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Abstract

In this article I will discuss the basic ideas about the role of hyper-finite factors in TGD with
the background given by a work of more than half decade. First I summarize the input ideas which
I combine with the TGD inspired intuitive wisdom about HFFs of type II1 and their inclusions
allowing to represent finite measurement resolution and leading to notion of quantum spaces with
algebraic number valued dimension defined by the index of the inclusion.

Also an argument suggesting that the inclusions define ”skewed” inclusions of lattices to larger
lattices giving rise to quasicrystals is proposed. The core of the argument is that the included
HFF of type II1 algebra is a projection of the including algebra to a subspace with dimension
D ≤ 1. The projection operator defines the analog of a projection of a bigger lattice to the
included lattice. Also the fact that the dimension of the tensor product is product of dimensions
of factors just like the number of elements in finite group is product of numbers of elements of
coset space and subgroup, supports this interpretation.

1 Introduction

In the following I will discuss the basic ideas about the role of hyper-finite factors in TGD with the
background given by a work of more than half decade. First I summarize the input ideas which I
combine with the TGD inspired intuitive wisdom about HFFs of type II1 and their inclusions allowing
to represent finite measurement resolution and leading to notion of quantum spaces with algebraic
number valued dimension defined by the index of the inclusion.

Also an argument suggesting that the inclusions define ”skewed” inclusions of lattices to larger
lattices giving rise to quasicrystals is proposed. The core of the argument is that the included HFF
of type II1 algebra is a projection of the including algebra to a subspace with dimension D ≤ 1.
The projection operator defines the analog of a projection of a bigger lattice to the included lattice.
Also the fact that the dimension of the tensor product is product of dimensions of factors just like the
dimension of group is product of dimensions of coset space and subgroup, supports this interpretation.
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One also ends up with a detailed identification of the hyper-finite factors in orbital degrees of
freedom in terms of symplectic group associated with δM4

± × CP2 and the group algebras of their
discrete subgroups define what could be called ”orbital degrees of freedom” for WCW spinor fields.
By very general argument this group algebra is HFF of type II, maybe even II1.

2 Crystals, quasicrystals, non-commutativity and inclusions
of hyperfinite factors of type II1

I list first the basic ideas about non-commutative geometries and give simple argument suggesting
that inclusions of HFFs correspond to ”skewed” inclusions of lattices as quasicrystals.

1. Quasicrystals (say Penrose tilings) [A2] can be regarded as subsets of real crystals and one
can speak about ”skewed” inclusion of real lattice to larger lattice as quasicrystal. What this
means that included lattice is obtained by projecting the larger lattice to some lower-dimensional
subspace of lattice.

2. The argument of Connes concerning definition of non-commutative geometry can be found in
the book of Michel Lapidus at page 200. Quantum space is identified as a space of equivalence
classes. One assigns to pairs of elements inside equivalence class matrix elements having the
element pair as indices (one assumes numerable equivalence class). One considers irreduble
representations of the algebra defined by the matrices and identifies the equivalent irreducible
representations. If I have understood correctly, the equivalence classes of irreps define a discrete
point set representing the equivalence class and it can often happen that there is just single
point as one might expect. This I do not quite understand since it requires that all irreps are
equivalent.

3. It seems that in the case of linear spaces - von Neumann algebras and accompanying Hilbert
spaces - one obtains a connection with the inclusions of HFFs and corresponding quantum factor
spaces that should exist as analogs of quantum plane. One replaces matrices with elements
labelled by element pairs with linear operators in HFF of type II1. Index pairs correspond to
pairs in linear basis for the HFF or corresponding Hilbert space.

4. Discrete infinite enumerable basis for these operators as a linear space generates a lattice in
summation. Inclusion N ⊂M defines inclusion of the lattice/crystal for N to the corresponding
lattice of M . Physical intuition suggests that if this inclusion is ”skewed” one obtains quasicrys-
tal. The fact the index of the inclusion is algebraic number suggests that the coset space M/N
is indeed analogous to quasicrystal.

More precisely, the index of inclusion is defined for hyper-finite factors of type II1 using the
fact that quantum trace of unit matrix equals to unity Tr(Id(M)) = 1, and from the tensor
product composition M = (M/N) × N given Tr(Id(M)) = 1 = Ind(M/N)Tr(P (M → N)),
where P (M → N is projection operator from M to N . Clearly, Ind(M/N) = 1/Tr(P (M → N))
defines index as a dimension of quantum space M/N .

For Jones inclusions characterized by quantum phases q = exp(i2π/n), n = 3, 4, ... the values of
index are given by Ind(M/N) = 4cos2(π/n), n = 3, 4, .... There is also another range inclusions
Ind(M/N) ≥ 4: note that Tr(P (M → N)) defining the dimension of N as included sub-space
is never larger than one for HFFs of type II1. The projection operator P (M → N) is obviously
the counterpart of the projector projecting lattice to some lower-dimensional sub-space of the
lattice.

