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Abstract

In zero energy ontology (ZEO) lattices in the 3-D hyperbolic manifold defined by H3 (t2−x2−
y2 − z2 = a2) (and known as hyperbolic space to distinguish it from other hyperbolic manifolds
emerge naturally. The interpretation of H3 as a cosmic time=constant slice of space-time of
sub-critical Robertson-Walker cosmology (giving future light-cone of M4 at the limit of vanishing
mass density) is relevant now. ZEO leads to an argument stating that once the position of the
”lower” tip of causal diamond (CD) is fixed and defined as origin, the position of the ”upper” tip
located at H3 is quantized so that it corresponds to a point of a lattice H3/G, where G is discrete
subgroup of SL(2, C) (so called Kleinian group). There is evidence for the quantization of cosmic
redshifts: a possible interpretation is in terms of hyperbolic lattice structures assignable to dark
matter and energy. Quantum coherence in cosmological scales would be in question. This inspires
several questions. How does the crystallography in H3 relate to the standard crystallography in
Eucdlidian 3-space E3? Are there general results about tesselations H3? What about hyperbolic
counterparts of quasicrystals? In this article standard facts are summarized and some of these
questions are briefly discussed.
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1 Introduction

In zero energy ontology (ZEO) lattices in the 3-D hyperbolic manifold defined by H3 (t2−x2−y2−z2 =
a2) (and known as hyperbolic space to distinguish it from other hyperbolic manifolds [A3]) emerge
naturally. The interpretation of H3 as a cosmic time=constant slice of space-time of sub-critical
Robertson-Walker cosmology (giving future light-cone of M4 at the limit of vanishing mass density)
is relevant now.

1.1 Hyperbolic lattices in H3 from zero energy ontology

In TGD framework zero energy ontology (ZEO) indeed predicts the hyperbolic lattices if one accepts
the following argument.

1. Causal diamond CD is basic element of ZEO. It is defined as the intersection of a pair of future
and past directed light-cones and looks like double pyramid Cartesian product with CP2 makes
it 8-D region off M4 × CP2 but the presence of CP2 as Cartesian factor is not relevant. Its
opposite light-like boundaries contain positive and negative energy parts of zero energy states
with opposite total quantum numbers. In the usual positive energy ontology zero energy states
corresponds to physical events consisting of initial and final states. ZEO is consistent with the
crossing symmetry of QFTs. ZEO leads to a generalization of S-matrix concept. The time-like
entanglement coefficients between positive and negative energy parts of zero energy state define
M-matrix identifiable as a ”complex square root” of density matrix and expressible as a product
of Hermitian square root of density matrix and unitary S-matrix. One can say that quantum
theory corresponds to a square root of thermodynamics in ZEO.

2. The ”lower” tip of CD can have any position in M4: one can argue that these degrees of freedom
give rise to 4-momentum. The ”upper” tip is at M4 proper time distance a assumed to be integer
multiple of CP2 size. The assumption motivated by number theoretical considerations (the goal
is to fuse real and p-adic physics and real continuum must be effectively replaced by rationals
or at most their algebraic extension). One can of course consider also the discretization for the
position of the lower tip in M4 and interpret it in terms of finite measurement resolution for
four-momentum.

3. One can perform for CD Lorentz boosts preserving the fixed position of ”lower” tip but one
cannot allow all possible transformations since one would have two separate 3-D continuous
degrees of freedom in this case (here is the crux of argument). Therefore I assume that ”upper”
tip which lies on the hyperbolic space H3 - hyperboloid - defined by t2−x2−y2−z2 = a2 , a = n
in proper units defined by the size scale of CP2, can have only discrete positions corresponding
to a discrete subgroup G of SL(2, C) (double covering of Lorentz group). Recall that H3 has
negative constant sectional curvature.

4. The discrete subgroup G defining G-coset as points of H3/G is in the most general case discrete
subgroup of SL(2, C). It could be also modular subgroup SL(2, Z) or its. Quite generally, one
obtains a tesselation of H3 with a lattice characterizing positions of unit cells H3/G, which are
closed hyperbolic manifolds in absence of singular points known as cusp points and giving rise to
punctures and effectively holes. Physically unit cell or fundamental domain corresponds to an
open set and effective identification of boundary points comes through ”G-periodic” boundary
conditions for physical fields analogous to periodic boundary conditions in the case of condensed
matter physics. H3/G has constant negative curvature metric.

1.2 Some examples of hyperbolic manifolds

In order to make things more concrete it is good to have some examples about hyperbolic manifolds.

