals. As the measurement precision
increases, the partition involves an increasing number of sets and at the limit of ideal mea-
surement resolution, the partition consists of algebraic points of WCW and of space-time
surfaces.

6. P = Q condition implying that space-time surfaces correspond to infinite prime, could
appear as a consistency condition for allowed hierarchies. Preferred extremals and preferred
polynomials would correspond to each other. Note that P = Q conditions fixes the scaling
of P .

In the TGD framework, one can challenge the idea, originally due to Wheeler, that transition
probabilities are given by a unitary S-matrix.



4. M8 −H duality and HFFs 16

1. The TGD based proposal is that in spin degrees of freedom, that is for many-fermion states
for a given space-time surface, the counterpart of S-matrix could be be given by the analog
of Kähler metric in the fermionic Hilbert space [L14]. This would mean a geometrization of
quantum theory, at least in fermionic degrees of freedom.

The transition probabilities would be given by P (m→ n) = KmnK
nm and the properties of

Kähler metric K give analogs of unitary conditions and probability conservation plus some
prediction distinguishing the proposal from the standard view.

2. In the infinite-D situation, the existence of Hilbert space Kähler metric in the fermionic
sector is an extremely powerful condition and one expects that the Kähler metric is a unique
constant curvature metric allowing a maximal group of isometries. This, together with p-
adization, would help to satisfy the constancy conditions for P (m → n) inside the sets
for which D(x, y) is non-vanishing. In fact, one expects that since super-generators are
proportional to isometry generators contracted with WCW gamma matrices the metric in the
fermionic degrees of freedom is induced by Kähler metric in the basis of isometry generators.

3. This condition could allow a generalization to include the states obtained by application of
the bosonic generations of An the to ground state. This would mean that in bosonic degrees
of freedom Kähler metric of WCW in the isometry basis defines the transition probabilities.
Tangent vectors of WCW correspond to the isometry generators. An arbitrary number of
isometry generators is involved in the definition of the state. However, the Kähler metric
of WCW induces a Kähler metric in the algebra generated by the isometry generators,
which is analogous to the algebra of tensors.

4 M 8 −H duality and HFFs

M8 −H duality [L11, L12] gives strong constraints on the interpretation of HFFs at the number
theoretic M8 side and the geometric H side of the duality. One must also understand the relation
between M8 − H duality and M −M ′ duality, identifiable as quantum-classical correspondence
(QCC).

Although McKay correspondence [A13, A12, A9, A7, A6] is not quite at the core of M8 −H
duality, it is difficult to avoid its discussion. I have considered McKay correspondence also before
[L4, L9, L10, L23].

4.1 Number theoretical level: M8 picture

4.1.1 Braided Galois group algebras

For n-braids the permutation group has extension to a braid group Bn defining an infinite covering
of Sn for which permutation corresponds to a geometric operation exchanging the two strands of
a braid. There are also hierarchies of finite coverings.

Sn is replaced with the Galois group which is a subgroup of Sn and the property of being a
subgroup of Sn allows to identify a braided Galois group as a braided Galois subgroup of braided
Sn. In the same way one can identify the braided Galois group algebra defining HFF as a sub-
algebra of HFF associated with braid group algebra defined by Sn. One can ask whether the
property of being a number theoretic braid could be interpreted as a kind of symmetry breaking
to Sn to the Galois group of P .

M8 − H duality [L11, L12] suggests that the roots correspond to braid strands of geometric
braids in H. If so, the braided Galois group would be both topological and number theoretic:
topology, natural at the level of H, and number theory, natural at the level of M8, would meet by
M8 −H duality.

This picture looks nice but one can make critical questions.

1. Can the n roots really correspond to n braid strands at the level of H? The n roots correspond
to, in general complex, algebraic numbers associated with the extension of rationals. The real
projections correspond to mass shells with different mass values mapped to light-cone proper
time surfaces in H by M8 − H duality. Therefore the action of the Galois group changes
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mass squared values and does not commute with Lorentz transformations. This suggests a
violation of causality.

Should one restrict the Galois group to the isotropy group of a given root? This would mean
number theoretic symmetry breaking and could relate to massivation. This restriction would
however trivialize the braid.

2. Zero energy ontology (ZEO) could come to the rescue here. In fact, ZEO implies space-time
surfaces are the basic objects rather than 3-surfaces so that quantum states are superpositions
of space-time surfaces as preferred extremals (PEs). This is forced by the slight violation of
determinism of field equations implying also a slight violation of ideal holography.

Space-time surfaces are minimal surfaces [L19] analogous to soap films spanned by frames
and there can be a slight violation of the strict determinism localized to frames as already
2-D case suggests. This could be also seen as violation of classical causality. At the level of
consciousness theory it would be a classical correlate for the non-determinism of intentional
free will.