5. Jones inclusions are between linear spaces but there is a strong analogy with non-linear coset
spaces since for the tensor product the dimension is product of dimensions and for discrete
coset spaces G/H one has also the product formula n(G) = n(H) × n(G/H) for the numbers
of elements. Noticing that space of quantum amplitudes in discrete space has dimension equal
to the number of elements of the space, one could say that Jones inclusion represents quantized
variant for classical inclusion raised from the level of discrete space to the level of space of
quantum states with the number of elements of set replaced by dimension. In fact, group algebras
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of infinite and enumerable groups defined HFFs of type II under rather general conditions (see
below).

Could one generalize Jones inclusions so that they would apply to non-linear coset spaces analogs
of the linear spaces involved ? For instance, could one think of infinite-dimensional groups G
and H for which Lie-algebras defining their tangent spaces can be regarded as HFFs of type
II1? The dimension of the tangent space is dimension of the non-linear manifold: could this
mean that the non-linear infinite-dimensional inclusions reduce to tangent space level and thus
to the inclusions for Lie-algebras regarded hyper-finite factors of type II1 or more generally, type
II? This would would rise to quantum spaces which have finite but algebraic valued quantum
dimension and in TGD framework take into account the finite measurement resolution.

6. To concretize this analogy one can check what is the number of points map from 5-D space
containing aperiodic lattice as a projection to a 2-D irrational plane containing only origin as
common point with the 5-D lattice. It is easy to get convinced that the projection is 1-to-1 so
that the number of points projected to a given point is 1. By the analogy with Jones inclusions
this would mean that the included space has same von Neumann dimension 1 - just like the
including one. In this case quantum phase equals q = exp(i2π/n), n = 3 - the lowest possible
value of n. Could one imagine the analogs of n > 3 inclusions for which the number of points
projected to a given point would be larger than 1? In 1-D case the rational lines y = (k/l)x
define 1-D rational analogs of quasi crystals. The points (x, y) = (m,n), m mod l = 0 are
projected to the same point. The number of points is now infinite and the ratio of points of
2-D lattice and 1-D crystal like structure equals to l and serves as the analog for the quantum
dimension dq = 4cos2(π/n).

To sum up, this this is just physicist’s intuition: it could be wrong or something totally trivial
from the point of view of mathematician. The main message is that the inclusions of HFFs might
define also inclusions of lattices as quasicrystals.

3 HFFs and their inclusions in TGD framework

In TGD framework the inclusions of HFFs have interpretation in terms of finite measurement resolu-
tion. If the inclusions define quasicrystals then finite measurement resolution would lead to quasicrys-
tals.

1. The automorphic action of N in M ⊃ N and in associated Hilbert space HM where N acts
generates physical operators and accompanying stas (operator rays and rays) not distinguishable
from the original one. States in finite measurement resolution correspond to N -rays rather than
complex rays. It might be natural to restrict to unitary elements of N .

This leads to the need to construct the counterpart of coset space M/N and corresponding linear
space HM/HN . Physical intuition tells that the indices of inclusions defining the ”dimension”
of M/N are algebraic numbers given by Jones index formula.

2. Here the above argument would assign to the inclusions also inclusions of lattices as quasicrystals.

3.1 Degrees of freedom for WCW spinor field

Consider first the identification of various kinds of degrees of freedom in TGD Universe.

1. Very roughly, WCW (”world of classical worlds”) spinor is a state generated by fermionic creation
operators from vacuum at given 3-surface. WCW spinor field assigns this kind of spinor to each
3-surface. WCW spinor fields decompose to tensor product of spin part (Fock state) and orbital
part (”wave” in WCW) just as ordinary spinor fields.

2. The conjecture motivated by super-symmetry has been that both WCW spinors and their orbital
parts (analogs of scalar field) define HFFs of type II1 in quantum fluctuating degrees of freedom.

3. Besides these there are zero modes, which by definition do not contribute to WCW Kähler
metric.
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(a) If the zero zero modes are symplectic invariants, they appear only in conformal factor of
WCW metric. Symplectically invariant zero modes represent purely classical degrees of
freedom - direction of a pointer of measurement apparatus in quantum measurement -
and in given experimental arrangement they entangle with quantum fluctuating degrees
of freedom in one-one manner so that state function reduction assigns to the outcome of
state function reduction position of pointer. I forget symplectically invariant zero modes
and other analogous variables in the following and concentrate to the degrees of freedom
contributing WCW line-element.

(b) There are also zero modes which are not symplectic invariants and are analogous to degrees
of freedom generated by the generators of Kac-Moody algebra having vanishing conformal
weight. They represent ”center of mass degrees of freedom” and this part of symmetric
algebra creates the representations representing the ground states of Kac-Moody represen-
tations. Restriction to these degrees of freedom gives QFT limit in string theory. In the
following I will speak about ”cm degrees of freedom”.

