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Abstract

This chapter considers possible answers to the basic questions of the p-adicization program,
which are following.

1. Is there a duality between real and p-adic physics? What is its precice mathematic formula-
tion? In particular, what is the concrete map p-adic physics in long scales (in real sense) to
real physics in short scales? Can one find a rigorous mathematical formulationof canonical
identification induced by the map p — 1/p in pinary expansion of p-adic number such that
it is both continuous and respects symmetries.

2. What is the origin of the p-adic length scale hypothesis suggesting that primes near power
of two are physically preferred? Why Mersenne primes are especially important?

The attempt answer to these questions relies on the following ideas inspired by the model of
Shnoll effect. The first piece of the puzzle is the notion of quantum arithmetics formulated in
non-rigorous manner already in the model of Shnoll effect.

1. For Option I sums are mapped to sums and products to products and is effectively equiv-
alent with ordinary p-adic arithmetics. Quantum map of primes p; < p only accompanies
the canonical identification mapping p-adic numbers to reals. This option respects p-adic
symmetries only in finite measurement resolution.

2. For Option II primes p; < p are mapped also to their quantum counterparts and generate
a ring. Sums are not mapped to sums and there are two options depending on whether
products are mapped to products or not. One obtains the analog of Kac-Moody algebra
with coefficients for given power of p defining an algebra analogies to polynomial algebra.
One can define also rationals and obtains a structure analogous to a function field. This
field allows projection to p-adic numbers but is much larger than p-adic numbers. The
construction works also for the general quantum phases ¢ than those defined by primes.
For this option the symmetries of quantum p-adics would be preserved in the canonical
identification.

3. p-Adic-real duality can be identified as the analog of canonical identification induced by the
map p — 1/p in the pinary expansion of quantum rational. This maps maps p-adic and
real physics to each other and real long distances to short ones and vice versa. This map is
especially interesting as a map for defining cognitive representations.

Quantum arithmetics inspires the notion of quantum matrix group as counterpart of quantum
group for which matrix elements are ordinary numbers. Quantum classical correspondence and
the notion of finite measurement resolution realized at classical level in terms of discretization
suggest that these two views about quantum groups could be closely related. The preferred prime
p defining the quantum matrix group is identified as p-adic prime and canonical identification
p — 1/p is group homomorphism so that symmetries are respected for Option II.

1. The quantum counterparts of special linear groups SL(n, F') exists always. For the covering
group SL(2,C) of SO(3,1) this is the case so that 4-dimensional Minkowski space is in a very
special position. For orthogonal, unitary, and orthogonal groups the quantum counterpart
exists only if the number of powers of p for the generating elements of the quantum matrix
group satisfies an upper bound characterizing the matrix group.
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2. For the quantum counterparts of SO(3) (SU(2)/ SU(3)) the orthogonality conditions state
that at least some multiples of the prime characterizing quantum arithmetics is sum of three
(four/six) squares. For SO(3) this condition is strongest and satisfied for all integers, which
are not of form n = 22" (8k + 7)). The number r3(n) of representations as sum of squares is
known and r3(n) is invariant under the scalings n — 2%y, This means scaling by 2 for the
integers appearing in the square sum representation.

The findings about quantum SO(3) suggest a possible explanation for p-adic length scale
hypothesis and preferred p-adic primes.

1. The idea to be studied is that the quantum matrix group which is discrete is in some
sense very large for preferred p-adic primes. If cognitive representations correspond to
the representations of quantum matrix group, the representational capacity of cognitive
representations is high and this kind of primes are survivors in the algebraic evolution leading
to algebraic extensions with increasing dimension. The simple estimates of this chapter
restricting the consideration to finite fields (O(p) = 0 approximation) do not support this
idea in the case of Mersenne primes.

2. An alternative idea is that number theoretic evolution leading to algebraic extensions of
rationals with increasing dimension favors p-adic primes which do not split in the extensions
to primes of the extension. There is also a nice argument that infinite primes which are in
one-one correspondence with prime polynomials code for algebraic extensions. These primes
code also for bound states of elementary particles. Therefore the stable bound states would
define preferred p-adic primes as primes which do not split in the algebraic extension defined
by infinite prime. This should select Mersenne primes as preferred ones.

1 Introduction

The construction of quantum counterparts for various mathematical structures of theoretical physics
have been a fashion for decades. Quantum counterparts for groups, Lie algebras, coset spaces, etc...
have been proposed often on purely formal grounds. In TGD framework quantum group like structures
emerges via the hyper-finite factors of type I1; (HFFs) about which WCW spinors represent a canon-
ical example [12]. The inclusions of HFFs provide a very attractive manner to realize mathematically
the notion of finite measurement resolution.

In the following a proposal for what might be called quantum integers and quantum matrix groups
is discussed. Quantum integers n, differ from their standard variants in that the map n — n, respects
prime decomposition so that one obtains quantum number theory. Also quantum rationals belonging
to algebraic extension of rationals can be defined as well as their algebraic extensions. Quantum
arithmetics differs from the usual one in that quantum sum is defined in such a manner that the
map n — n, commutes also with sum besides the product: m, +,n; = (m + n),. Quantum matrix
groups differ from their standard counterparts in that the matrix elements are not non-commutative.
The matrix multiplication involving summation over products is however replaced with quantum
summation.

The proposal is that these new mathematical structures allow a better understanding of the rela-
tionship between real and p-adic physics for various values of p-adic prime p, to be called [ in the sequel
because of its preferred physical nature resembling that of I-adic prime in l-adic cohomology. The cor-
respondence with the jordinary quantum groups [I5] is also considered and suggested to correspond to
a discretization following as a correlate of finite measurement resolution.

1.1 What could be the deeper mathematics behind dualities?

Dualities certainly represent one of the great ideas of theoretical physics of the last century. The
mother of all dualities might be electric-magnetic duality due to Montonen and Olive [2]. Later a
proliferation, one might say even inflation, of dualities has taken place. AdS/CFT correspondence [3]
is one example relating to each other perturbative QFT working in short scales and string theory
working in long scales.

Also in TGD framework several dualities suggests itself. All of them seem to relate to dictotomies
such as weak—strong, perturbative—non-perturbative, point like particle-string. Also number theory
seems to be involved in an essential manner.
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1. If M® — —M* x CP, duality| is true it is possible to regard space-times as surfaces in either
M8 or M* x CP, [11]. One manner to interpret the duality would as the analog of q-p duality
in wave mechanics. Surfaces in M® would be analogous to momentum space representation of
the physical stats: space-time surfaces in M® would represent in some sense the points for the
tangent space of the ”world of classical worlds” (WCW) just like tangent for a curve gives the
first approximation for the curve near a given point.

The argument supporting M® — —M* x CP, duality involves the basic facts about classical
number fields - in particular octonions and their complexification - and one can understand
M* x C'P, in terms of number theory. The analog of the color group in M?® picture would be the
isometry group SO(4) of E* which happens to be the symmetry group of the old fashioned hadron
physics. Does this mean that M* x CP, corresponds to short length scales and perturbative
QCD whereas M8 would correspond to long length scales and non-perturbative approach?

2. Second duality would relate partonic 2-surfaces and string world sheets playing a key role in
the [recent view about preferred extremals of Kahler action| [3]. Partonic 2-surfaces are magnetic
monopoles and TGD counterparts of elementary particles, which in QFT approach are regarded
as point like objects. The description in terms of partonic 2-surfaces forgetting that they are
parts of bigger magnetically neutral structures would correspond to perturbative QFT. The
description in terms of string like objects with vanishing magnetic charge is needed in longer
length scales. Electroweak symmetry breaking and color confinement would be the natural
applications. The essential point is that stringy description corresponds to long length scales
(strong coupling) and partonic description to short length scales (weak coupling).

Number theory seems to be involved also now: string world sheets could be seen as hyper-
complex 2-surfaces of space-time surface with hyper-quaternionic tangent space structure and
partonic 2-surfaces as co-hyper complex 2-surfaces (normal space would be hyper-complex).

3. Space-time surface itself would decompose to hyper-quaternionic and co-hyperquaternionic | re-
gions and a duality also at this level is suggestive [I], [2]. The most natural candidates for
dual space-time regions are regions with Minkowskian and Euclidian signatures of the induced
metric with latter representing the generalized Feynman graphs. Minkowskian regions would
correspond to non-pertubative long length scale description and Euclidian regions to perturba-
tive short length scale description. This duality should relate closely to quantum measurement
theory and realize the assumption that the outcomes of quantum measurements are always
macroscopic long length scale effects. Again number theory is in a key role.

Real and p-adic physics and their unification to a coherent whole represent the basic pieces of
physics as generalized number theory program.

1. p-Adic physics can mean two different things. p-Adic physics could mean a discretization of
real physics relying on effective p-adic topology. p-Adic physics could also mean genuine p-adic
physics at p-adic space-time sheets. Real continuity and smoothness is an enormous constraint on
short distance physics. p-Adic continuity and smoothness pose similar constraints in short scales
an therefore on real physics in long length scales if one accepts that real and space-time surfaces
(partonic 2-surfaces for minimal option) intersect along rational points and possible common
algebraics in preferred coordinates. p-Adic fractality implying short range chaos and long range
correlations is the outcome. Therefore p-adic physics could allow to avoid the landscape problem
of M-theory due to the fact that the IR limit is unpredictable although UV behavior is highly
unique.

2. Thelrecent argument [3] suggesting that the areas for partonic 2-surfaces and string world sheets
could characterize Kéhler action leads to the proposal that the large N, expansion [I] in terms
of the number of colors defining non-perturbative stringy approach to strong coupling phase of
gauge theories could have interpretation in terms of the expansion in powers of 1/,/p, p the
p-adic prime. This expansion would converge extremely rapidly since N. would be of the order
of the ratio of the secondary and primary p-adic length scales and therefore of the order of /p:
for electron one has p = Mg = 2127 — 1.


http://tgdtheory.com/tgdnumber/tgdnumber.html#visionb
http://tgdtheory.com/articles/minimalsurface.pdf
http://tgdtheory.com/articles/prefextremals.pdf
http://tgdtheory.com/articles/minimalsurface.pdf
http://en.wikipedia.org/wiki/1/N_expansion

1.2 Correspondence along common rationals and canonical identification: two
manners to relate real and p-adic physics 5

3. Could there exist a duality between genuinely p-adic physics and real physics? Could the
mathematics used in p-adic mass calculations- in particular canonical identification ) x,p" —
> x,p~™ - be extended to apply to quantum TGD itself and allow to understand the non-
perturbative long length scale effects in terms of short distance physics dictated by continuity
and smoothness but in different number field? Could a proper generalization of the canonical
identification map allow to realize concretely the real-p-adic duality?

A generalization of the |canonical identification| [§] and its variants is certainly needed in order to
solve the problems caused by the fact that it does not respect symmetries. That the generalization
might exist was suggested already by the model for Shnoll effect [I], which led to a proposal that
this effect can be understand in terms of a deformation of probability distribution f(n) (n non-
negative integer) for random fluctuations. The deformation would replace the rational parameters
characterizing the distribution with new ones obtained by mapping the parameters to new ones by
using the analog of canonical identification respecting symmetries. This deformation would involve
two parameters: quantum phase ¢ = exp(im/m) and preferred prime [, which need not be independent
however: m = [, is a highly suggestive restriction.

The idea of the model of Shnoll effect was to modify the map n — ny in such a manner that
it is consistent with the prime decomposition of ordinary integers. Omne could even consider the
notion of quantum arithmetics requiring that the map commutes with sum. This in turn suggest the
generalization of the matrix groups to what might be called quantum matrix groups. The matrix
elements would not be however non-commutative but obey quantum arithmetics. These quantum
groups would be labelled by prime [ and the original form of the canonical identification I — 1/I
defines a group homomorphism. This form of canonical identification respecting symmetries could be
applied to the linear representations of these groups. This map would be both continuous and respect
symmetries.

1.2 Correspondence along common rationals and canonical identification:
two manners to relate real and p-adic physics

The relationship between real and p-adic physics deserves a separate discussion.

1. The first correspondence between reals and p-adics is based on the idea that rationals are
common to all number fields implying that rational points are common to both real and p-adic
worlds. This requires preferred coordinates. It also leads to a fusion of different number fields
along rationals and common algebraics to a larger structure having a book like structure [10, [&].

(a) Quite generally, preferred space-time coordinates would correspond to a subset of preferred
imbedding space coordinates, and the isometries of the imbedding space give rise to this
kind of coordinates which are however not completely unique. This would give rise to a
moduli space corresponding to different symmetry related coordinates interpreted in terms
of different choices of causal diamonds (CDs).

(b) Cognitive representation in the rational (partly algebraic) intersection of real and p-adic
worlds would necessarily select certain preferred coordinates and this would affects the
physics in a delicate manner. The selection of quantization axis would be basic example of
this symmetry breaking. Finite measurement resolution would in turn reduce continuous
symmetries to discrete ones.