In particular, time-like braids for which the braiding is time-like and corresponds to a dy-
namical dance pattern, make sense. For these braids one can in principle select the mass
squared value mapped to a value of light-cone proper time a to belong to the braid. The
values of a need not be the same.

Also Galois confinement, which is a key aspect of the number theoretic vision, is involved.

1. Galois confinement states that physical states transform trivially under the Galois group of
extension. This condition for physical states follows as a consequence of periodic boundary
conditions for causal diamond (CD), which takes the role of box for a particle in a box.

A weaker condition would be that singlet property holds only for the isotropy group of a
given root of the polynomial P characterizing the space-time region and corresponding to
mass squared value and at the level of H to a value of the light-cone proper time a.

2. In M8, the momenta of particles are points at the mass shells of M4 ⊂ M8 identifiable as
hyperbolic spaces H3 ⊂M4 defined with mass squared values defined as the roots of P . The
momenta correspond to algebraic integers (the momentum unit is defined by CD) for the
extension defined by P , and in general they are complex. The interpretation is as virtual
particles which form physical particles as composites. The physical states must have total
momenta, which are ordinary integers. This gives the simplest form of Galois confinement.

3. Commutativity with the Lorentz group would favor the isotropy group instead of the full
Galois group. One must be however very cautious since in zero energy ontology (ZEO)
physical states correspond to a superposition of space-time surfaces and time-like braids are
natural. There is a small violation of strict determinism at the level of preferred extremas.
The labelling of braid strands based on the images of roots as mass squared values at level
of H is quite natural and is not in conflict with causality.

The Galois group for a polynomial Pn ◦ ... ◦ P1 has a decomposition to normal subgroups GAi

acting as Galois groups for the i:th sub-extension.

1. The number of roots is a product of the numbers of roots for Pi. Therefore the natural
identification is that number theoretic braid groups allow a natural interpretation in terms
of braids of braids ... of braids.

2. This hierarchy defines an inclusion hierarchy for the braided HFFs assignable to the polyno-
mials Pk ◦ ... ◦ P1, k = 1, ..., n. It is not quite clear to me whether these inclusions reduce
to Jones inclusions and whether one can characterize the inclusions in the sequence by the
same invariants as in the case of Jones inclusions.

3. In this picture the Connes tensor product would correspond to formation of composite poly-
nomials P ◦Q. The reduction in the number of degrees of freedom from that for the ordinary
tensor product of braided Galois group algebras would be due to interactions described in
terms of polynomial decomposition. Various braids in the hierarchy could correspond to
braids at different sheets of the many-sheeted space-time.
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4. Any normal subgroup Gali of Galois group Gal defining a sequence of inclusions of nor-
mal sub-groups Gali can be trivially represented. By normal subgroup property, the ele-
ments of Gal can be represented as semidirect products of elements of the factor groups
Gi = Gali/Gali−1. Any representation of Gal can be decomposed to a direct sum of tensor
products of representations of Gi.

From this decomposition it is clear that any group Gi in the decomposition can be trivially
represented so that one obtains a rich structure of representation in which some Gi:s are
trivially represented.

4.1.2 How could the degrees of prime polynomials associated with simple Galois
groups and ramified primes relate to the symmetry algebras acting in H?

The goal is to relate various parameters characterizing polynomials P for which braided Galois
group algebras define HFFs to the parameters labelling the symmetry algebras defining hierarchies
of HFFs at the level H. There are good reasons to believe that polynomial composition defines
inclusion of HFFs and that this inclusion induces the inclusions for the symmetry algebras An at
the level of H.

One can identify simple Galois groups as prime groups having no normal subgroups. The
polynomial P associated with a simple Galois group cannot have no non-trivial functional decom-
position Pn ◦ ... ◦ P1 if one stays in the field of rationals (say). This leads to the notion of prime
polynomials. Note that this notion of primeness does not correspond to the irreducibility stating
that polynomials with coefficients in a given number field do not allow decomposition to lower
degree polynomials.

A polynomial P is also partially characterized by ramified primes and discriminant defines a
Galois invariant for the polynomial as also the symmetric polynomials formed from the roots.

How do these two notions of primeness relate to the p-adic prime decomposition of adelic
structures defined by the algebras An, which act at the level of H and decomposed adelically to a
tensor product of all An,p:s?

Simple Galois groups correspond to prime polynomials. This notion looks fundamental con-
cerning the understanding of the situation at the level of H.

1. Polynomials can be factorized into composites of prime polynomials [A3, A11] (https://
cutt.ly/HXAKDzT and https://cutt.ly/5XAKCe2). A polynomial, which does not have a
functional composition to lower degree polynomials, is called a prime polynomial. It is not
possible to assign to prime polynomials prime degrees except in special cases. Simple Galois
groups with no normal subgroups must correspond to prime polynomials.