The general vision about symplectic degrees of freedom (the analog of ”orbital degrees of freedom”
for ordinary spinor field) is following.

1. WCW (assignable to given CD) is a union over the sub-WCWs labeled by zero modes and each
sub-WCW representing quantum fluctuating degrees of freedom and ”cm degrees of freedom” is
infinite-D symmetric space. If symplectic group assignable to δM4

+ × CP2 acts as as isometries
of WCW then ”orbital degrees of freedom” are parametrized by the symplectic group or its coset
space (note that light-cone boundary is 3-D but radial dimension is light-like so that symplectic
- or rather contact structure - exists).

Let S2 be rM = constant sphere at light-cone boundary (rM is the radial light-like coordinate
fixed apart from Lorentz transformation). The full symplectic group would act as isometries of
WCW but does not - nor cannot do so - act as symmetries of Kähler action except in the huge
vacuum sector of the theory correspond to vacuum extremals.

2. WCW Hamiltonians can be deduced as ”fluxes” of the Hamiltonians of δM4
+ × CP2 taken over

partonic 2-surfaces. These Hamiltoanins expressed as products of Hamiltonians of S2 and CP2

multiplied by powers rnM . Note that rM plays the role of the complex coordinate z for Kac-
Moody algebras and the group G defining KM is replaced with symplectic group of S2 × CP2.
Hamiltonians can be assumed to have well-defined spin (SO(3)) and color (SU(3)) quantum
numbers.

3. The generators with vanishing radial conformal weight (n = 0) correspond to the symplectic
group of S2 × CP2. They are not symplectic invariants but are zero modes. They would
correspond to ”cm degrees of freedom” characterizing the ground states of representations of
the full symplectic group.

3.2 Discretization at the level of WCW

The general vision about finite measurement resolution implies discretization at the level of WCW.

1. Finite measurement resolution at the level of WCW means discretization. Therefore the sym-
plectic groups of δM4

+ ×CP2 resp. S2 ×CP2 are replaced by an enumerable discrete subgroup.
WCW is discretized in both quantum fluctuating degrees of freedom and ”center of mass” degrees
of freedom.

2. The elements of the group algebras of these discrete groups define the ”orbitals parts” of WCW
spinor fields in discretization. I will later develop an argument stating that they are HFFs of
type II - maybe even II1. Note that also function spaces associated with the coset spaces of
these discrete subgroups could be considered.

3. Discretization applies also in the spin degrees of freedom. Since fermionic Fock basis generates
quantum counterpart of Boolean algebra the interpretation in terms of the physical correlates
of Boolean cognition is motivated (fermion number 1/0 and various spins in decomposition to a
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tensor product of lower-dimensional spinors represent bits). Note that in ZEO fermion number
conservation does not pose problems and zero states actually define what might be regarded as
quantum counterparts of Boolean rules A→ B.

4. Note that 3-surfaces correspond by the strong form of GCI/holography to collections of partonic
2-surfaces and string world sheets of space-time surface intersecting at discrete set of points
carrying fermionic quantum numbers. WCW spinors are constructed from second quantized
induced spinor fields and fermionic Fock algebra generates HFF of type II1.

3.3 Does WCW spinor field decompose to a tensor product of two HFFs
of type II1?

The group algebras associated with infinite discrete subgroups of the symplectic group define the
discretized analogs of waves in WCW having quantum fluctuating part and cm part. The proposal
is that these group algebras are HFFs of type II1. The spinorial degrees of freedom correspond to
fermionic Fock space and this is known to be HFF. Therefore WCW spinor fields would defined tensor
product of HFFs of type II1. The interpretation would be in terms of supersymmetry at the level
of WCW. Super-conformal symmetry is indeed the basic symmetry of TGD so that this result is a
physical ”must”. The argument goes as follows.

1. In non-zero modes WCW is symplectic group of δM4
+×CP2 (call this group just Sympl) reduces

to the analog of Kac-Moody group associated with S2×CP2, where S2 is rM = constant sphere
of light-cone boundary and z is replaced with radial coordinate. The Hamiltonians, which do
not depend on rM would correspond to zero modes and one could not assign metric to them
although symplectic structure is possible. In ”cm degrees of freedom” one has symplectic group
associated with S2 × CP2.

2. Finite measurement resolution, which seems to be coded already in the structure of the pre-
ferred extremals and of the solutions of the modified Dirac equation, suggests strongly that this
symplectic group is replaced by its discrete subgroup or symmetric coset space. What this group
is, depends on measurement resolution defined by the cutoffs inherent to the solutions. These
subgroups and coset spaces would define the analogs of Platonic solids in WCW!