(c) Typically real and p-adic variants of given partonic 2-surface would have discrete and
possibly finite set of rational points plus possible common algebraic points. The intersection
of real and p-adic worlds would consist of discrete points. At more abstract level rational
functions with rational coefficients used to define partonic 2-surfaces would correspond to
common 2-surfaces in the intersection of real and p-adic WCW:s. As a matter fact, the
quantum arithmetics would make most points algebraic numbers.

(d) The correspondence along common rationals respects symmetries but not continuity: the
graph for the p-adic norm of rational point is totally discontinuous. Most non-algebraic
reals and p-adics do not correspond to each other. In particular, transcendental at both
sides belong to different worlds with some exceptions like eP which exists p-adically.
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2. There is however a totally different view about real-p-adic correspondence. The predictions of p-
adic mass calculations are mapped to real numbers via the canonical identification applied to the
p-adic value of mass squared [8,[7]. One can imagine several forms of canonical identification but
this affects very little the predictions since the convergence in powers of p for the mass squared
thermal expectation is extremely fast.

3. The two views are consistent if appropriately generalized canonical identification is interpreted as
a concrete duality mapping short length scale physics and long length scale physics to each other.
As a matter fact, I proposed for more that 15 years ago that canonical identification could be
essential element of cognition mapping external world to p-adic cognitive representations realized
in short length scales and vice versa. If so, then real-p-adic duality would be a cornerstone of
cognition [9]. Common rational points would relate to the intentionality which is second aspect
of the p-adic real corresponence: the transformation of real to p-adic surfaces in quantum
jump would be the correlate for the transformation of intention to action. The realization of
intention would correspond to the correspondence along rationals and common algebraics (the
more common points real and p-adic surface have, the more faithful the realization of intentional
action) and the generation of cognitive representations to the canonical identification.

There are however hard technical problems involved. Maybe canonical identification should be
realized at the level of imbedding space at least - or even at space-time level. Canonical identification
would be locally continuous in both directions. Note that for the points with finite pinary expansion
(ordinary integers) the map is two-valued. Note also that rationals can be expanded in infinite powers
series with respect to p and one can ask whether one should do this or map ¢ = m/n to I(m)/I(n)
(the representation of rational is unique if m and n have no common factors).

The basic problem is that canonical identification in its basic form does not respect symmetries:
the action of the p-adic symmetry followed by a canonical identification to reals is not equal to the
canonical identification map followed by the real symmetry.

1. One can imagine modifications of the canonical identification in attempts to solve this problem.
One can map rationals by m/n — I(m)/I(n). One can also express m and n as power series of
pFasx =Y x,p"* and perform the map as x — Y x,p~"*. This allows to preserve symmetries
in arbitrary good measurement resolution characterizing by the power p~* on real side.

2. Could one circumvent this difficulty without approximations? This kind of approach should work
at least when finite measurement resolution is used meaning the replacement of the space-time
surface with a set of discrete points. Could the already mentioned quantum integers provide a
generalization of the notion of symmetry itself in order to circumvent ugly constructions?

1.3 Brief summary of the general vision

The basic questions of the p-adicization program are following.

1. Is there a duality between real and p-adic physics? What is its precice mathematic formulation?
In particular, what is the concrete map p-adic physics in long scales (in real sense) to real
physics in short scales? Can one find a rigorous mathematical formulation of the canonical
identification induced by the map p — 1/p in pinary expansion of p-adic number such that it is
both continuous and respects symmetries.

2. What is the origin of the p-adic length scale hypothesis suggesting that primes near power of
two are physically preferred? Why Mersenne primes are especially important?

A partial answer to these questions proposed in this chapter relies on the following ideas inspired
by the model of Shnoll effect [1]. The first piece of the puzzle is the notion of quantum arithmetics
formulated in non-rigorous manner already in the model of Shnoll effect.

1. For Option I sums are mapped to sums and products to products and is effectively equivalent with
ordinary p-adic arithmetics. Quantum map of primes p; < p only accompanies the canonical
identification mapping p-adic numbers to reals. This option respects p-adic symmetries only in
finite measurement resolution.
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2. For Option IT primes p; < p are mapped also to their quantum counterparts and generate a
ring. Sums are not mapped to sums and there are two options depending on whether products
are mapped to products or not. One obtains the analog of Kac-Moody algebra with coefficients
for given power of p defining an algebra analogies to polynomial algebra. One can define also
rationals and obtains a structure analogous to a function field. This field allows projection to
p-adic numbers but is much larger than p-adic numbers. The construction works also for the
general quantum phases ¢ than those defined by primes. For this option the symmetries of
quantum p-adics would be preserved in the canonical identification.

3. p-Adic—real duality can be identified as the analog of canonical identification induced by the
map p — 1/p in the pinary expansion of quantum rational. This maps maps p-adic and real
physics to each other and real long distances to short ones and vice versa. This map is especially
interesting as a map for defining cognitive representations.

Quantum arithmetics inspires the notion of quantum matrix group as a counterpart of quantum
group for which matrix elements are non-commuting numbers. Now the elements would be ordinary
numbers. Quantum classical correspondence and the notion of finite measurement resolution realized
at classical level in terms of discretization suggest that these two views about quantum groups are
closely related. The preferred prime p defining the quantum matrix group is identified as p-adic prime
and canonical identification p — 1/p is group homomorphism so that symmetries are respected.

Option I gives p-adic counterparts of classical groups since quantum map n — n, and its gener-
alization to rationals can be assigned to the map of p-adic numbers to real numbers. Requiring the
group conditions to be satisfied in order O(p) = 0 one obtains classical groups for finite fields G(p, 1)
by simply requiring that group conditions are satisfied in order O(p) = 0. One can also have also
classical groups associated with finite fields G(p, n) having p" elements.

Option II is more interesting and quantum counterparts could be seen as counterparts of classical
groups obtained by replacing group elements with the elements of ring defined by Kac-Moody algebra.

1. The quantum counterparts of special linear groups SL(n, F) exists always. For the covering
group SL(2,C) of SO(3,1) this is the case so that 4-dimensional Minkowski space is in a very
special position. For orthogonal, unitary, and orthogonal groups the quantum counterpart exists
only if quantum arithmetics is characterized by a prime rather than general integer and when
the number of powers of p for the generating elements of the quantum matrix group satisfies an
upper bound characterizing the matrix group.

2. For the quantum counterparts of SO(3) (SU(2)/ SU(3)) the orthogonality conditions state
that at least some multiples of the prime characterizing quantum arithmetics is sum of three
(four/six) squares. For SO(3) this condition is strongest and satisfied for all integers, which are
not of form n = 227(8k + 7)). The number r3(n) of representations as sum of squares is known
and 73(n) is invariant under the scalings n — 22"n. This means scaling by 2 for the integers
appearing in the square sum representation.

3. r3(n) is proportional to the so called class number function h(—n) telling how many non-
equivalent decompositions algebraic integers have in the quadratic algebraic extension generated

by /—n.

The findings about quantum SO(3) encourages to consider a possible explanation for p-adic length
scale hypothesis and preferred p-adic primes.

1. The idea to be studied is that the quantum matrix group which is discrete is in some sense very
large for preferred p-adic primes. If cognitive representations correspond to the representations
of quantum matrix group, the representational capacity of cognitive representations is high and
this kind of primes are survivors in the algebraic evolution leading to algebraic extensions with
increasing dimension. The simple estimates of this chapter restricting the consideration to finite
fields (O(p) = 0 approximation) do not support this idea in the case of Mersenne primes.

2. An alternative idea discussed in [I5] is that number theoretic evolution leading to algebraic
extensions of rationals with increasing dimension favors p-adic primes which do not split in the
extensions to primes of the extension. There is also a nice argument that infinite primes which
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are in one-one correspondence with prime polynomials code for algebraic extensions. These
primes code also for bound states of elementary particles. Therefore the stable bound states
would define preferred p-adic primes as primes which do not split in the algebraic extension
defined by infinite prime. This should select Mersenne primes as preferred ones.

2 Various options for quantum arithmetics

In this section the notion of quantum arithmetics as a generalization of ordinary arithmetics preserving
its structure is discussed. One can imagine several options for quantum arithmetics. Common feature
of all options is that products of integers are mapped to products of quantum integers achieved by
mapping primes [ to quantum primes I, = (¢ — ¢7')/(q — ¢~ '), ¢ = exp(ir/p).

In the case of sum one could pose the condition that quantum sums are images of ordinary sums: in
this case (option I) one obtains something reducing to ordinary p-adic numbers and [ — [, accompanies
canonical identification p — 1/p mapping p-adic rationals to reals.

Option II gives up the condition that quantum sum is induced by p-adic sum and assumes that [,
generate act as generators of Kac-Moody type algebra defined by powers p™ such that sum is sum is
completely analogous to that for Kac-Moody algebra: a +b =" an,p™ + > b,p" =), (an + by)p™.

Also the notion of quantum matrix group differing from ordinary quantum groups in that matrix
elements are commuting numbers is discussed. This group forms a discrete counterpart of ordinary
quantum group and its existence suggested by quantum classical correspondence.

2.1 Quantum arithmetics

The starting point idea was that quantum arithmetics maps products of integers to products of
quantum integers. It has turned out that this need not be the case for the sum and even in the case of
product one can ask whether the assumption is necessary. For Option I sum and product are respected
but this option is more or less equivalent with p-adic numbers. For Option II the images of primes
generate Kac-Moody type algebra and sums are not mapped to sums and the number of elements of
quantum algebra is larger than that of p-adic number field. Also in this case one can consider option
giving up the condition that products are mapped to products.

2.1.1 Are products mapped to products?

The first question is whether products are mapped to products.

1. The multiplicative structure of ordinary integers is respected in the map taking ordinary integers
to quantum integers:

n = kil =>ng=~Fkd, . (2.1)

This is guaranteed if the map is induced by the map of ordinary primes to quantum primes.
This means that one decomposes n to a product of primes [ and maps [ — [,. For primes [ < p
the map reads as | — I, = (¢! —3")/(¢ — @), ¢ = exp(im/p) and gives positive number. For
I > p this need not be the case and for primes | > p one expands [ as | = Y 1,,p", I, < p, and
expresses I, as product of primes ! < p mapped to [, each to obtain [,,,, > 0. Non-negativity
is important in the modelling of Shnoll effect by a deformation of probability distribution P(n)
by replacing the argument n by quantum integers and the parameters of the distribution by
quantum rationals [I].

2. One could of course consider giving up the condition that products are mapped to products.
In this case one would simply expess n as n = > ngp* and map ny to ngr, by using its prime
decompositions. Therefore product would be mapped to product only for integers n < p with
product smaller than p.
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2.1.2 Are sums mapped to sums?

Second question is about whether quantum map commutes with sum. There are two options.

1. For Option I also the sum of quantum integers is well-defined and induces sum of the quantum

rationals. Therefore the sum +, for quantum integers would reflect the summation of ordinary
integers:

n = k+l-ong=ks+ql, - (2.2)

Option I can be interpreted in terms of ordinary p-adic integers and therefore it will not be
discussed in the following.

For option II one gives up the condition for the sum. This means that p-adic numbers are
replaced with a ring of quantum p-adics generated by the the images [, of primes [ < m, where
m defines the quantum phase. In other words, one forms all possible products and sums of the
these generators and also their negatives. The sum is defined as the complete analog of sum for
Kac-Moody algebras: a +b= > a,m™ + > b,m™ = (a, + b,)m™ and obviously differs from
m-adic sum. The general element of algebra is z = Y x,m"™, where one has

Tp = Z N({nl})Hx;“ y Li = Dig, Pi <m , q= el’p(zﬂ-/m) .
{n:} @

Here N({n;}) is integer. m = p gives what might be called quantum p-adic numbers. Note that
also zeroth order term giving rise to integers as constant term of polynomials is also present. The
map would produc integers from zeroth order terms so that skeptic could see the construction
too complex.

One has what could be regarded as analog of polynomial algebra with coefficients of polynomials
given by integers. Note that the coeflicients can be also negative since quantum map combined
with canonical identification maps -1 to -1: canonical identification mapping —1 to (p —1)4(1 +
p + p%...) would give only non-negative real numbers. If one wants that also the images under
canonical identification form a field (so that —z for given z belongs to the system) one must
assume that —1 is mapped to —1. Also the condition that one obtains classical groups requires
this. One can form also rationals of this algebra as ratios of this kind of polynomials and a
subset of them projects naturally to p-adic rationals.

One can project quantum integers for Option II to p-adic numbers by mapping the the products
of powers of generators Iy, | < m to products of ordinary p-adic primes I < m in the sums
defining the coefficients in the expansion in powers of m to ordinary p-adic integers. This
projection defines a structure analogous to a covering space for p-adic numbers. The covering
contains infinite number of elements since also the negatives of generators are allowed in the
construction. The covering by elements with positive coefficients of m™ is finite.