2. For a non-prime polynomial, the number N of the factors Pi, their degrees ni are fixed and
only their order can vary so that ni and n =

∏
ni is an invariant of a prime polynomial

and of simple Galois group [A3, A11]. Note that this composition need not exist for monic
polynomials even if the Galois group is not simple so that polynomial primes in the monic
sense need not correspond to simple Galois groups.

3. The number of the roots of Pi is given by its order ni, and since Galois group and its braided
variant permute the roots as subgroup of Sni

, it is natural to assume that the roots define an
ni-braid. The composite polynomial would define braid of braids of ... of braids. At the level
of H the braid strands would correspond to flux tubes and braiding would have a geometric
interpretation.

4. The integer n characterizing the algebra An acting in H would naturally correspond to the
the degree of n of P and the decomposition of P to polynomial primes would naturally
correspond to an inclusion hierarchy Ani

An1
⊂ An1n2

⊂ ... ⊂ An with improving resolution
allowing to see braids and braids of braids.

The corresponding factor spaces realizing the notion of finite measurement resolution, would
be analogous to quantum groups obtained when some number of the highest levels in the
hierarchy of braids in the braid of braids of ... braids are neglected and the entire algebra
is replaced with a quantum group-like structure. This means cutting off some number of

https://cutt.ly/HXAKDzT
https://cutt.ly/HXAKDzT
https://cutt.ly/5XAKCe2
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the highest levels in the tree-like hierarchy. The trunk is described by a quantum group-like
object.

5. This hierarchy corresponds to the hierarchy of Galois groups as normal subgroups assignable
to braids in the decomposition and the hierarchy of corresponding braided Galois group
algebras defining inclusions of HFFs. Galois group algebras would act as braid groups inc
corresponding algebras An. Therefore number theoretic and geometric views would fuse
together.

6. Connes tensor product is a central notion in the theory of HFFs and it could be naturally asso-
ciated with the inclusions of brided Galois group algebras. The counterpart for the quantum
group as factor space N/M of the factors would correspond to the inclusion Gali−1 ⊂ Gali as
a normal subgroup. The inclusion defines group Gi = Gali/Gli−1. Also its braided variant is
defined. The factor space of braided group algebras would be the counterpart of the quantum
group Gi.

Note that these quantum group-like objects could be much more general than the quantum
groups defined by subgroups of SU(2) appearing in Jones inclusions.

What about the interpretation of the ramified primes, which are Galois invariants as also the
root spectrum (but not the roots themselves) and depends on the polynomial.

In accordance with the proposed physical interpretation of the ramified primes as preferred p-
adic primes labelling particles in p-adic thermodynamics, ramified primes pi would define preferred
p-adic primes for the p-adic variants of the algebras An in the adelic generalization of An as tensor
product of p-adic representations of An,p of An. An,pi would be physically and also mathematically
special.

Both the degree n as the number of braids of P and the ramified primes of P would dictate the
physically especially relevant algebras An,pi

. For instance, un-ramified primes could be such that
corresponding p-adic degrees of freedom are not excited.

4.2 Geometric level: H picture

4.2.1 The hierarchies of algebras SSAn, Affn and In

The algebras An ∈ {SSAn, Affn, In} for n = p acting at the level of WCW seem to have special
properties since the values of the conformal weights for the the factor algebras defined by the
conditions that An and [An, A] annihilate physical states, allow the structure of finite field G(p)
or even its extension G(p, k) for conformal weights in extension of rationals. The representations
would be finite-D. Also the values n = pk seem special and the finite field representations of SSAp

could be extended to p-adic representations.
This raises the question, whether one could regard n as a p-adic number? The interpretation

of n as the number of braid strands assignable to roots of the polynomial P with degree n defining
the space-time surface, looks more approriate since it allows braid group algebra of P to act in
SSAn, This identification does not favor this interpretation.

A more plausible interpretation is that the p-adic primes, identifiable as ramified primes of P ,
characterize the p-adic representations of SSAn. This also conforms with the interpretation of
preferred p-adic primes characterizing elementary particles as ramified primes.

The polynomials with prime degree could be however physically special. The algebras SSAp,
with p defining the degree of polynomial p allow finite field representations, which extend to p-adic
representations and one can ask whether the prime decomposition of n could allow some kind of
inclusion hierarchy of representations.

This would also give a possible content for the p-adic length scale hypothesis p ' 2k, k prime,
or its generalization involving primes near powers of prime q = 2, 3, 5, .... A more general form of
p-adic length scale hypothesis would be p ' qn, n the degree of P .