3. Why the discrete infinite subgroups of Sympl would lead naturally to HFFs of type II? There
is a very general result stating that group algebra of an enumerable discrete group, which has
infinite conjugacy classes, and is amenable so that its regular representation in group algebra
decomposes to all unitary irreducibles is HFF of type II. See for examples about HFFs of type
II listed in Wikipedia article [A1].

4. Suppose that the group algebras associated the discrete subgroups Sympl are indeed HFFs of
type II or even type II1. Their inclusions would define finite measurement resolution the orbital
degrees of freedom for WCW spinor fields. Included algebra would create rays of state space
not distinguishable experimentally. The inclusion would be characterized by the inclusion of the
lattice defined by the generators of included algebra by linearity. One would have inclusion of
this lattice to a lattice associated with a larger discrete group. Inclusions of lattices are however
known to give rise to quasicrystals (Penrose tilings are basic example), which define basic non-
commutative structures. This is indeed what one expects since the dimension of the coset space
defined by inclusion is algebraic number rather than integer.

5. Also in fermionic degrees of freedom finite measurement resolution would be realized in terms of
inclusions of HFFs- now certainly of type II1. Therefore one could obtain hierarchies of lattices
included as quasicrystals.

What about zero modes which are symplectic invariants and define classical variables? They are
certainly discretized too. One might hope that one-one correlation between zero modes (classical
variables) and quantum fluctuating degrees of freedom suggested by quantum measurement theory
allows to effectively eliminate them. Besides zero modes there are also modular degrees of freedom
associated with partonic 2-surfaces defining together with their 4-D tangent space data basis objects
by strong form of holography. Also these degrees of freedom are automatically discretized. But could

http://en.wikipedia.org/wiki/Hyperfinite_type_II_factor
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one consider finite measurement resolution also in these degrees of freedom. If the symplectic group of
S2 ×CP2 defines zero modes then one could apply similar argument also in these degrees of freedom
to discrete subgroups of S2 × CP2.

4 Little Appendix: Comparison of WCW spinor fields with
ordinary second quantized spinor fields

In TGD one identifies states of Hilbert space as WCW spinor fields. The analogy with ordinary spinor
field helps to understand what they are. I try to explain by comparison with QFT.

4.1 Ordinary second quantized spinor fields

Consider first ordinary fermionic QFT in fixed space-time. Ordinary spinor is attached to an space-
time point and there is 2D/2 dimensional space of spin degrees of freedom. Spinor field attaches spinor
to every point of space-time in a continuous/smooth manner. Spinor fields satisfying Dirac equation
define in Euclidian metric a Hilbert space with a unitary inner product. In Minkowskian case this
does not work and one must introduce second quantization and Fock space to get a unitary inner
product. This brings in what is essentially a basic realization of HFF of type II1 as allowed operators
acting in this Fock space. It is operator algebra rather than state space which is HFF of type II1 but
they are of course closely related.

4.2 Classical WCW spinor fields as quantum states

What happens TGD where one has quantum superpositions of 4-surface/3-surfaces by GCI/partonic
2-surfaces with 4-D tangent space data by strong form of GCI.

1. First guess: space-time point is replaced with 3-surface. Point like particle becomes 3-surface
representing particle. WCW spinors are fermionic Fock states at this surface. WCW spinor
fields are Fock state as a functional of 3-surface. Inner product decomposes to Fock space inner
product plus functional integral over 3-surfaces (no path integral!). One could speak of quantum
multiverse. Not single space-time but quantum superposition of them. This quantum multiverse
character is something new as compared to QFT.

2. Second guess: forced by ZEO, by geometrization of Feynman diagrams, etc.

(a) 3-surfaces are actually not connected 3-surfaces. They are collections of components at both
ends of CD and connected to single connected structure by 4-surface. Components of 3-
surface are like incoming and outgoing particles in connected Feynman diagrams. Lines are
identified as regions of Euclidian signature or equivalently as the 3-D light-like boundaries
between Minkowskian and Euclidian signature of the induced metric.

(b) Spinors(!!) are defined now by the fermionic Fock space of second quantized induced spinor
fields at these 3-surfaced and by holography at 4-surface. This fermionic Fock space is
assigned to all multicomponent 3-surfaces defined in this manner and WCW spinor fields
are defined as in the first guess. This brings integration over WCW to the inner product.

3. Third, even more improved guess: motivated by the solution ansatz for preferred extremals and
for modified Dirac equation [K1] giving a connection with string models.

The general solution ansatz restricts all spinor components but right-handed neutrino to string
world sheets and partonic 2-surfaces: this means effective 2-dimensionality. String world sheets
and partonic 2-surfaces intersect at the common ends of light-like and space-like braids at ends of
CD and at along wormhole throat orbits so that effectively discretization occurs. This fermionic
Fock space replaces the Fock space of ordinary second quantization.
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