Quantum p-adics form a ring but do they form a field? This seems to be the case since quantum
p-adics are very much analogous to a function field for which the argument of function is defined
by integer characterizing the powers of p in quantum pinary expansion. One would have the
analogy of function field in the set of integers. This means that one can indeed speak of quantum
rationals M /N which can be mapped to reals by I(M/N) = 1(M)/I(N).

2.1.3 About the choice of the quantum parameter ¢

Some comments about the quantum parameter ¢ are in order.

1. The basic formula for quantum integers in the case of quantum groups is

9 —q

q9—q
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Here ¢ is any complex number. The generalization respective the notion of primeness is obtained
by mapping only the primes p to their quantum counterparts and defining quantum integers as
products of the quantum primes involved in their prime factorization.

qp_qp
q—q

ng = HPZ” for n:Hp”P . (2.4)
P P

Pqg =

. In the general case quantum phase is complex number with magnitude different from unity:

q = exp(nexp(in/m) . (2.5)

The quantum map is 1-1 for a non-vanishing value of 1 and the limit m — oo gives ordinary
integers. It seems that one must include the factor making the modulus of ¢ different from
unity if one wants 1-1 correspondence between ordinary and quantum integers guaranteing a
unique definition of quantum sum. In the p-adic context with m = p the number exp(n) exists
as an ordinary p-adic number only for 7 = np. One can of course introduce a finite-dimensional
extension of p-adic numbers generated by e!/%.

The root of unity must correspond to an element of algebraic extension of p-adic numbers.
Here Fermat’s theorem a?~! mod p = 1 poses constraints since p — 1:th root of unity exists as
ordinary p-adic number. Hence m = p — 1:th root of unity is excluded. Also the modulus of ¢
must exist either as a p-adic number or a number in the extension of p-adic numbers.

. If g reduces to quantum phase, the n = 0,1, —1 are fixed points of n — n, for ordinary integers

so that one could say that all these numbers are common tointegers and quantum integers for all
values of ¢ = exp(im/m). For p-adic integers —1 = (p—1)(1+p-+p?+.. is problematic. Should one
use direct formula mapping it to —1 or should one map the expansion to (p—1),(1+p+p*+....)?
This option looks more plausible.

(a) For the first option the images under canonical can have both signs and can form a field.
For the latter option would obtain only non-negative quantum p-adics for ordinary p-adic
numbers. They do not form a field. For algebraic extensions of p-adics by roots of unity
one can obtain more general complex numbers as quantum images. For the latter option
also the quantum p-adic numbers projecting to a given prime [ regarded as p-adic integer
form a finite set and correspond to all expansions [ = 3" I;,p* where [}, is product of powers
of primes p; < p but one can have also I, > p.

(b) Quantum integers containing only the O(p®) term in the binary expansion for a sub-ring.
Corresponding quantum rationals could form a field defining a kind of covering for finite
field G(p, 1).

(¢) The image I(m/n) of the pinary expansion of p-adic rational is different from I(m)/I(n).
The formula m/n — I(m)/I(n) is the correct manner to define canonical identification
map. In this case the real counterparts of p-adic quantum integers do not form the analog
of function fields since the numbers in question are always non-negative.

5. For p-adic rationals the quantum map reads as m/n — mgy/n, by definition. But what about

p-adic transcendentals such as eP? There is no manner to decompose these numbers to finite
primes and it seems that the only reasonable map is via the mapping of the coefficients z,, in
x = > x,p" to their quantum adic counterparts. It seems that one must expand all quantum
transcendentals having as a signature non-periodic pinary expansion to quantum p-adics to
achieve uniqueness. Second possibility is to restrict the consideration to rational p-adics. If
one gives up the condition that products are mapped to products, one can map n = ngp* to
ng =2y, nkqpk . Only the products of p-adic integers n < p smaller than p would be mapped to
products.
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6. The index characterizing Jones inclusion [I8] [4] is given by [M : N] = 4cos*(2m/n) and cor-
responds to quantum dimension of 2, x 2, quantum matrices. TGD suggest that a series of
more general quantum matrix dimensions identifiable as indices of inclusions and given by
[M : N] = lg, [ < p prime and ¢ = exp(ir/n), corresponding to prime Hilbert spaces and
g = n-adicity. [, <[ is in accordance with the idea about finite measurement resolution and for
large values of p one would have [, ~ [.

To sum up, one can imagine several options and it is not clear which option is the correct one.
Certainly Option I for which the quantum map is only part of canonical identification is the simpler
one but for this option canonical identification respects discrete symmetries only approximately. The
model for Shnoll effect requires only Option I. The notion of quantum integer as defined for Opion II
imbeds p-adic numbers to a much larger structure and therefore much more general than that proposed
in the model of Shnoll effect [I] but gives identical predictions when the parameters characterizing
the probability distribution f(n) correspond contain only single term in the p-adic power expansion.
The mysterious dependence of nuclear decay rates on physics of solar system in the time scale of
years reduces to similar dependence for the parameters characterizing f(n). Could this dependence
relate directly to the fact that canonical identification maps long length scale physics to short length
scales physics. Could even microscopic systems such as atomic nuclei give rise to what might be called
”cognitive representations” about the physics in astrophysical length scales?

2.2 Canonical identification for quantum rationals and symmetries

The fate of symmetries in canonical identification map is different for options I and II. Consider first
Option I for quantum p-adics. This option effectively reduces to p-adic numbers so that the situation
would be essentially the same as for the canonical identification of ordinary p-adic numbers mapping
the coefficients of powers of p to their quantum counterparts so that the problems with symmetries
remain. One can of course ask why canonical identification should map p-adic symmetries to real
symmetries. There is no obvious answer to the question.

1. The prime p in the expansion Y x,I™ is interpreted as a symbolic coordinate variable and the
product of two quantum integers is analogous to the product of polynomials reducing to a
convolution of the coefficient using quantum sum. The coefficient of a given power of p in the
product would be just the convolution of the coefficients for factors using quantum sum. In the
sum coefficients would be just the quantum sums of coefficients of summands.

2. Option I maps p-adic integers to their quantum counterparts by mapping the coefficients 0 <
Xy, < p to their quantum counterparts defined by ¢ = exp(in/p).

(a) One can also define quantum rationals by writing a given rational in unique manner as r =
pFm/n, expanding m and n as finite power series in p, and by replacing the coefficients with
their quantum counterparts. The mapping of quantum rationals to their real counterparts
would be by canonical identification p — 1/p in my/n,. Also the completion of quantum
rationals obtained by allowing infinite powers series for m and n makes sense and defines
by canonical identification what might be called quantum reals.

(b) Quantum arithmetics defined in this manner reflects faithfully the ordinary p-adic arith-
metics and this leads to what might be seen as a problem with symmetries. In the product
of ordinary p-adic integers the convolution for given power of p can lead to overflow and
this leads to the emergence of modulo arithmetics. As a consequence, the canonical identi-
fication Y x,l™ — > x,I7™ does not respect product and sum in general (simple example:
I((z1)?) = 22172 # (I(21))? = (2®modl)l=2 + (2 — x*modl)l=3 for > 1/2). Therefore
canonical identification induced by | — 1/I does not respect symmetries represented affinely
(as linear transformations and translations) although it is continuous.

(¢) For quantum rationals defined as ratios m,/n, of quantum integers and mapped to I(mg)/I(ng)
the situation improves dramatically but is not cured completely. The breaking of symme-
tries could have a natural interpretation in finite measurement resolution. For instance,
one could argue that p-adic space-time sheets are extrema of Kéahler action in algebraic
sense and their real counterparts obtained by canonical identification are kind of smoothed
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out quantum average space-time surfaces, which do not satisfy real field equations and are
not even differentiable. In this framework p-adicization would defined quantum average
space-time as a p-adically smooth object which nice geometric properties.

Consider next Option II for quantum p-adics.

1. The original motivation for quantum rationals was to obtain correspondence with reals respecting
symmetries. For option II this dream can be achieved if the symmetries are defined for quantum
rationals rather than p-adic numbers. Whether this means that quantum rationals are somehow
deeper notion that p-adic number field is an interesting question. Since quantum rationals are
obtained from quantum integers definong a Kac-Moody type algebra in powers of p™ symmetry
conditions for quantum rational matrices reduce to conditions in terms of quantum integers and
hold separately for each power of p. Therefore the value of p does not actually matter, and the
replacement p — 1/p respects the symmetries.

For instance, for the quantum counterpart of group SL(2, Z) assuming that p" is the largest
power in the matrix elements the condition det(A) = 1 gives 2N + 1 conditions for 4(N + 1)
parameters leaving 2N +3 parameters. The matrix elements are integers so that actual conditions
are more stringent.

2. For this option non-uniqueness is a potential problem. One can have several quantum integers
projecting to the same finite integer in powers of p. The number would be actually infinite when
the coefficients of powers of p can occur with both signs. Does the non-uniqueness mean that
quantum p-adics are more fundamental than p-adics?

3. The non-uniqueness inspires questions about the relationship between quantum field theory
and number theory. Could the sum over different quantum representatives for p-adic integers
define the analog of the functional integral in the ideal measurement resolution? Could loop
corrections correspond number theoretically to the sum over all the alternatives allowed in a
given measurement resolution defined by maximal number of powers of p in expansions of m
and n in r = m/n? This would extend the vision about physics as generalized number theory
considerably.

Note that quantum p-adic numbers are algebraic numbers so that quantum integers are algebraic
numbers with prime p remaining ordinary integer. For the second option canonical identification could
give rise to a correspondence between real physics and p-adic physics respecting both continuity and
symmetries and mapping long real length scales to short p-adic scales and vice versa and perhaps also
provide a purely number theoretic description of quantum corrections in terms of p-adic—quantum
p-adic correspondence.

2.3 More about the non-uniqueneess of the correspondence between p-adic
integers and their quantum counterparts

For the second option the map from p-adic numbers to quantum integers is not unique and it is
interesting to have some idea about how many quantum counterparts given p-adic integer has and
what might be their physical interpretation: a possible interpretation in terms of radiative corrections
has been already noticed. If —1 is mapped to —1 rather than (p — 1),(1 + p + p? + ...) in quantum
map and therefore also in canonical identification quantum p-adics form an analog of a function field.
The number of quantum p-adics projected to same integer is infinite.

The number of quantum p-adics for which the coefficients of the polymonomials of quantum primes
p1 < p regarded as variables are positive is finite. These kind of quantum integers could be called
strictily positive. It is easy to count the number of different strinctly positive quantum counterparts
of p-adic integer n = ng + n1p + nap? + ... + nip®. This representation is of course unique unlike the
corresponding quantum integer.

1. To construct quantum counterparts of n one can proceed power by power. ng allows just one
representative. ng + nip allows d(n1,2) quantum representatives, where the partition function
d(nq1,2) is the number of ways of representing n; as a sum ny = m + n of two non-negative
integers giving rise to a decomposition ng + nip = (ng + mp) + np. At the next step one



2.4 The three options for quantum p-adics 13

represents ng as a sum of three non-negative integers: their number number is d(nq, 3). At the
step k one obtains d(ng, k + 1) partitions. Note that d(n,r) are fundamental number theoretic
functions appearing in the construction of tensor products of group representations.

2. The total number of partitions is HI::1 d(ny,741). Not surprisingly, the partitions of integer n
to a sum of k integers appears in the construction of representations of Virasoro algebras. The
number of states with total conformal weight n constructible using at most k Virasoro generators
equals to d(n, k). In the recent case there is however important restriction: the integers n, are
not divisible by p. Maybe the representations of Virasoro algebra fundamental for quantum
TGD could have a purely number theoretic interpretation.

Similar situation occurs in the construction of tensor powers of group representations for any
additive quantum number for which the basic unit is fixed. Could quantum classical correspon-
dence be realized as a mapping of different states of a tensor product as different quantum p-adic
space-time sheets?

3. The partition of nyp”* between k lower powers of p resembles combinatorially the insertion of loop
corrections of order p* in all possible manners to a Feynman diagram containing corresponds
up to p*~!. Maybe the sum over quantum corrections could be reduced to the summation of
amplitudes in which p-adic integer is mapped to its quantum counterpart in all possible manners.
In zero energy ontology quantum corrections to generalized Feynman diagrams in a new p-adic
length scaled defined by p* indeed more or less reduces to the addition of zero energy states as
a new tensor factor in all possible manners so that structurally the process would be like adding
tensor factor.

To number of geometric objects to which one can assign quantum counterparts is rather limited.
For the points of imbedding space with rational coordinates the number of quantum rational coun-
terparts would be finite. If either of the integers appearing in the p-adic rational become infinite as
a real integer, the number of quantum rationals becomes infinite. Therefore most of the points of a
D > 0-dimensional p-adic surface would map to an infinite number of copies. The restriction to a
finite number of pinary digits makes sense only at the ends of braid strands at partonic 2-surfaces.
This provides additional support for the effective 2-dimensionality and the braid representation for
the finite measurement resolution. The selection of braid ends is strongly constrained by the condition
that the number of pinary digits for the imbedding space coordinates is finite.