4.2.2 Commutants for algebras An and braid group algebras

For the super A ∈ {SSA,Aff, I}, the inclusion Annk to SSAn should define a Connes tensor
product. One would obtain inclusion hierarchies labelled by divisibility hierarchies n1 ÷ n2 ÷ .....
For braid group algebras one obtains similar hierarchies realized in terms of composite polynomials.
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What about the already mentioned ”classical” degrees of freedom associated with the fluxes of
the induced Kähler form? They should be included to M ′ at the level of H. The hierarchies of
flux tubes within ... within flux tubes correspond to the hierarchies assignable to M ′ at the level
of H.

The number theoretic degrees of freedom identifiable as invariants of Galois groups should be
included to M ′ at the number theoretical level. The hierarchies of roots assignable to composite
polynomials Pn◦...◦P1 with roots assigned to the strands of time like braid strands could correspond
to these hierarchies at the level of M8.

4.3 Wild speculations about McKay correspondence

McKay correspondence is loosely related to the HFFs in TGD framework [L4, L10, L9, L23] and
I cannot avoid the temptation to try to understand it in TGD framework.

1. The origin of the McKay graphs for inclusions is intuitively understood. Representations
of finite subgroups of SU(2) are assignable to 2-D factors. These representations could
correspond to closed subgroups of quaternionic SU(2) on the basis of the reduction to
M2(C) ⊗ M2(C) ⊗ ..... A reduction of degrees of freedom happens for HFFs since they
are subalgebras of B(H) and this could reduce the closed subgroup to a finite subgroup.

Also the interpretation N as tensor product of M and quantum group SU(2) suggests the
same since quantum groups have a finite number of irreps, when q equal is a root of unity.
The analog of McKay graph coding fusion rules for the quantum group tensor products would
reduce to McKay graphs.

2. Why would the McKay graphs for finite subgroups of U(2) correspond to those for affine
or ordinary Lie algebras? Could these Lie-algebras emerge from the inclusions. This is a
mystery, at least to me.

3. In the TGD framework one can ask why there should be Weyl group of extended ADE
Dynkin diagram assignable to SSAn? SSAn defines a representation of SSA with SSAn and
[SSAn, SSA] acting trivially. Could this representation correspond to an affine or ordinary
ADE algebra? Similar question makes sense for all algebras An ∈ {SSAn, Affn, In}. Ann
would define a cutoff of the SSA so that all generators with conformal weight larger than n
would be represented trivially.

Note that for n = p, the conformal weights of An would define a finite field and if alge-
braic integers also its extension. This case could correspond to polynomials defining cyclic
extension of order p with roots coming as roots of unity.

4. The Weyl groups assignable to the ”factor algebra” of SSAn defined by the gauge conditions
for An and [An, A] and proposed to reduce to ADE type affine or ordinary Lie algebra should
relate to Galois groups for polynomial P with degree n as number of braid strands.

(a) Could the braid strands correspond to the roots of ADE algebra so that roots in the
number theoretic sense would correspond to the roots in the group theoretic sense? This
would conform with Langlands correspondence [A1, A5, A4] discussed from the TGD
perspective in [K10] [L1, L2].

(b) Could the Weyl groups allow identification as subgroups of corresponding Galois groups?

Note that simple Galois groups correspond to so-called prime polynomials [A3, A11] allowing
no decomposition to polynomials of lower degree so that the preferred values of n would
correspond to prime polynomials.

5. Affine electroweak and color algebras an their M4 counterparts would be special since they
wuuld not emerge a dynamical symmetries of SSAn but define algebras Affn and In related
to the light-like partonic orbits. They would also correspond to symmetries both at the level
of M8 and H.
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This inspires the following questions, which of course look very naive from the point of view of
a professional mathematician. My only excuse is the strong conviction that the proposed picture
is on the right track. I might be wrong.

1. The Jones inclusion of HFFs [A8, A15, A16] involves an extended or ordinary ADE Dynkin
diagram assignable also to finite subgroups of SU(2) by McKay correspondence [A13].

Could the Weyl group of an extended ADE diagram really correspond to an affine algebra or
quantum group assignable to An? If so, one would have dynamical symmetries and should
relate to the ”factor” space SSA/SSAn in which SSAn defines a measurement resolution.

2. HFF can be regarded algebraically as an infinite tensor power of M2(C). Does the repre-
sentation as a 2 × 2 matrix imply the emergence of representations of a closed subgroup of
SU(2) or its quantum counterpart. Could the reduction of degrees of freedom due to the
finite measurement resolution imply that the closed subgroup reduces to a finite subgroup?

3. The algebraic decomposition of HFF to an infinite tensor power of M2(C) would suggest that
the including factor N with dimension 1 is equal to Mdq ⊗M1/dq , where dq is the quantum
dimension characterizing eith M or N . Could these two objects correspond to an ADE type
affine algebra and quantum group with inverse quantum dimensions? Or could either of them
correspond to ADE type affine algebra or quantum group?