1. Examples about hyperbolic manifolds are provided by compactifications of tedrahedron and
dodecahedron. It is possible to remove the vertices of tedrahedron and identify the faces of
tedrahedron in a pairwise manner to get a compact manifold with boundary having the topology
of Klein bottle (non-orientable torus). This manifold is known as Gieseking manifold [A2]. This
space has finite volume, is non-orientable, and the boundary corresponds to the cusp. Gieseking

http://en.wikipedia.org/wiki/hyperbolic_manifold
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manifold is a double cover of the knot complement of figure eight knot which explains why the
boundary has genus g = 1.

2. The so called Seifert-Weber space [A11] is a closed hyperbolic manifold obtained by gluing each
face of a dodecahedron with its opposite. So called Weeks manifold [A16] has smallest volume
among closed hyperbolic 3-manifolds. If the volume of the hyperbolic manifolds surfaces as the
analog of energy in topological thermodynamics, Weeks manifold might be one of the favored
3-manifold topologies.

3. Thurston’s geometrization conjecture [A14] (actually a theorem thanks to the work of Grigori
Perelman) implies that all knot complements except those of satellite knots (they include com-
posites of prime knots and torus knots!) and torus knots (trefoil is the simplest example) are
hyperbolic manifolds.

4. Kleinian groups [A5] identified as a discrete subgroups G of PSL(2C) acting as isometries of H3

and conformal symmetries of Riemannian sphere (Möbius transformations) define hyperbolic
manifolds as quotients H3/G. The fundamental group of any hyperbolic manifold is Kleinian
group acting also as group of symmetries of a tesselation of H3.

1.3 Questions

Could hyperbolic lattices and crystals and hyperbolic manifolds have some physical role in TGD?

1. The points of hyperbolic lattices could label astrophysical (possibly dark matter) objects. The
indications for the existence of astrophysical objects at lines of sight and coming with quantized
redshift [E1, E2] supports this picture [K3]. In cosmology redshift for small distances r is from
Hubble law given by v = Hr so that the recession velocity - or equivalently cosmic redshift -
serves as a natural measure for the distance.

If dark matter objects corresponds to CDs with upper vertices at the points of H3/G, both
the directions and magnitudes of the recession velocities would be quantized. The quantization
for the velocities would follow from the quantization of the hyperbolic angle η defining Lorentz
boosts as integer multiples of basic value: η = nη0 giving v/

√
1− v2 = sinh(η) = sinh(nη0)

(c = 1) reducing for non-relativistic velocities to v ' nη0.

2. 3-surface is a fundamental dynamical object in TGD. Hyperbolic 3-manifolds are central in the
theory of 3-manifolds, and very many 3-manifolds are hyperbolic. Note that also 2-D manifolds
with g > 1 are hyperbolic. For instance, knot complements of prime knots are hyperbolic apart
from some exceptions, and also surface bundles over circle [A13] are hyperbolic. Thurston’s
theorem [A15] states that the volume of the hyperbolic manifold defines a topological invariant
so that continuous deformations of 3-surfaces would correspond to the same hyperbolic volume,
which could thus appear as a counterpart of energy in topological thermodynamics telling which
hyperbolic 3-manifold topologies contribute significantly to the physical states (in ZEO this
thermodynamics is replaced with its ”square root”).

3. In TGD framework elementary particles correspond to closed flux tube like structures carrying
monopole flux. The solutions of the modified Dirac equation [K4] assign to them closed stringy
curves, which can get knotted [K2] and in general case when several flux tubes are associated with
the elementary particle (say in case of boson) even braiding becomes possible. The homological
non-triviality of the knot brings in additional quantum numbers.

It is natural to assign to the flux tube the geometry X2 × S1 corresponding to trivial surface
bundle over sphere. The two wormhole contacts associated with the ends of the flux tube allow
gluing of X2 from upper space-time sheet with that associated with the lower space-time sheet
and this would transform X2 × S1 to a non-trivial bundle. Hence the topology of the flux
tube could be characterized by hyperbolic volume. The induced metric of course need not be
hyperbolic metric.