The interesting question is whether the summation over the infinite number of quantum copies of
the p-adic partonic 2-surface corresponds to the functional integral over partonic 2-surfaces with braid
ends fixed and thus having only one term in their pinary expansion. This kind of functional integral
is indeed encountered in quantum TGD.

1. The summations in which the quantum positions of braid ends form a finite set would correspond
to finite pinary cutoff. Second question is what the quantum summation for partonic 2-surfaces
means: certainly there must be correlations between very nearby points if the summation is to
make sense. The notion of finite measurement resolution suggests that summation reduces to
that over the quantum positions of the braid ends.

2. Indeed, the reduction of the functional integral to a summation over quantum copies makes sense
only if it can be carried out as a limit of a discrete sum analogous to Riemann sum and giving
as a result what might be called quantum p-adic integral. This limit would mean inclusion of
an increasing number of points of the partonic 2-surface to the quantum sum defined by the
increasing pinary cutoff. One would also sum over the number of braid strands. This approach
could make sense physically if the collection of p-adic partonic 2-surfaces together with their
tangent space data corresponds to a maximum of K&hler function. Quantum summation would
correspond to a functional integral over small deformations with weight coming from the p-adic
counterpart of vacuum functional mapped to its quantum counterpart. Canonical identification
would give the real or complex counterpart of the integral.

2.4 The three options for quantum p-adics

I have proposed two alternative definitions for quantum integers. In [I5] a third option is discussed.
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3

. Option I is that quantum integers are in 1-1 correspondence with ordinary p-adic integers and

the correspondence is obtained by the replacement of the coefficients of the pinary expansion
with their quantum counterparts. In this case quantum p-adic integers would inherit the sum
and product of ordinary p-adic integers. This is the conservative option and certainly works but
is equivalent with the replacement of canonical identification with a map replacing coefficients
of powers of p with their quantum counterparts. This option has a m-adic generalization corre-
sponding to the expansion of m-adic numbers in powers of integer m with coefficients a,, < m.
As a special case one has m = p’V. The quantum map would contain the interesting physics.

. The approach adopted in the sequel is based on Option II based on the identification of quantum

p-adics as an analog of Kac-Moody algebra with powers p™ in the same role as the powers 2™
for Kac-Moody algebra. The two algebras have identical rules for sum and multiplication, and
one does not require the arithmetics to be induced from the p-adic arithmetics (as assumed
originally) since this would lead to a loss of associativity in the case of sum. Therefore the
quantum counterparts of primes [ # p generate the algebra. One can also make the limitation
I < p" to the generators. The quantum counterparts of p-adic integers are identified as products
of quantum counterparts for the primes dividing them. The counterparts of in the map of integers
to quantum integers are 0,1, —1 are ,0,1, —1 as is easy to see. The number of quantum integers
projecting to same p-adic integer is infinite. For p = 2 quantum integers reduce to Zs since
primes are mapped to +1 under quantum map. For p = 3 one obtains powers of 2,. As p
increase the structure gets richer. One can define rationals in this algebra as pairs of quantum
integers not divisible with each other. At the limit when the quantum phase approaches to unit,
quantum integers approach to ordinary ones and ordinary arithmetics results.

. One can consider also quantum m-adic option with expansion | = 3" I;m* in powers of integer

m with coefficients decomposable to products of primes [ < m. This option is consistent with
p-adic topology for primes p divisible by m and is suggested by the inclusion of hyper-finite
factors [4] characterized by quantum phases ¢ = exp(im/m). Giving up the assumption that
coeflicients are smaller than m gives what could be called quantum covering of m-adic numbers.
For this option all quantum primes [, are non-vanishing. Phases ¢ = exp(im/m) characterize
Jones inclusions of hyper-finite factors of type Il; assumed to characterize finite measurement
resolution.

. The definition of quantum p-adics discusses in [15] replaces integers with Hilbert spaces of same

dimension and + and x with direct sum @ and tensor product ®. Also co-product and co-sum
must be introduced and assign to the arithmetics quantum dynamics, which leads to proposal
that sequences of arithmetic operations can be interpreted arithmetic Feynman diagrams having
direct TGD counterparts. This procedure leads to what might be called quantum mathematics
or Hilbert mathematics since the replacement can be made for any structure such as rationals,
algebraic numbers, reals, p-adic numbers, even quaternions and octonions. Even set theory has
this kind of generalization. The replacement can be made also repeatedly so that one obtains
a hierarchy of structures very similar to that obtained in the construction of infinite primes by
a procedure analogous to repeated second quantization. One possible interpretation is in terms
of a hierarchy of logics of various orders. Needless to say this definition is the really deep one
and actually inspired by quantum TGD itself. In this picture the quantum p-adics as they are
defined here would relate to the canonical identification map to reals and this map would apply
also to Hilbert p-adics.

Do commutative quantum counterparts of Lie groups exist?

The proposed definition of quantum rationals involves exceptional prime p expected to define what
might be called p-adic prime. In p-adic mass calculations canonical identification is based on the
map p — 1/p and has several variants but quite generally these variants fail to respect symmetries.
Canonical identification for space-time coordinates fails also to be general coordinate invariant unless
one has preferred coordinates. A possible interpretation could be that cognition affects physics: the
choice of coordinate system to describe physics affects the physics.

The natural question is whether the proposed definition of quantum integers as series of powers of

p-adic prime p with coefficients which are arbitrary quantum rationals not divisible by p with product
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defined in terms of convolution for the coefficients of the series in powers of p using quantum sum for
the summands in the convolution could change (should one say ”save”?) the situation.

To see whether this is the case on must find whether the quantum analogues of classical matrix
groups exist. To avoid confusion it should be emphasized that these quantum counterparts are distinct
from the usual quantum groups having non-commutative matrix elements. Later a possible connection
between these notions is discussed. In the recent case matrix elements commute but sum is replaced
with quantum sum and the matrix element is interpreted as a powers series or polynomial in symbolic
variable © = p or © = 1/p, p prime such that coefficients are rationals not divisible by p.

The crucial points are the following ones.

1. All classical groups [3] are subgroups of the jspecial linear groups [16] SL,(F), F = R,C,
consisting of matrices with unit determinant. One can also replace F' with the integers of the
field F to get groups like SL(2, Z). Classical groups are obtained by posing additional conditions
on SL, (F) such as the orthonormality of the rows with respect to real, complex or quaternionic
inner product. Determinant defines a homomorphism mapping the product of matrices to the
product of determinants in the field F.

Could one generalize rational special linear group and its algebraic extensions by replacing the
group elements by ratios of polynomials of a formal variable x, which has as its value the preferred
prime p such that the coefficients of the polynomials are quantum integers not divisible by p?
For Option I the situation one has just ratios of p-adic integers finite as real integers and for
Option II the integers are polynomials = 3 z,p", where one has

2o =Y N} ][], @i =pig pi<p, q=exp(in/p) .
{n:} i

Here N({n;}) is integer. Could one perform this generalization in such a manner that the
canonical identification p — 1/p maps this group to an isomorphic group? If quantum p-adic
counterpart of the group is non-trivial, this seems to be the case since p plays the role of an
argument of a polynomial with a specific values.

2. The identity det(AB) = det(A)det(B) and the fact that the condition det(A) = 1 involves at
the right hand side only the unit element common to all quantum integers suggests that this
generalization could exist. If one has found a set of elements satisfying the condition det,(A4) =1
all quantum products satisfy the same condition and subgroup of rational special linear group
is generated.

3.1 Quantum counterparts of special linear groups

Special linear groups [16] defined by matrices with determinant equal to 1 contain classical groups
as subgroups and the conditions for their quantum counterparts are therefore the weakest possible.
Special linear group makes sense also when one restricts the matrix elements to be integers of the field
so that one has for instance SL,,(Z). Opiton I reduces to that for ordinary p-adics. For Option II each
power of p can be treated independently so that the situation is easier. The treatment of conditions
in two cases differs only in that overflows in p are possible for Option I. The numbers of conditions
are same.

Let us consider SL,(Z) first.

1. To see that the generalization exists in the case of special linear groups one just just writes the
matrix elements a;; in series in powers of p

aij = Za”(n)p" . (31)

This expansion is very much analogous to that for the Kac-Moody algebra element and also the
product and sum obey similar algebraic structure. p is treated as a symbolic variable in the
conditions stating det,(A) = 1. It is essential that det,(A) = 1 holds true when p is treated as
a formal symbol so that each power of p gives rise to separate conditions.
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2. For SL,, the definition of determinant involves sum over products of n elements. Quantum sums
of these elements are in question.

3. Consider now the number of conditions involved. The number of matrix elements is in real case
N2(k+1), where k is the highest power of p involved. det(A) = 1 condition involves powers of p
up to IV* and the total number of conditions is kN + 1 - one for each power. For higher powers
of p the conditions state the vanishing of the coefficients of p™. This is achieved elegantly in the
sense of modulo arithmetics if the quantum sum involved is proportional to .

The number of free parameters is

# =(k+1)N2—kN—-1=kN(N—1)+N2—1 . (3.2)

For N = 2,k = 0 one obtains # = 3 as expected for SL(2,R). For N = 2,k = 1 one obtains
# = 5. This can be verified by a direct calculation. Writing a;; = b;; + c;;p one obtains three
conditions

dety(B) =1, Try(BC)=0 , det,(C)=0 . (3.3)

for the 8 parameters leaving 5 integer parameters.

Integer values of the parameters are indeed possible. Using the notation

_( a0 bo B
b”_<co do) ’ C”_<C1 d1) (8:4)

one can write the solutions as

(a1,b1) = k(e1,dr) , (c1,dr) = 1(ap — kco, bo — kdo)
aodo — boCo =1.

Therefore 6 integers characterize the solution.

4. Complex case can be treated in similar manner. In this case the number of three parameters is
2(k + 1)N?, the number of conditions is 2(kN + 1) and the number of parameters is

#=2k+1)N?—2(kN +1) . (3.6)

5. Since the conditions hold separately for each power of p, the formulate det,(AB) = det,(A)det,(B)
implies that the matrices satisfying the conditions generate a subgroup of SL,,.

One can generalize the argument to rational values of matrix elements in a simple manner. The
matrix elements can be written in the form A;; = Z;;/K and the only modification of the equations
is that the zeroth order term in p gives det(Z) = K" for SL,,. One can expand K™ in powers of p and
it gives inhomogenous term to in each power of p. For instance, if K is zeroth order in p, solutions to
the conditions certainly exist.

The result means that rational subgroups of special linear groups SL,(R) and SL(n,C) and also
the real and complex counterparts of SL(n,Z) quantum matrix groups characterized by prime p exist
in both real and p-adic context and can be related by the map p — 1/p mapping short and length
scales to each other.

It is remarkable that only the Lorentz groups SO(2,1) and SO(3,1) have covering groups are
isomorphic to SL(2, R) and SL(2, C) allow these subgroups. All classical Lie groups involve additional
conditions besides the condition that the determinant of the matrix equals to one and all these groups
except symplectic groups fail to allow the generalization of this kind for arbitrary values of k. Therefore
four-dimensional Minkowski space is in completely exceptional position.
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3.2 Do classical Lie groups allow quantum counterparts?

In the case of classical groups one has additional conditions stating orthonormality of the rows of the
matrix in real, complex, or quaternionic number field. It is quite possible that the conditions might
not be satisfied always and it turns out that for G and probably also for other exceptional groups
this is the case.

1. Non-exceptional classical groups

It is easy to see that all non-exceptional classical groups quantum counterparts in the proposed
sense for sufficiently small values of k and in the case of symplectic groups quite generally. In this
case one must assume rational values of group elements and one can transform the conditions to
those involving integers by writing A;; = Z,;;/K. The expansion of K gives for orthogonal groups
the condition that the lengths of the integer rows defining Z;; have length K? plus orthogonality
conditions. det(A) = 1 condition holds true also now since a subgroup of special linear group is in
question.

1. Consider first orthogonal groups SO(N).

(a) For ¢ = 1 there are N2 parameters. There are N conditions stating that the rows are unit
vectors and N(N — 1)/2 conditions stating that they are orthogonal. The total number of
free parameters is # = N(N —1)/2.

(b) If the highest power of p is k there are (k+1)N? parameters and (2k+1)[N+N(N—1)/2] =
(2k + 1)(N +1)/2 conditions. The number of parameters is

= N2y - TEEIEREY N2 (3.7

This is negative for k& > (N + 1)/2. It is quite not clear how to interpret this result.
Does it mean that when one forms products of group elements satisfying the conditions
the powers higher than k4 = [(N + 1)/2] vanish by quantum modulo arithmetics. Or do
the conditions separate to separate conditions for factors in AB: this indeed occurs in the
unitarity conditions as is easy to verify. For SO(3) and SO(2,1) this would give k4. = 2.
For SO(3,1) one would have ky,qe = 2 too. Note that for the covering groups SL(2, R)
and SL(2,C) there is no restrictions of this kind.