4. Could one think that the analog of McKay graph for the quantum group-like object assignable
to affine group by a finite measurement resolution reduces to the McKay graph for a finite
subgroup of SU(2) because only a finite number of representations survives?

5. Could the finite subgroups of SU(2) correspond to finite subgroups for the covering group of
quaternion automorphisms acting naturally in M8? Could these finite subgroups correspond
to finite subgroups of the rotation group SU(2) at H side?

Could only the nC (dimension of Cartan algebra) roots appearing in the Dynkin diagram be
represented as roots of a polynomial P in extension of rationals or its quantum variant? This option
fails since the Dynkin diagram does not allow a symmetry group identifiable as the Galois group.
The so called Steinberg symmetry groups (https://cutt.ly/GXMb8Si) act as automorphisms of
Dynkin diagrams of ADE type groups and seem quite too small and fail to be transitive as action
of the Galois group of an irreducible polynomial is.

M8−H duality inspires the question whether a subgroup of Galois group could act as the Weyl
group of ADE type affine or ordinary Lie algebra at H side.

1. The Galois group acts as a braid group and permutes the roots of P represented as braid
strands. Weyl group permutes the roots of Lie algebra

The crazy question is whether the roots of P and roots of the ADE type Lie-algebra could
correspond to each other. Could the roots of P in N → 1-correspondence with the non-
vanishing roots of the representation of Lie algebra or of its affine counterpart containing an
additional root corresponding to the central extension?

If the roots appearing in the Dynkin diagram correspond to a subset of roots of polynomial
P , the Weyl group could correspond to a minimal subgroup of the Galois group generated
by reflections and generating all non-vanishing roots of the Lie algebra.

2. The action of the Weyl group should give all roots for the representation of G. Could the
Weyl group, which is generated by reflections, correspond to a minimal subgroup of Gal
giving all roots as roots of P when applied to the McKay graph?

The obvious objection is that the order of the Weyl group increases rapidly with the order
of the Cartan group so that also the Gal and also the order of corresponding polynomials
P would increase very rapidly. Gal is a subgroup of Sn having order n! for a polynomial of
degree n so that the degree of P need not be large and this is what matters.

If the m braid strands labelled by the m roots correspond to the roots of the affine algebra,
it would be natural to assign affine algebra generators to these roots with the braid strands.

https://cutt.ly/GXMb8Si
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The condition n = Nm implies that m divides n. For Gal = Sn with order n! this condition
is very mild. Gal = Zp fixes the Lie algebra to Ap.

The root space of the dynamical symmetry group would have dimension m, which is a factor
of n. For Lie algebras An and D2n (with n ≥ 4) appear besides E6 and E8. For affine Lie
algebras Ân or hatDn (with n ≥ 3) and Ê6, Ê7 and Ê8 appear. For large values of n, there
are two alternatives for even values of n.

3. One can also consider quantum arithmetics based on ⊕ and ⊗ and replace P with its quantum
counterpart and solve it in the space of irreps of the finite subgroup G of U(2) defining a
quantum analog for an extension of rationals. The roots of the quantum variant of P would
be direct sums of irreps of G.

These quantum roots define nodes of a diagram. This diagram should include as nodes the
roots of the Dynkin diagram defined by positive roots, whose number is the dimension nC of
Cartan algebra.

Could the missing edges correspond to the edges of the Mac-Kay graph in the tensor product
with a 2-D representation of SU(2) restricted to a subgroup? The action of 2-D representation
would generate the (extended) Dynkin diagram ADE type.

One can look this option in more detail.

1. Assume that adjoint representation Adj of an affine or ordinary ADE Lie group L emerges in
the tensor product M2(C)⊗ ...⊗M2(C) allowing imbedding of SU(2) as diagonal imbedding.
One can imbed the finite subgroup G ⊂ SU(2) as a diagonal group G × G × ... × G to
M2(C)⊗ ...⊗M2(C).

Also a given representation of G can be embedded as a direct sum of the copies of the
representation, each acting in one factor of M2(C) ⊗ ... ⊗ M2(C). The 2 − D canonical
representation of G ⊂ SU(2) has a natural action in the G×G×...×G to M2(C)⊗...⊗M2(C)
and would generate a McKay graph.

One can also embed G to L as G ⊂ SU(2) ⊂ L. Adj can be decomposed to irreps G.
Therefore the tensor product action of various irreps of G, in particular the canonical 2-D
representation, in Adj is well-defined. The tensor action of the 2-D canonical representation
of G gives a McKay graph such that the nodes have weights telling how many times a given
irrep appears in the decomposition of Adj to irreps of G. The weighted sum of the dimensions
of irreps of G is equal to the dimension of Adj.

2. This construction is possible for any Lie group and some consistency conditions should be
satisfied. That McKay graph is the same as the generalized Dynkin diagram would be such
a consistency condition and leave only simply laced Lie groups.

3. What can one say about the weights of the weighted McKay graph? Could the weights be
the number of the images of the positive root under the action of the Weyl group W of L.

The McKay graph would correspond only to the nC (dimension of the Cartan algebra)
positive roots appearing in the Dynkin diagram of Adj. How to continue the Dynkin dynkin
to a root diagram of Adj?

4. Could the nC roots in the Dynkin diagram correspond to the roots of a polynomial P in
a quantum extension of rationals with roots as irreps of G appearing in the McKay graph.
The multiple of a given root would correspond to its orbit under W . The action of W as
reflections in the quantum extension of rationals, spanned by the roots of Adj, as vectors
with integer components would generate all roots of Adj as quantum algebraic integers in
the quantum extension of rationals.

5. As proposed, one could interpret the Dynkin diagram as a subdiagram of the root diagram
of Adj and identify its nodes as roots of Gal for a suitable polynomial P . The Weyl group
could be the minimal transitive subgroup of Gal.
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6. The Galois group of extension of ... of rationals is a semidirect of Galois groups which can
be chosen to be simple so that the polynomials considered are prime polynomials unless one
poses additional restrictions. What does this restriction mean for the ADE type Weyl group
of assignable to the exrtension

5 Infinite primes as a basic mathematical building block

Infinite primes [K11, K3, K6] are one of the key ideas of TGD. Their precise physical interpretation
and the role in the mathematical structure of TGD has however remained unclear.

3 new ideas are be discussed. Infinite primes could define a generalization of the notion of
adele; quantum arithmetics could replace + and × with ⊕ and ⊗ and ordinary primes with p-adic
representations of say HFFs; the polynomial Q defining an infinite prime could be identified with
the polynomial P defining the space-time surface: P = Q.

5.1 Construction of infinite primes

Consider first the construction of infinite primes [K11].

1. At the lowest level of hierachy, infinite primes (in real sense, p-adically they have unit norm)
can be defined by polynomials of the product X of all primes as an analog of Dirac vacuum.

The decomposition of the simplest infinite primes at the lowest level are of form aX + b,
where the terms have no common prime divisors. More concretely a = m1/nF b = m0nF ,
where nF is square free integer analogous and the integer m1 and nF have no common prime
divisors divisors. The divisors of m2 are divisors of nF and mi has interpretation as n-boson
state. Power pk corresponds to k-boson state with momenta p. nF =

∏
pi has interpretation

as many-fermion state satisfying Fermi-Dirac statistics.

The decomposition of lowest level infinite primes to infinite and finite part has a physical
analogy as kicking of fermions from Dirac sea to form the finite part of infinite prime. These
states have interpretation as analogs of free states of supersymmetric arithmetic quantum
field theory (QFT) There is a temptation to interpret the sum X/nF + nF as an analog of
quantum superposition. Fermion number is well-defined if one assigns the number of factors
of nF to both nF and X/nF .

2. More general infinite primes correspond to polynomials Q(X) =
∑

n qnX
n required to define

infinite integers which are not divisible by finite primes. Each summand qnX
n must be a

infinite integer. This requires that qn is given by qn = mB,n/
∏n

i1
nF,i of square free integers

nF,i having no common divisors.

The coefficients mB,n representing bosonic states have no common primes with
∏
nF,i and

there exists no prime dividing all coefficients mB,n: there is no boson with momentum p
present in all states in the sum.

These states have a formal interpretation as bound states of arithmetic supersymmetric QFT.
The degree k of Q determines the number of particles in the bound states.

The products of infinite primes at given level are infinite primes with respect to the primes
at the lower levels but infinite integers at their own level. Sums of infinite primes are not in
general infinite primes. For instance the sum and difference of X/nF + nF and X/nF − nF
are not infinite primes.

3. At the next step one can form the product of all finite primes and infinite primes constructed
in this manner and repeat the process as an analog to second quantization. This procedure
can be repeated indefinitely. This repeated quantization a hierarchy of infinite primes, which
could correspond to the hierarchy of space-time sheets.

At the n:th hierarchy level the polynomials are polynomials of n variables Xi. A possible
interpretation would be that one has families of infinite primes at the first level labelled
by n1 parameters. If the polynomials P (x) at the first level define space-time surfaces, the
interpretation at the level of WCW could be that one has an n − 1-D surface in WCW
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parametrized by n − 1 parameters with rational values and defining a kind of sub-WCW.
The WCW spinor fields would be restricted to this surface of WCW.

The Dirac vacuum X brings in mind adele, which is roughly a product of p-adic number fields.
The primes of infinite prime could be interpreted as labels for p-adic number fields. Even more
generally, they could serve as labels for p-adic representations of various algebras and one could
even consider replacing the arithmetic operations with ⊕ and ⊗ to get the quantum variants of
various number fields and of adeles.