(c) The normalization conditions for the coefficients of the highest power of a given row imply
that the vector in question has vanishing length squared in quantum inner product. For
q = 1 this implies that the coefficients vanish. The repeated application of this condition
one would obtain that £ = 0 is the only possible solution. For g # 1 the conditions can
be satisfied if the quantum length squared is proportional to [, = 0. It seems that this
condition is absolutely essential and serves as a refined manner to realize p-adic cutoff and
quantum group structure and p-adicity are extremely closely related to each other. This
conclusion applies also in the case of unitary groups and symplectic groups.

(d) Complex forms of rotation groups can be treated similarly. Both the number of parameters
and the number of conditions is doubled so that one obtqins # = N?(k + 1) — N(N +
1)(2k +1) = N(N — 2k + 1) which is negative for k > (N +1)/2.

2. Consider next the unitary groups U (V). Similar argument leads to the expression
#=2N?*(k+1) — (2k +1)N? = N? (3.8)

so that the number of three parameters would be N%- same as for U(N). The determinant has
modulus one and the additional conditions requires that this phase is trivial. This is expected
to give k4 1 conditions since the fixed phase has l-adic expansion with k + 1 powers. Hence the
number of parameters for SU(N) is

#=N2_k+1 (3.9)

giving the condition ky,q; < N? — 1 which is the dimension of SU(N).
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3. Symplectic group can be regarded as a quaternionic unitary group. The number of parameters is
4N?(k+1) and the number of conditions is (2k+1)(N+2N (N —1)) = N(2N —1)(2k+1) so that
the number of three parameters is # = 4N?(k+1)— (2k+1)N(N —1) = (2k+3)N2+ N(2k+1).
Fixing single quaternionic phase gives 3(k+1) conditions so that the number of parameters
reduces to

#=2k+3)N*+ (2k+1)N —3(k+1) = (k+1)(2N*+2N -3) + N(N—-1) , (3.10)

which is positive for all values of N and k so that also symplectic groups are in preferred
position. This is rather interesting, since the infinite-dimensional variant of symplectic group
associated with the 6M* x C'Py is in the key role in quantum TGD and one expects that in finite
measurement resolution its finite-dimensional counterparts should appear naturally.

2. Exceptional groups are exceptional

Also exceptional groups| [7] [7] related closely to octonions allow an analogous treatment once
the nature of the conditions on matrix elements is known explicitly. The number of conditions can
be deduced from the dimension of the ordinary variant of exceptional group in the defining matrix
representation to deduce the number of conditions. The following argument allows to expect that
exceptional groups are indeed exceptional in the sense that they do not allow non-trivial quantum
counterparts.

The general reason for this is that exceptional groups are very low dimensional subgroups of matrix
groups so that for the quantum counterparts of these groups the number N,,,q of group conditions is
too large since the number of parameters is (k 4+ 1)N? in the defining matrix representation (if such
exists) and the number of conditions is at least (2k41)Ngjqss, where Ngqss is the number of condition
for the classical counterpart of the exceptional group. Note that r-linear conditions the number of
conditions is proportional to rk + 1.

One can study the automorphism group G| [§] of octonions as an example to demonstrate that
the truth of the conjecture is plausible.

1. G4 is a subgroup of SO(7). One can consider 7-D real spinor representation so that a represen-
tation consists of real 7 x Tmatrices so that one has 7% = 49 parameters. One has N(N + 1)/2
orthonormality conditions giving for N = 7 orthonormality conditions 28 conditions. This leaves
21 parameters. Besides this one has conditions stating that the 7-dimensional analogs of the
3-dimensional scalar-3-products A - (B x C) for the rows are equal 1, -1, or 0. The number of
these conditions is N(N — 1)(N — 2)/3!. For N = 7 this gives 35 conditions meaning that these
conditions cannot be independent of orthonormalization conditions The number of parameters
is # = 49 — 35 = 14 - the dimension of G5 - so that these conditions must imply orthonormality
conditions.

2. Consider now the quantum counterpart of Go. There are (k + 1)N? = 49(k + 1) parameters
altogether. The number of cross product conditions is (3k 4+ 1) x 35 since the highest power of
p in the scalar-3-product is [3*. This would give

# = —56k+14 . (3.11)

This number is negative for k > 0. Hence G5 would not allow quantum variant. Could this be
interpreted by saying that the breaking of G2 to SU(3) must take place and indeed occurs in
quantum TGD as a consequence of associativity conditions for space-time surfaces.

3. The conjecture is that the situation is same for all exceptional groups.

The general results suggest that both the covering group of the Lorenz group of 4-D Minkowski
space and the hierarchy symplectic groups have very special mathematical role and that the notions
of finite measurement resolution and p-adic physics have tight connections to classical number fields,
in particular to the non-associativity of octonions.


http://en.wikipedia.org/wiki/Exceptional_groups
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3.3 Questions

In the following some questions are introduced and discussed.

3.3.1 How to realize p-adic-real duality at the space-time level?

The concrete realization of p-adic—real duality would require a map from p-adic realm to real realm
and vice-versa induced by the map p — 1/p leading from p-adic number field to real number field or
vice versa.

If possible, the realization of p-adic real duality at the space-time level should not pose additional
conditions on the preferred extremals themselves. Together with effective 2-dimensionality this sug-
gests that the map from p-adic realm to real realm maps partonic 2-surfaces to partonic 2-surfaces
defining at least partially the boundary data for holography.

The situation might not be so simple as this.

1. One must however also consider the possibility that its is 3-D space-like surfaces at the ends of
C Ds which are mapped by the duality from p-adic realm to real realm or vice versa. A possible
reason is that this kind of surfaces can be easily defined as intersections F;(z,r¢2,£2) = 0,i = 1,2
of two complex valued functions F; of compex coordinate z and radial light-like coordinate for
SM% = S? x Ty and two complex coordinates &%, i = 1,2 of C'P: the number of conditions is
4 and this gives D= 7-4=3-dimensional space-like surface as a solution. These surfaces - that is
functions F; cannot be completely free but solutions of field equations in the direction of radial
coordinate, and this might pose a difficulty.

2. It is also possible that some local 4-D tangent space data at partonic 2-surfaces are needed to
characterize the space-time surface. An alternative possibility is that the failure of standard
form of determinism for Kéahler action forces to introduce partonic 2-surfaces in various scales
and the breaking of strict 2-dimensionality does not occur locally. This option would correspond
at quantum level radiative corrections in shorter scales down to C'P; scale and might be seen as
aesthetically more attractive option.

3. The realization of p-adic real duality by applying the proposed form of canonical identification
to quantum rational points requires preferred coordinates. For the minimum option defined by
the map of partonic 2-surfaces (no 4-D tangent space data) this would mean that one must
have preferred coordinates for partonic 2-surfaces. It is easy to imagine how to identify this
kind of preferred complex coordinate. The complex coordinate could correspond to a preferred
complex coordinate for S? C M1 or for a homologically non-trivial geodesic sphere of CP,. The
complex coordinates would transform linearly under the maximal compact subgroup of SO(3)
resp. SU(3).

3.3.2 How commutative quantum groups could relate to the ordinary quantum groups?

The interesting question is whether and how the commutative quantum groups relate to ordinary
quantum groups.

This kind of question is also encountered when considers what finite measurement resolution means
for second quantized induced spinor fields [5]. Finite measurement resolution implies a cutoff on the
number of the modes of the induced spinor fields on partonic 2-surfaces. As a consequence, the
induced spinor fields at different points cannot ant-commute anymore. One can however require anti-
commutativity at a discrete set of points with the number of points "more or less equal” to the number
of modes. Discretization would follow naturally from finite measurement resolution in its quantum
formulation.

The same line of thinking might apply to to quantum groups. The matrix elements of quantum
group might be seen as quantum fields in the field of real or complex numbers or possibly p-adic number
field or of its extension. Finite measurement resolution means a cutoff in the number of modes and
commutativity of the matrix elements in a discrete set of points of the number field rather than
for all points. Finite measurement resolution would apply already at the level of symmetry groups
themselves. The condition that the commutative set of points defines a group would lead to the
notion of commutative quantum group and imply p-adicity as an additional and completely universal
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outcome and select quantum phases exp(in/p) in a preferred position. Also the generalization of
canonical identification so central for quantum TGD would emerge naturally.

One must of course remember that the above considerations probably generalize so that one should
not take the details of the discussion too seriously.

3.3.3 How to define quantum counterparts of coset spaces?

The notion of commutative quantum group implies also a generalization of the notion of coset space
G/H of two groups G and H C G. This allows to define the quantum counterparts of the proper
time constant hyperboloid and CP, = SU(3)/U(2) as discrete spaces consisting of quantum points
identifiable as representatives of cosets of the coset space of discrete quantum groups. This approach
is very similar but more precise than the earlier approach in which the points in discretization had
angle coordinates corresponding to roots of unity and radial coordinates with discretization defined
by p-adic prime.

The infinite-dimensional ”world of classical worlds” (WCW) can be seen as a union of infinite-
dimensional symmetric spaces (coset spaces) [3] and the definition as a quantum coset group could
make sense also now in finite measurement resolution. This kind of approach has been already sug-
gested and might be made rigorous by constructing quantum counterparts for the coset spaces associ-
ated with the infinite-dimensional symplectic group associated with the boundary of causal diamond.
The problem is that matrix group is not in question. There are however good hopes that the symplec-
tic group could reduces to a finite-dimensional matrix group in finite measurement resolution. Maybe
it is enough to achieve this reduction for matrix representations of the symplectic group.

3.4 Quantum p-adic deformations of space-time surfaces as a representa-
tion of finite measurement resolution?

A mathematically fascinating question is whether one could use quantum arithmetics as a tool to
build quantum deformations of partonic 2-surfaces or even of space-time surfaces and how could
one achieve this. These quantum space-times would be commutative and therefore not like non-
commutative geometries assigned with quantum groups. Perhaps one could see them as commutative
semiclassical counterparts of non-commutative quantum geometries just as the commutative quantum
groups discussed in [I4] could be seen commutative counterparts of quantum groups.

As one tries to develop a new mathematical notion and interpret it, one tends to forget the
motivations for the notion. It is however extremely important to remember why the new notion is
needed.

1. In the case of quantum arithmetics Shnoll effect is one excellent experimental motivation. The
understanding of canonical identification and realization of number theoretical universality are
also good motivations coming already from p-adic mass calculations. A further motivation
comes from a need to solve a mathematical problem: canonical identification for ordinary p-adic
numbers does not commute with symmetries.

2. There are also good motivations for p-adic numbers. p-Adic numbers and quantum phases can
be assigned to finite measurement resolution in length measurement and in angle measurement.
This with a good reason since finite measurement resolution means the loss of ordering of points
of real axis in short scales and this is certainly one outcome of a finite measurement resolution.
This is also assumed to relate to the fact that cognition organizes the world to objects defined
by clumps of matter and with the lumps ordering of points does not matter.

3. Why quantum deformations of partonic 2-surfaces (or more ambitiously: space-time surfaces)
would be needed? Could they represent convenient representatives for partonic 2-surfaces (space-
time surfaces) within finite measurement resolution?

(a) If this is accepted, there is no compelling need to assume that this kind of space-time
surfaces are preferred extremals of Kéhler action.

(b) The notion of quantum arithmetics and the interpretation of p-adic topology in terms
of finite measurement resolution however suggest that they might obey field equations in
preferred coordinates but not in the real differentiable structure but in what might be called
quantum p-adic differentiable structure associated with prime p.
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(c) Canonical identification would map these quantum p-adic partonic (space-time surfaces) to
their real counterparts in a unique continuous manner and the image would be real space-
time surface in finite measurement resolution. It would be continuous but not differentiable
and would not of course satisfy field equations for Kéhler action anymore. What is nice
is that the inverse of the canonical identification which is two-valued for finite number of
pinary digits would not be needed in the correspondence.

(d) This description might be relevant also to quantum field theories (QFTs). One usually
assumes that minima obey partial differential equations although the local interactions in
QFTs are highly singular so that the quantum average field configuration might not even
possess differentiable structure in the ordinary sense! Therefore quantum p-adicity might
be more appropriate for the minima of effective action.

The cautious conclusion would be that commutative quantum deformations of space-time sur-
faces could have a useful function in TGD Universe.

Consider now in more detail the identification of the quantum deformations of space-time surfaces.

1. Rationals are in the intersection of real and p-adic number fields and the representation of
numbers as rationals » = m/n is the essence of quantum arithmetics. This means that m and
n are expanded to series in powers of p and coefficients of the powers of p which are smaller
than p are replaced by the quantum counterparts. They are quantum quantum counterparts of
integers smaller than p. This restriction is essential for the uniqueness of the map assigning to
a give rational quantum rationals.