The quantum counterparts of nfinite primes at the lowest and also at the higher levels of
hierarchy could be seen as a generalization of adeles to quantum adeles.

5.2 Questions about infinite primes

One can ask several questions about infinite primes.

1. Could ⊕ and ⊗ replace + and − also for infinite primes. This would allow us to interpret the
primes p as labels for algebras realized p-adically. This would give rise to quantal counterparts
of infinite primes.

2. What could + → ⊕ for infinite primes mean physically? Could it make sense in adelic
context? Infinite part has finite p-adic norms. The interpretation as direct sum conforms
with the fermionic interpretation if the product of all finite primes is interpreted as Dirac
sea. In this case, the finite and infinite parts of infinite prime would have the same fermion
number.

3. Could adelization relate to the notion of infinite primes? Could one generalize quantum
adeles based on ⊕ and ⊗ so that they would have parts with various degrees of infinity?

5.3 P = Q hypothesis

One cannot avoid the idea that that polynomial, call it Q(X), defining an infinite prime at the first
level of the hierarchy, is nothing but the polynomial P defining a 4-surface in M4 and therefore also
a space-time surface. P = Q would be a condition analogous to the variational principle defining
preferred extremals (PEs) at the level of H.

There is however an objection.

1. P = Q gives very powerful constraints on Q since it must define an infinite integer. The
prime polynomials P are expected to be highly non-unique and an entire class of polynomials
of fixed degree characterized by the Galois group as an invariant is in question. The same
applies to polynomials Q as is easy to see: the only condition is that powers of akX

k defining
infinite integers have no common prime factors.

2. It seems that a composite polynomial Pn ◦ ...◦P1 satisfying Pi = Qi cannot define an infinite
prime or even infinite integer. Even infinite integer property requires very special conditions.

3. There is however no need to assume Pi = Qi conditions. It is enough to require that there
exists a composite Pn ◦ ... ◦ P1 of prime polynomials satisfying Pn ◦ ... ◦ P1 = Q defining an
infinite prime.

The physical interpretation would be that the interaction spoils the infinite prime property
of the composites and they become analogs of off-mass-shell particles. Exactly this occurs for
bound many-particle states of particles represented by Pi represented composite polynomials
P1◦...Pn. The roots of the composite polynomials are indeed affected for the composite. Note
that also products of Qi are infinite primes and the interpretation is as a free many-particle
state formed by bound states Qi.

There is also a second objection against P = Q property.

1. The proposed physical interpretation is that the ramified primes associated with P = Q
correspond to the p-adic primes characterizing particles. This would mean that the ramimied
primes appearing in the infinite primes at the first level of the hierarchy should be physically
special.
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2. The first naive guess is that for the simplest infinite primes Q(X) = (m1/nF )X + m2nF
at the first level, the finite part m2nF has an identification as the discriminant D of the
polynomial P (X) defining the space-time surface. This guess has no obvious generalization
to higher degree polynomials Q(X) and the following argument shows that it does not make
sense.

Since Q is a rational polynomial of degree 1 there is only a single rational root and discrim-
inant defined by the differences of distinct roots is ill-defined that Q = P condition would
not allow the simplest infinite primes.

Therefore one must give either of these conjectures and since P = Q conjecture dictates the
algebraic structure of the quantum theory for a given space-time surface, it is much more
attractive.

The following argument gives P = Q. One can assign to polynomial P invariants as symmetric
functions of the roots. They are invariants under permutation group Sn of roots containing Galois
group and therefore also Galois invariants (for polynomials of second order correspond to sum and
product of roots appearing as coefficients of the polynomial in the representation x2+bx+cx). The
polynomial Q having as coefficients these invariants is the original polynomial. This interpretation
gives P = Q.

6 Summary of the proposed big picture

In the previous sections the plausible looking building blocks of the bigger picture of the TGD
were discussed. Here I try to summarize a guess for the big picture.

6.1 The relation between M8 −H and M −M ′ dualities

The first question is whether M8 −H duality between number theoretical and geometric physics,
very probably relating to Langlands duality, corresponds to a duality betweenM and its commutant
M ′. Physical intuition suggests that these dualities are independent. M ′ would more naturally
correspond to classical description as dual to quantum description using M . One would assign
classical and quantum views to both number theoretic (M8) and geometric (H) descriptions.

1. At the geometric side M would be realized in terms of HFFs associated with SSAn, Affn
and I acting in H. At the number theoretic side, braided Galois group algebras would define
the HFFs and have natural action in SSAn, An and I .

2. The descriptions in terms of preferred extremals in H and of polynomials P defining 4-
surfaces in M8 would correspond to classical descriptions. P = Q condition would define
preferred polynomials and infinite primes.

3. At the geometric side, M ′ would correspond to scalar factors of WCW wave functions sym-
plectic invariants identifiable as Kähler magnetic fluxes at both M4 and CP2 sectors. They
are zero modes and therefore do not contribute to the WCW line element.

4. At the number theoretic side, the wave functions would depend on Galois invariants. Dis-
criminant D, set of roots to which braid strands can be assigned to define n-braid, and
ramified primes dividing it in the case of polynomials with rational/integer coefficients are
Galois invariants analogous to Kähler fluxes. They code information about the spectrum of
virtual mass squared values as roots of P . The strands of braid as Galois invariant correspond
to (possibly) monopole flux tubes and one assign them quantized magnetic fluxes as integer
valued symplectic invariants.

6.2 Basic mathematical building blocks

The basic mathematical building blocks of quantum aspects of TGD involve at least the following
ones.
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1. The generalization of arithmetics and even number theory by replacing sum and product
by direct sum and tensor product for various algebras and associated representations is a
mathematical notion expected to be important and a straightforward generalization of adeles
and infinite primes to their quantum counterparts is highly suggestive.

2. Quantum version of adelic physics obtained by replacing ordinary arithmetic operations with
direct sum and tensor product relates closely to the fusion of real and various p-adic physics
at quantum level.

3. The hierarchy of infinite primes suggested by the many-sheeted space-time suggests a pro-
found generalization of the notion of adelic physics. Infinite primes are defined by polyno-
mials of several variables the basic equation in the general form would be Q(X1, ..., Xn) =
P (X1, ..., Xn).

6.3 Basic algebraic structures at number theoretic side

Number theoretic side involves several key notions that must have counterparts at the geometric
side.

1. Number theoretic side involves Galois groups as counterparts of symplectic symmetries and
can be regarded as number theoretic variants of permutation symmetries and lead to the
notion of braided Galois group, whose group algebra defines HFF.

2. Galois groups can be decomposed to a hierarchy of normal subgroups, which are simple and
therefore primes in group theoretic sense. Simple Galois groups correspond to polynomial
primes with respect to functional composition, and one can assign to a given Galois group a
set of polynomials with fixed degrees although the polynomials and their order of polynomials
in composition are not unique.

3. There is a large class of polynomials giving rise to a given Galois group and they bring in
additional degrees of freedom. The variation of the polynomial coefficients corresponding to
the same Galois group is analogous to symplectic transformations leaving the induced Kähler
form invariant.

The roots of polynomials define analogs for the strands of n-braid, discriminant D, and
ramified primes dividing the discriminant. They are central Galois invariants analogous to
Kähler magnetic fluxes at the geometry side.

4. Ramified primes characterize polynomials P but are not fixed by the Galois group, are anal-
ogous to the zero modes at the level of H. Magnetic fluxes are their counterparts at the level
of H. I have proposed the interpretation of ramified primes p as p-adic primes characteriz-
ing elementary particles in the model of particle masses based on p-adic thermodynamics.
These primes are rather large: for instance, M127 = 2127 − 1 would characterize electrons.
It would however seem that the prime k in SSAk corresponds to the prime characterizing
simple Galois group.

Also affine algebras Affn assignable to the light-like partonic orbits and isometries of H are
present and also they appear in p-adic mass calculations based on p-adic thermodynamics.
Could the adelic hierarchy p-adic variants of algebras SSA, Aff and I have adelic factors
labelled by ramified primes p form also an adelic structure with respect to ⊕ and ⊗?

6.4 Basic algebraic structures at the geometric side

The symmetry algebras at the level of H define the key quantal structures.

1. The symmetries at the geometric side involve hierarchies An of algebras An ∈ SSAn, An, In
defining hierarchies of factor algebras. The condition that subalgebras An and [An, A] anni-
hilate physical states gives rise to hierarchies of algebras, which would correspond to those for
Galois groups for multiple extensions of rationals. The braided Galois groups for polynomials
of degree n n roots/braids would act naturally in An so that it would have number theoretic
braiding.
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2. The decomposition of the Galois group to simple normal subgroups would correspond to a
functional composite of prime polynomials, which corresponds to the inclusion hierarchy of
HFFs associated with An with n identified as the degree of polynomial.

The polynomials Q(X) defining infinite prime have decomposition to polynomial primes but
the polynomial primes in the decomposition cannot define infinite primes.

Kähler magnetic fluxes for CP2 and M4 Kähler forms are symplectic invariants and represent
zero modes. At the number theoretic side the discriminant and root spectrum (mass squared
spectrum) are classical Galois invariants. States as Galois singlets are Galois invariants at
quantum level.

The key equation, not encountered before in the TGD framework, is P = Q motivated by the
notion of infinite prime. It would assign to polynomial P unique algebraic structures defining what
might be called its quantization. Without this structure one should give up the notion of infinite
prime and lose the notion of preferred P as analog of preferred extremal.
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