2. One must get also quantum p-adics and the idea is simple: if the pinary expansions of m and n in
positive powers of p are allowed o become infinite, one obtains a continuum very much analogous
to that of ordinary p-adic integers with exactly the same arithmetics. This continuum can be
mapped to reals by canonical identification. The possibility to work with numbers which are
formally rationals is utmost importance for achieving the correct map to reals. It is possible to
use the counterparts of ordinary pinary expansions in p-adic arithmetics.

3. One can defined quantum p-adic derivatives and the rules are familiar to anyone. Quantum
p-adic variants of field equations for Kéhler action make sense.

(a) One can take a solution of p-adic field equations and by the commutativity of the map
r=m/n — ry = my/n, and of arithmetic operations replace p-adic rationals with their
quantum counterparts in the expressions of quantum p-adic imbedding space coordinates
h* in terms of space-time coordinates z®.

(b) After this one can map the quantum p-adic surface to a continuous real surface by using
the replacement p — 1/p for every quantum rational. This space-time surface does not
anymore satisfy the field equations since canonical identification is not even differentiable.
This surface - or rather its quantum p-adic pre-image - would represent a space-time surface
within measurement resolution. One can however map the induced metric and induced
gauge fields to their real counterparts using canonical identification to get something which
is continuous but non-differentiable.

4. This construction works nicely if in the preferred coordinates for imbedding space and partonic
(space-time) surface itself the imbedding space coordinates are rational functions of space-time
coordinates with rational coefficients of polynomials (also Taylor and Laurent series with rational
coefficients could be considered as limits). This kind of assumption is very restrictive but in
accordance with the fact that the measurement resolution is finite and that the representative
for the space-time surface in finite measurement resolution is to some extent a convention. The
use of rational coefficients for the polynomials involved implies that for polynomials of finite
degree WCW reduces to a discrete set so that finite measurement resolution has been indeed
realized quite concretely!

Consider now how the notion of finite measurement resolution allows to circumvent the objections
against the construction.
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1. Manifest GCI is lost because the expression for space-time coordinates as quantum rationals is
not general coordinate invariant notion unless one restricts the consideration to rational maps
and because the real counterpart of the quantum p-adic space-time surface depends on the choice
of coordinates. The condition that the space-time surface is represented in terms of rational
functions is a strong constraint but not enough to fix the choice of coordinates. Rational maps
of both imbedding space and space-time produce new coordinates similar to these provided the
coefficients are rational.

2. Different choices for imbedding space and space-time surface lead to different quantum p-adic
space-time surface and its real counterpart. This is an outcome of finite measurement resolution.
Since one cannot order the space-time points below the measurement resolution, one cannot fix
uniquely the space-time surface nor uniquely fix the coordinates used. This implies the loss of
manifest general coordinate invariance and also the non-uniqueness of quantum real space-time
surface. The choice of coordinates is analogous to gauge choice and quantum real space-time
surface preserves the information about the gauge.

4 Could one understand p-adic length scale hypothesis num-
ber theoretically?

p-Adic length scale hypothesis states that primes near powers of two are physically interesting. In
particular, both real and Gaussian Mersenne primes seem to be fundamental and can be tentatively
assigned to charged leptons and living matter in the length scales between cell membrane thickness
and size of the cell nucleus. They can be also assigned to various scaled up variants of hadron physics
and with leptohadron physics suggested by TGD.

4.1 Number theoretical evolution as a selector of the fittest p-adic primes?

How could one understand p-adic length scale hypothesis? The general explanation would be in terms
of number theoretic evolution by quantum jumps selecting the primes that are the fittest. The vision
discussed in [I5] d leads to the proposal that the fittest p-adic primes are those which do not split in the
physically preferred algebraic extensions of rationals. Algebraic extensions are naturally characterized
by infinite primes characterizing also stable bound states of particles. Therefore these stable infinite
primes or equivalently stable bound states would characterize also the p-adic primes which are fit.
This explanation looks rather attractive.

p-Adic evolution would mean also a selection of preferred scales for C Ds, instead of integer multi-
ples of C'P; scale only prime multiples or possibly prime power multiples would be favored and primes
near powers of two were especially fit. A possible ”biological” explanation is that for the preferred
primes the number of quantum states is especially large making possible to build complex sensory and
cognitive representations about external world.

The proposed vision about commutative quantum groups encourages to consider a number theo-
retic explanation for the p-adic length scale hypothesis consistent with the evolutionary explanation
is that the quantum counterpart of symmetry groups are especially large for preferred primes. Large
symmetries indeed imply large numbers of states related by symmetry transformations and high rep-
resentational capacity provided by the p-adic—real duality. It is easy to make a rough test of the
proposal for G = SO(3), SU(2) or SU(3) associated with p-adic integers modulo p reducing to the
counterpart of G for finite field might be especially large for physically preferred primes. Mersenne
primes do not however seem to be special in this sense so that the following considerations can be
taken as an exercise in the use of number theoretic functions and the reader can quite well skip the
section.

4.2 Only Option I is considered

One considers only the Option I, which reduces to ordinary p-adic numbers effectively since quantum
map induced by p; — p;q for p; < p can be combined with canonical identification. The arguments
developed say nothing about option II. For option I the group transformations for which the conditions
hold true modulo p make sense if matrix elements are integers satisfying a;; < p. This makes sense for
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large values of p associated with elementary particles. This implies a reduction to finite field G(p, 1).
The original argument was more general and used same condition but involved an error.

1. For SL(2,C) - the covering group of Lorentz group - one obtains no constraints and all quantum
phases exp(im/n) are allowed: this would mean that all CDs are in the same position. The
rational SL(2,C) matrices whose determinant is zero modulo p form a group assgignable to
finite field and and it might be that for some values of p this group is exceptionally large.
SL(2,C) defines also the covering group of conformal symmetries of sphere.

2. For orthogonal, unitary, and symplectic groups only n = p, p prime allows k£ > 0 and genuine
p-adicity. Since SO(3,1), SO(3), SU(2) and SU(3) should alow p-adicization this selects C'Ds
with size scale characterized by prime p.

3. For orthogonal, unitary, and symplectic groups one obtains non-trivial solutions to the unitarity
conditions only if the highest power of p corresponds quantum image of a vector with zero norm
modulo p as follows from the basic properties of quantum arithmetics.

(a) In the case of SO(3) one has the condition

3
Zm?zl—&-k‘xp (4.1)
i=1

Note that this condition can degenerate to a condition stating that a sum of two squares
is multiple of prime. As noticed the prime must be large and x? < p holds true.

(b) For the covering group SU(2) of SO(3) one has the condition

4
S a2 =14 kxp 12)
i=1

since two complex numbers for the row of SU(2) matrix correspond to four real numbers.
(¢) For SU(3) one has the condition

6
S ai=1+kxp (4.3)
=1

corresponding to 3 complex numbers defining the row of SU(3) matrix.

What can one say about these conditions? The first thing to look is whether the conditions can
be satisfied at all. Second thing to look is the number of solutions to the conditions.

4.3 Orthogonality conditions for SO(3)

The conditions for SO(3) are certainly the strongest ones so that it is reasonable to study this case
first.

1. One must remember that there are also integers -in particular primes- allowing representation
as a sum of two squares. For instance, Fermat primes whose number is very small, allow
representation F,, = 2%1. More generally, Fermat’s theorem on sums of two squares states that
and odd prime is expressible as sum of two squares only if it satisfies p mod 4 = 1. The second
possibility is p mod 4 = 3 so that roughly one half of primes satisfy the p mod 4 = 1 condition:
Mersenne primes do not satisfy it.

The more general condition giving sum proportional to prime is satisfied for all n = k2, k =
1,2, ...
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2. For the sums of three non-vanishing squares one can use the well-known classical theorem stating
that integer n can be represented as a sum of three squares only if it is|not | of the form [I1]

n = 27(8k+7) (4.4)

For instance, squares of odd integers are of form 8% + 1 and multiplied by any power of two
satisfy the condition of being expressible as a sum of three squares.

If n satisfies (does not satisfy) this condition then nm? satisfies (doe not satisfy) it for any m this
since m? gives some power of 2 multiplied by a 8k +1 type factor so that one can say that square
free odd integers for which the condition n # 7 (mod 8) generate this set of integers. Note that
the integers representable as sums of three non-vanishing squares do not allow a representation
using two squares. The product of odd primes p; = 8mq + k1 and p; = 8my + ko fails to satisfy
the condition only if one has k; = 3 and ko = 5. The product of n primes p; = 8m; + k; must
satisfy the condition []k; # 7 (mod 8) in order to serve as a generating square free prime.

In the recent case one must have n mod p = 1. For Mersenne primes m = 1 + kM, allows
representation as a sum of three squares for most values of k. In particular, for £ = 1 one obtains
m = 2" allowing at least the representation m = 2"~! 4+2"~1. One must also remember that all
that is needed is that sufficiently small multiples of Mersenne primes correspond to large value
of r3(n) if the proposed idea has any sense.

4.4 Number theoretic functions r(n) for k =2,4,6

The number theoretical functions ri(n) telling the number of vectors with length squred equal to
a given integer n are well-known for £k = 2,3,4,6 and can be used to gain information about the
constraints posed by the existence of quantum groups SO(2), SO(3), SU(2) and SU(3). In the
following the easy cases corresponding to k = 2,4, 6 are treated first and after than the more difficult
case k = 3 is discussed. For the auxiliary function the reader can consult to the Appendix.

4.4.1 The behavior of ra(n)

ro(n) gives information not only about quantum SO(2) but also about SO(3) since 2-D vectors define
3-D vectors in an obvious manner. The expression for ro(n) is given by

n) = Y@ . v =(7) - (4.5)

d|n

x(d) is so called principal character defined in appendix. For n = 1+ M;, = 2¥ only powers of 2 and 1
divide n and for even numbers principal character vanishes so that one obtains ro(14 M) = x(1) = 1.
This corresponds to the representation 28 = 2k=1 4 2k—1,

4.4.2 The behavior of r4(n)

The expression for r4(n) reads as

8a(n if n is odd ,
ra(n) = { 24(5(7)71) if n=2m, m odd . (4.6)
For n = Mj, + 1 = 2* one has r4(n) = 240 (1) = 24.

The asymptotic behavior of o function is known so that it is relatively easy to estimate the behavior
of r4(n). The behavior involves random looking local fluctuation which can be understood as reflective
the multiplicative character implying correlation between the values associated with multiples of a
given prime.
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4.4.3 The behavior of rg(n)

The analytic expression for r¢(n) is given by

ro(n) = 3 [16x(5) —4x(d)] d*

d|n

4 0 if n is even
x(n) = () — 01 ifn=1 (mod4) (4.7)
n —1 if n =3 (mod 4)

For n = Mj, +1 = 2F this gives re(n) =12 x 22F _ 4 so that the number of representation is very large
for large Mersenne primes.

4.5 What can one say about the behavior of r3?

The proportionality of r3(D) to the order of h(—D) [1] of the ideal class group| [I0] [10] for quadratic
extensions of rationals [I] inspires some conjectures.

1. The conjecture that preferred primes p correspond to large commutative quantum groups trans-
lates to a conjecture that the order of ideal class group is large for the algebraic extension
generated by /—p — 1 or more generally /—kp — 1 - at least for some values of k. Could suit-
able integer multiples primes near power of 2 - in particular Mersenne primes - be such primes?
Note that only integer multiple is required by the basic argument.

2. Also some kind of approximate fractal behavior ri(sp) ~ ri(p) fr(s) for some values of s anal-
ogous to that encountered for r4(D) for all values of s might hold true since k = 3 is a critical
transition dimension between k = 2 and k = 3. In particular, an approximate periodicity in
octaves of primes might hold true: r,(2°p) =~ ri(p): this would support p-adic length scale
hypothesis and make the comutative quantum group large.

4.5.1 Expression of r3 in terms of class number function

To proceed one must have an explicit expression for the class number function h(D) and the expression
of r3 in terms of h(D).

1. The expression for h(D) discussed in the Appendix reads as gives

h(-D) = —lljjj:rx<_rD> . (4.8)

The symbols((%) are Dirchlet and Kronecker symbols defined in the Appendix. Note that for
D = M;, +1 = 2F the algebraic expansion in quesetion reduces to that generated by /-2 so
that the algebraic extension is definitely special.

2. One can express r3(|D|) in terms of h(D) as

ra(D) = 1201

g))h(D) . (4.9)

Note that (£) refers to Kronecker symbol.

3. From Wolfram one finds the following expressions of r3(n) for square free integers

rg(n) = 24h(—n) n =3 (mod 8) ,
r3(n) = 12h(—4n) n=1,2,5,6 (mod 8) , (4.10)
rg(n) =0 n =7 (mod 8) .
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4. The generating function for rs| [I7] is third power of theta function 63.

Z r3(n)z™ = 03(n) =14 6x + 1222 + 823 + 62* + 242° + 2425 + 122° + 302° + .(4.11)
n>0
This representation follows trivially from the definition of ¢ function as sum >~ zn’

The behavior of h(—D) for large arguments is not easy to deduce without numerical calculations
which probably get too heavy for primes of order Mj47. The definition involves sum of p terms labeled
by r =1,...,p, and each term is a product is product of terms expressible as a product over the prime
factors of of r with over all term being a sign factor. ”Interference ” effects between terms of different
sign are obviously possible in this kind of situation and one might hope that for large primes these
effects imply wild fluctuations of r3(p).

4.5.2 Simplified formula for r5(D)

Recall that the proportionality of r3(]D|) to the ideal class number h(D) is for D < —4 given by

D

r3(|D]) = 12[1<2>}h(D) . (4.12)

The expression for the Kronecker symbol appears in the formula as well as formulas to be discussed
below and reads as

D 0 if D is even ,

<2> = 1 if D=-1(mod 8) , (4.13)
—1 if D =43 (mod 8) .

The proportionality factor vanishes for D = 227(8m + 7) and equals to 12 for even values of D and to

24 for D = 43 (mod 8).

To get more detailed information about r3 one can begin from class number formulal [2] for D < —4
reading as

WD) = &Zr(?) . (4.14)

Each Jacobi symbol (%) decomposes to a product of Legendre and Kronecker symbols (p%) in the
decomposition of odd integer r to a product of primes p;.

For (%) = 1 p; splits into a product of primes in quadratic extension generated by vD. If it
vanishes p; is square of prime in the quadratic extension. In the recent case neither of these options
are possible for the primes involved as is easy to see by using the definition of algebraic integers.

Hence one has (g) = —1 for all odd primes to transform the formula for D < —4 to the form

|D|

1 D

WMD) = — =) (r) (1)) —va(r)
®) = (5

D]

1 D

— | Z () 1))
o2 (30
(4.15)

Here v5(r) characterizes the power of 2 appearing in r and Q(r) is the number of prime divisors of r
with same divisor counted so many times as it appears. Hence the sign factor is same for all integers
r which are obtained from the same square free integer by multiplying it by a product of even powers
of primes.

Consider next various special cases.
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1. For even values D < —4 (say D = —1 — M,,) only odd integers r contribute to the sum since
the Kronecker symbols vanish for even values of 7.

MD=24) = — > r(-1)%"

|D| 1<r<|D| odd
(4.16)
2. For D = +1 (mod 8) , the factors (§') = —1 implies that one can forget the factors of 2
altogether in this case (note that for D = —1 (mod 8) r3(|D|) vanishes unlike h(D)).
1 12
h(D = +1(mod 8)) = 03] > r(=1)fe)
r=1
(4.17)
3. For D = +3 (mod 8) , the factors (£) = 1 implies that one has
1 1P
h(D = +3(mod 8)) = 03] > (=R
r=1
(4.18)

The magnitudes of the terms in the sum increase linearly but the sign factor fluctuates wildly so
that the value of h(—D) varies chaotically but must be divisible by p and negative since r3(p) must
be a positive integer.

4.5.3 Could thermodynamical analogy help?

For D < —4 h(D) is expressible in terms of sign factors determined by the number of prime factors or
odd prime factors modulo two for integers or odd integers r < D. This raises hopes that h(D) could
be calculated for even large values of D.

1. Consider first the case D = +1 (mod 8)). The function A\(r) = (—=1)*(") is known as Liouville
function [I2]. From the product expansion of zeta function in terms of ”prime factors” it is easy
to see that the generating function for A(r)

Z)\(n)n—s _ C(23) _ 1

C(s) — Cr(s)
¢s) = [[a-p 7", s =[[a+p) . (4.19)

Recall that ((s) resp. (r(s) has a formal interpretation as partition functions for the thermo-
dynamics of bosonic resp. fermionic system. This representation applies to h(D = £1(mod8)).

2. For D = 2d the representation is obtained just by dropping away the contribution of all even
integers from Liouville function and this means division of (14 27¢) from the fermionic partition
function (z(s). The generating function is therefore

1

Cr(s) (420

Yo = [ a+p)t=0+27)

n odd p odd
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3. For h(D = £3( mod 8)). One most modify the Liouville function by replacing Q(r) by the
number of odd prime factors but allow also even integers r. The generating function is now

DA = T e

p odd

1 1
1—2-5 CF(S)

(4.21)

The generating functions raise the hope that it might be possible to estimate the values of the
h(D) numerically for large values of D using a thermodynamical analogy.

1. h(D) is obtained as a kind of thermodynamical average (r(—1)%(") for particle number r
weighted by a sign factor telling the number of divisors interpreted as particle number. s plays
the role of the inverse of the temperature and infinite temperature limit s = 0 is considered.
One can also interpret this number as difference of average particle number for states restricted
to contain even resp. odd particle number identified as the number of prime divisors with 2 and
even particle numbers possibly excluded.

2. The average is obtained at temperature corresponding to s = 0 so that n=™° = 1 holds true
identically. The upper bound r < D means cutoff in the partition sum and has interpretation as
an upper bound on the energy log(r) of many particle states defined by the prime decomposition.
This means that one must replace Riemann zeta and its analogs with their cutoffs with n < |D|.
Physically this is natural.

3. One must consider bosonic system all the cases considered. To get the required sign factor one
must associated to the bosonic partition functions assigned with individual primes in ((s) the
analog of chemical potential term exp(—p/T) as the sign factor exp(in) = —1 transforming ¢ to
1/¢F in the simplest case.

One might hope that one could calculate the partition function without explicitly constructing
all the needed prime factorizations since only the number of prime factors modulo two is needed for
r <|D|.

4.5.4 Expression of r3 in terms of Dirichlet L-function

It is known [I3] that the function r3(D) is proportional to Dirichlet L-function L(1, x(D)) [5:

12v/D

r3(| D) L(1,x(D))) ,

i
x(n, D
L(S,X) = Z 7(,”15 ) R
n>0

(4.22)
x(n, D) is Dirichlet character| [4] which is periodic and multiplicative function - essentially a phase

factor- satisfying the conditions

x(n,D)#0 if n and D have no common divisors > 1 ,

x(n,D)=0 if n and D have a common divisor > 1 ,
(4.23)
x(mn, D) = x(m, D)x(n,D) ,  x(m+ D,D)=x(m,D) ,

x(1,D)=1 .

1. L(1,x(D)) varies in average sense slowly but fluctuates wildly between certain bounds. One can
say that there is local chaos.

The following estimates for the bounds are given in [I3]:
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c1(D) = kilog(log(D) < L1(1,x(D)) < ca(D) = kslog(log(D)) . (4.24)
Also other bounds are represented in the article.

4.5.5 Could preferred integers correspond to the maxima of Dirichlet L-function?

The maxima of Dirichlet L-function are excellent candidates for the local maxima of r3(D) since v D
is slowly varying function.

1. As already found, integers n = 1+ M}, = 2¥ cannot represent pronounced maxima of 73(n) since
there are no representation as a sum of three squares and the proportionality constant vanishes.
Note that in this case the representation reduces to a representation in terms of two integers.
In this special case it does not matter whether L-function has a maximum or not.

(a) Could just the fact that the representation for n = 1 + M) = 2* in terms of three primes
is not possible, select Mersenne primes M, > 3 as preferred ones? For SU(2), which is
covering group of SO(3) the representation as a sum of four squares is possible. Could it be
that the spin 1/2 character of the fermionic building blocks of elementary particles means
that a representation as sum of four squares is what matters. But why the non-existence
of representation of n as a sum of three squares might make Mersenne primes so special?

2. Could also primes near power of 2 define maxima? Unfortunately, the calculations of [I3] involve
averaging, minimum, and maximum over 10° integers in the ranges n x 10 < D < (n+1) x 10°,
so that they give very slowly varying maximum and minimum.

3. Could Dirichlet function have some kind of fractal structure such that for any prime one would
have approximate factorization? The naivest guesses would be L(1, xx) =~ f1(k)L(1, x;) with
k = 2°. This would mean that the primes for which D(1, x,) is maximum would be of special
importance.

4. p-Adic fractality and effective p-adic topology inspire the question whether L-function is p-
adic fractal in the regions above certain primes defining effective p-adic topology D(1, x,r) ~
fi(k)DK(1, xp) for preferred primes.

4.5.6 Interference as a helpful physical analogy?

Could one use physical analog such as interference for the terms of varying sign appearing in L-function
to gain some intuition about the situation?

1. One could interpret L-function as a number theoretic Fourier transform with D interpreted as
a wave vector and one has an interference of infinite number of terms in position space whose
points are labelled by positive integers defining a half -lattice with unit lattice length. The
magnitude of n:th summand 1/n and its phase is periodic with period D = kp. The value of
the Fourier component is finite except for D = 0 which corresponds to Riemann Zeta at s = 1.
Could this means that the Fourier component behaves roughly like 1/D apart from an oscillating
multiplicative factor.

2. The number theoretic counterparts of plane waves are special in that besides D-periodicity
they are multiplicative making thema Iso analogs of logarithmic waves. For ordinary Fourier
components one additivity in the sense that U(ky + ko) = U(k1)¥(ke). Now one has U(ki1ky) =
U (k1)U (k) so that log(D) corresponds to ordinary wave vector. p-Adic fractality is an analog
for periodicity in the sense of logarithmic waves so that powers rather than integer multiples of
the basic scale define periodicity. Could the multiplicative nature of Dirichlet characters imply
p-adic - or at least 2-adic - fractality, which also means logarithmic periodicity?

3. Could one say that for these special primes a constructive interference takes place in the sum
defining the L-function. Certainly each prime represents the analog of fundamental wavelength
whose multiples characterize the summands. In frequency space this would mean fundamental
frequency and its sub-harmonics.
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4.5.7 Period doubling as physical analogy?

1. For k = 4 all scales are present because of the multiplicative nature of ¢ function. Now only
the Dirichlet characters are multiplicative which suggests that only few integers define preferred
scales? Prime power multiples of the basic scale are certainly good candidates for preferred
scales but amongst them must be some very special prime powers. p = 2 is the only even prime
so that it is the first guess.

2. Could the system be chaotic or nearly chaotic in the sense of period doubling so that oc-
taves of preferred primes interfere constructively? Why constructively? Could complete chaos
-interpreted as randomness- correspond to a destructive interference and minimum of the L-
function?

3. What about scalings by squares of a given prime? It seems that these scalings cannot be
excluded by any simple argument. The point is that r5(n) contains also the factor y/n which
must transform by integer in the scaling n — kn. Therefore k must be power of square.

This leaves two extreme options. Both options are certainly testable by simple numerical calcu-
lations for small primes. For instance one can use generating function 63(x) = 3" r3(n)a™ to kill the
conjectures.

1. The first option corresponds to scalings by all integers that are squares. This option is also
consistent with the condition n # 2¥(8m + 7) since both the scaling by a square of odd prime
and by a square of 2 preserve this condition since one has n? = 1 (mod 8) for odd integers. This
is also consistent with the finding that r3(n) = 1 holds true only for a finite number of integers.
A simple numerical calculation for the sums of 3 squares of 16 first integers demonstrates that
the conjecture is wrong.

2. The second option corresponds only to the scaling by even powers of two and is clearly the min-
imal option. This period quadrupling for n corresponds to period doubling for the components
of 3-vector. A calculation of the sums of squares of the 16 first integers demonstrates that for
n =3,6,9,11,.. the conjecture the value of r3(n) is same so that the conjecture might hold true!
If it holds true then Dirichlet L-function should suffer scaling by 27" in the scaling n — 22™n.
The integer solutions for n scaled by 2" are certainly solutions for 22"n. Quite generally, one
has r3(m?n) > r3(n) for any integer m. The non-trivial question is whether some new solutions
are possible when the scaling is by 227.

A simple argument demonstrates that there cannot be any other solutions to Eiizl m? =2

than the the scaled up solutions m; = 2n; obtained from Ziizl n? = n. This is seen by noticing
that non-scaled up solutions must contain 1,2, or3 integers m;, which are odd. For this kind of
integers one has m? = 1 (mod 4) so that the sum (3>, m?)= 1,2, or 3 (mod 4) whereas the the

right hand side vanishes mod 4.

3. If D is interpreted as wave vector, period quadrupling could be interpreted as a presence of
logarithmic wave in wave-vector space with period 2log(2).

4.5.8 Does 2-adic quantum arithmetics prefer CD scales coming as powers of two?

For p = 2 quantum arithmetics looks singular at the first glance. This is actually not the case since
odd quantum integers are equal to their ordinary counterparts in this case. This applies also to powers
of two interpreted as 2-adic integers. The real counterparts of these are mapped to their inverses in
canonical identification.

Clearly, odd 2-adic quantum quantum rationals are very special mathematically since they cor-
respond to ordinary rationals. It is fair to call them ”classical” rationals. This special role might
relate to the fact that primes near powers of 2 are physically preferred. C'Ds with n = 2* would be
in a unique position number theoretically. This would conform with the original - and as such wrong
- hypothesis that only these time scales are possible for CDs. The preferred role of powers of two
supports also p-adic length scale hypothesis.

The discussion of the role of quantum arithmetics in the construction of generalized Feynman
diagrams in [I3] allows to understand how for a quantum arithmetics based on particular prime p
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particle mass squared - equal to conformal weight in suitable mass units- divisible by p appears as an
effective propagator pole for large values of p. In p-adic mass calculations real mass squared is obtained
by canonical identification from the p-adic one. The construction of generalized Feynman diagrams
allows to understand this strange sounding rule as a direct implication of the number theoretical
universality realized in terms of quantum arithmetics.

5 How quantum arithmetics affects basic TGD and TGD in-
spired view about life and consciousness?

The vision about real and p-adic physics as completions of rational physics or physics associated with
extensions of rational numbers is central element of number theoretical universality. The physics in
the extensions of rationals are assigned with the interaction of real and p-adic worlds.

1. At the level of the world of classical worlds (WCW) the points in the intersection of real and
p-adic worlds are 2-surfaces defined by equations making sense both in real and p-adic sense.
Rational functions with polynomials having rational (or algebraic coefficients in some extension
of rationals) would define the partonic 2-surface. One can of course consider more stringent
formulations obtained by replacing 2-surface with certain 3-surfaces or even by 4-surfaces.

2. At the space-time level the intersection of real and p-adic worlds corresponds to rational points
common to real partonic 2-surface obeying same equations (the simplest assumption). This
conforms with the vision that finite measurement resolution implies discretization at the level
of partonic 2-surfaces and replaces light-like 3-surfaces and space-like 3-surfaces at the ends of
causal diamonds with braids so that almost topological QFT is the outcome.

How does the replacement of rationals with quantum rationals modify quantum TGD and the
TGD inspired vision about quantum biology and consciousness?

5.1 What happens to p-adic mass calculations and quantum TGD?

The basic assumption behind the p-adic mass calculations and all applications is that one can assign
to a given partonic 2-surface (or even light-like 3-surface) a preferred p-adic prime (or possibly several
primes).

The replacement of rationals with quantum rationals in p-adic mass calculations implies effects,
which are extremely small since the difference between rationals and quantum rationals is extremely
small due to the fact that the primes assignable to elementary particles are so large (Mi97 = 2127 — 1
for electron). The predictions of p-adic mass calculations remains almost as such in excellent accuracy.
The bonus is the uniqueness of the canonical identification making the theory unique.

The problem of the original p-adic mass calculations is that the number of common rationals (plus
possible algebraics in some extension of rationals) is same for all primes p. What is the additional
criterion selecting the preferred prime assigned to the elementary particle?

Could the preferred prime correspond to the maximization of number theoretic negentropy for a
quantum state involved and therefore for the partonic 2-surface by quantum classical correspondence?
The solution ansatz for the modified Dirac equation indeed allows this assignment [5]: could this
provide the first principle selecting the preferred p-adic prime? Here the replacement of rationals with
quantum rationals improves the situation dramatically.

1. Quantum rationals are characterized by a quantum phase ¢ = exp(im/p) and thus by prime p
(in the most general but not so plausible case by an integer n). The set of points shared by real
and p-adic partonic 2-surfaces would be discrete also now but consist of points in the algebraic
extension defined by the quantum phase ¢ = exp(in/p).

2. What is of crucial importance is that the number of common quantum rational points of partonic
2-surface and its p-adic counterpart would depend on the p-adic prime p. For some primes p
would be large and in accordance with the original intuition this suggests that the interaction
between p-adic and real partonic 2-surface is stronger. This kind of prime is the natural candidate
for the p-adic prime defining effective p-adic topology assignable to the partonic 2-surface and
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elementary particle. Quantum rationals would thus bring in the preferred prime and perhaps at
the deepest possible level that one can imagine.

5.2 What happens to TGD inspired theory of consciousness and quantum
biology?

The vision about rationals as common to reals and p-adics is central for TGD inspired theory of
consciousness and the applications of TGD in biology.

1. One can say that life resides in the intersection of real and p-adic worlds. The basic motivation
comes from the observation that number theoretical entanglement entropy can have negative
values and has minimum for a unique prime [6]. Negative entanglement entropy has a natural
interpretation as a genuine information and this leads to a modification of Negentropy Maxi-
mization Principle (NMP) allowing quantum jumps generating negentropic entanglement. This
tendency is something completely new: NMP for ordinary entanglement entropy would force
always a state function reduction leading to unentangled states and the increase of ensemble
entropy.

What happens at the level of ensemble in TGD Universe is an interesting question. The [pes-
simistic view| [6], [2] is that the generation of negentropic entanglement is accompanied by
entropic entanglement somewhere else guaranteeing that second law still holds true. Living
matter would be bound to pollute its environment if the pessimistic view is correct. I cannot
decide whether this is so: this seems like deciding whether Riemann hypothesis is true or not or
perhaps unprovable.

2. Replacing rationals with quantum rationals however modifies somewhat the overall vision about
what life is. It would be quantum rationals which would be common to real and p-adic variants
of the partonic 2-surface. Also now an algebraic extension of rationals would be in question so
that the proposal would be only more specific. The notion of number theoretic entropy still
makes sense so that the basic vision about quantum biology survives the modification.

3. The large number of common points for some prime would mean that the quantum jump trans-
forming p-adic partonic 2-surface to its real counterpart would take place with a large probability.
Using the language of TGD inspired theory of consciousness one would say that the intentional
powers are strong for the conscious entity involved. This applies also to the reverse transition
generating a cognitive representation if p-adic-real duality induced by the canonical identifica-
tion is true. This conclusion seems to apply even in the case of elementary particles. Could even
elementary particles cognize and intend in some primitive sense? Intriguingly, the secondary
p-adic time scale associated with electron defining the size of corresponding CD is .1 seconds
defining the fundamental 10 Hz bio-rhythm. Just an accident or something very deep: a direct
connection between elementary particle level and biology perhaps?

6 Appendix: Some number theoretical functions

Explicit formulas for the number 7, (n) of the solutions to the conditions Zlf z3 = n are known and
define standard number theoretical functions closely related to the quadratic algebraic extensions of
rationals. The formulas for r(n) require some knowledge about the basic number theoretical functions
to be discussed first. Wikipedia contains a good overall summary about basic arithmetic functions [I]
including the most important multiplicative and additive arithmetic functions.

Included are character functions which are periodic and multiplicative: examples are symbols
(m/n) assigned with the names of Legendre, Jacobi, and Kronecker as well as Dirichlet character.

6.1 Characters and symbols
6.1.1 Principal character

Principal character| [I] x(n) distinguishes between three situations: n is even, n = 1 (mod 4), and
n =3 (mod 4) and is defined as
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0  if n=0 (mod 2)
x(n) = (_4> =¢ +1 ifn=1 (mod4) (6.1)
" —1 ifn=3 (mod 4)

Principal character is multiplicative and periodic with period k = 4.

6.1.2 Legendre and Kronecker symbols

Legendre symbol (%) characterizes what happens to ordinary primes in the quadratic extensions of

rationals. Legendre symbol is defined for odd integers n and odd primes p as

= +1 ifn#0 (mod p)and n= 2% (mod p) , (6.2)
—1 if there is no such = .

. 0 ifn=0(modp) ,
;) p

p

When D is so called fundamental discriminant- that is discriminant D = b — 4¢ for the equation
2% — br + ¢ = 0 with integer coefficients b, ¢, Legendre symbols tells what happens to ordinary primes
in the extension:
1. (%) = 0 tells that the prime in question divides D and that p is expressible as a square in the
quadratic extension of rationals defined by v/ D.

2. (%) =1 tells that p splits into a product of two different primes in the quadratic extension.

3. For (%) = —1 the splitting of p does not occur.

This explains why Legendre symbols appear in the ideal class number h(D) characterizing the number
of different splittings of primes in quadratic extension.

Legendre symbol can be generalized to Kronecker symbol well-defined for also for even integers D.
The multiplicative nature requires only the definition of (%) for arbitrary n:

0 if n is even ,
(5) = py (6.3)
2 (=1)"= ifnisodd .

Kronecker symbol for p = 2 tells whether the integer is even, and if odd whether n = £1 (mod 8) or
= 43 (mod 8) holds true. Note that principal character x(n) can be regarded as Dirichlet character

(5):

For D = p quadratic resiprocity| [T4] allows to transform the formula

Xp(n) = (=1)P=D/2(_1)n=1)/2 (B) = (=1)P=1/2(_1)(n-1)/2 H (;) ) (6.4)

n
piln

6.1.3 Dirichlet character

Dirichlet character| [4] (%) is also a multiplicative function. Dirichlet character is defined for all values

of a and odd values of n and is fixed completely by the conditions

xp(k) =xp(k+D) ,  xp(kl) =xp(k)xp(l) ,
If D|n then xp(n) =0 , otherwise xp(n) #0 .

Dirichlet character associated with quadratic residues is real and can be expressed as
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xp(n) = (g)=H(”) . (6.6)

P
pi|D ’

Here (pﬂ> is Legendre symbol described above. Note that the primes p; are odd. (%) =1 holds true

by definition.

For prime values of D Dirichet character reduces to Legendre symbol. For odd integers Dirichlet
character reduces to Jacobi symbol defined as a product of the Legendre symbols associated with the
prime factors. For n = p* Dirichlet character reduces to ((%))k and is non-vanishing only for odd
integers not divisible by p and containing only odd prime factors larger than p besides power of 2
factor.

6.2 Divisor functions

Divisor functions [6] ok (n) are defined in terms of the divisors d of integer n with d = 1 and d = n
included and are also multiplicative functions. oy(n) is defined as

op(n) = > d*, (6.7)

d|n

and can be expressed in terms of prime factors of n as

orn) = D p ) (6.5)

7

o1 = o appears in the formula for r4(n).
The figures in Wikipedia/ [9] give an idea about the locally chaotic behavior of the sigma function.

6.3 Class number function and Dirichlet L-function

In the most interesting & = 3 case the situation is more complicated and more refined number theoretic
notions are needed. The function r3(D) is expressible in terms of so called class number function h(n)
characterizing the order of the ideal class group for a quadratic extension of rationals associated with
D, which can be negative. In the recent case D = —p is of special interest as also D = —kp, especially
so for k = 2". h(n) in turn is expressible in terms of Dirichlet L-function so that both functions are
needed.

1. Dirichlet L-function| [5] can be regarded as a generalization of Riemann zeta and is also con-
jectured to satisfy Riemann hypothesis. Dirichlet L-function can be assigned to any Dirichlet
character xyp appearing in it as a function valued parameter and is defined as

L(s,xp) = xoln) (6.9)

nS

n

For x; = 1 one obtains Riemann Zeta. Also L-function has expression as product of terms
associated with primes converging for Re(s) > 1, and must be analytically continued to get an
analytic function in the entire complex plane. The value of L-function at s = 1 is needed and
for Riemann zeta this corresponds to pole. For Dirichlet zeta the value is finite and L(1, x_,)
indeed appears in the formula for r3(n).

2. Consider next what class number function A means.
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(a) (Class number function [2] characterizes quadratic extensions defined by v/D for both pos-
itive and negative values of D. For these algebraic extensions the prime factorization in
the ring of algebraic integers need not be unique. Algebraic integers are complex algebraic
numbers which are not solutions of a polynomial with coefficients in Z and with leading
term with unit coefficient. What is important is that they are closed under addition and
multiplication. One can also defined algebraic primes. For instance, for the quadratic ex-
tension generated by v/£5 algebraic integers are of form m + n+/£5 since /%5 satisfies the
polynomial equation 22 = +5.

Given algebraic integer n can have several prime decompositions: n = p1ps = psp4, where
p; algebraic primes. In a more advance treatment primes correspond to ideals of the algebra
involved: obviously algebra of algebraic integers multiplied by a prime is closed with respect
to multiplication with any algebraic integer.

A good example about non-unique prime decomposition is 6 = 2x3 = (1+v/=5)(y/1 — v/—5
in the quadratic extension generated by 1/—5.

(b) Non-uniqueness means that one has what might be called fractional ideals: two ideals T
and J are equivalent if one can write (a)J = (b)I where (n) is the integer ideal consisting
of algebraic integers divisible by algebraic integer n. This is the counterpart for the non-
uniquencess of prime decomposition. These ideals form an Abelian group known as [ideal
class group| [10]. For algebraic fields the ideal class group is always finite.

(¢) The order of elements of the ideal class group for the quadratic extension determined by
integer D can be written as

h(D) = ézl:r><<r) , D<—4 . (6.10)

Here (%) denotes the value of Dirichlet character. In the recent case D is negative.

3. It is perhaps not completely surprising that one can express r3(]D|) characterizing quadratic

form in terms of h(D) charactering quadratic algebraic extensions as

rs(ID]) = 12(1— <12)>)h(D) , D< 4. (6.11)

Here (%) denotes Kronecker symbol.
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