4. What is interesting that the isometry group of H3 has SL(2, C) as a double covering and H2

realized as upper half-plane has SL(2, C) as conformal isometries. Could this mean some kind
of duality analogous to AdS-CFT duality? The hyperbolic manifolds H3/G have 2-D boundary:

http://en.wikipedia.org/wiki/Seifert–Weber_space
http://en.wikipedia.org/wiki/Weeks_manifold
http://en.wikipedia.org/wiki/Thurston's_geometrization_conjecture
http://en.wikipedia.org/wiki/Kleinian_group
http://en.wikipedia.org/wiki/Surface_bundle_over_the_circle
http://en.wikipedia.org/wiki/Thurston's_theorem
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could there be a duality between 2-D conformal field theory at the boundary and string theory
in the interior. This is suggested by the strong form of holography (equivalently strong form of
general coordinate invariance) stating that partonic 2-surfaces and their 4-D tangent space data
code for quantum physics in TGD Universe.

This raises several questions.

1. What happens to 3-D Euclidian crystallography when E3 is replaced with H3? How the negative
constant sectional curvature affects the character of lattices obtained?

2. Can one build a rough overview about hyperbolic manifolds? Under what conditions the fun-
damental domain regarded as an open manifold analogous to lattice cell can be compactified
by G-periodic boundary conditions to a closed 3-manifold? To me this is not obvious since the
compactified manifold could have singularities known as cusps points and represent punctures.

3. Does one obtain also hyperbolic quasicrystals? One can imagine also 2-D hyperbolic quasicrys-
tals analogous to Penrose tilings [A8] defined by the imbedding of 2-D hyperbolic manifold H2

to H3 (or higher dimensional hyperbolic space) and by projecting the points of H3 to H2 along
geodesic lines orthogonal to H3. One can also imagine 3-D hyperbolic quasicrystals as analogs
of Penrose tilings obtained by imbedding H3 to H4 or H5 and performing similar projection.

It turns out that a visit to Wikipedia allows to answer the first two questions.

2 Comparing crystallographies in E3 and H3

Consider first crystallography in E3. There exists a large number of lattice like structures depending
on detailed definition used and it is good to summarized first the basic notions.

2.1 Some definitions

Consider first some basic notions.

1. The difference between crystal and lattice is that crystal structure assigns to a given point of
lattice some structure, which can be rather complex. In the simplest case this structure is a
Platonic solid - a polyhedron which can be regarded as an orbit of a discrete group generated
by reflections and rotations.

2. Lattice [A1] in 3-D case can be defined group theoretically in terms of the group leaving the
lattice invariant. This group - call it G - is generated by the elements of two groups, the
chrystallographic point group [A9] and space-group [A12].

Point group leaves at least single point of the lattice fixed and defines the symmetries of the
structure attached to the lattice point identified as the center point of the structure. There are
32 point groups and they contain reflections across plane, rotations, inversions (3-D reflecting
with respect to origin), and improper rotations (rotations followed by inversion).

Space group contains pure translations, screw transformations rotating around axing and trans-
lating along it, and gliding transformation consistent of reflection with respect to plane followed
by a translation. There are 230 distinct space groups. The lattice is defined as the set of cosets
E3/G, where G is so called space-group leaving the lattice invariant.

3. The lattice points are in the general case linear combinations of three - in general non-orthogonal
- basis vectors (a, b, c) generating the discrete subgroup of translations. The condition that one
has crystal consisting of say tedrahedrons as unit cells - poses additional conditions. The duals
of the lattice vectors defined by their cross products generate dual lattice.

http://en.wikipedia.org/wiki/Penrose_tilings
http://en.wikipedia.org/wiki/Crystal_structure
http://en.wikipedia.org/wiki/Point_group
http://en.wikipedia.org/wiki/Space_group
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2.2 Tesselation

Tesselation or tiling is second key notion and there are many different variants of this notion. The
most stringent definition of tesselations considered in following is in terms of by a n+ 1-dimensional
regular polytope in n-dimensional sphere, Euclidian space, or hyperbolic space.

1. Polytopes are constructed of regular p-polygons in turn defining the 2-D faces of 3-D polyhedrons
in defining the 4-D polychrones.

2. n-dimensional tesselations can be defined as boundaries of n+ 1-dimensional polygons. Schläfli
symbol [A10] allows to represent n-dimensional tesselations in terms of integer n-tuple o fintegers.
In 3-D case one has triple (p, k, r). p is the number of vertices of 2-polygon definining the face
of 3-D polyhedron (p, k) and k is the number of faces associated with a given vertex of the
polyhedron. r is the number of 3-D polyhedra associated with a given edge of the tesselation.

3. In the case of 2-sphere tesselation in E3 contains finite number of identical faces projected to the
sphere. Tesselations can make sense also if the n-D space is non-compact and the replacement of
sphere S3 of E4 with hyperbolic space H3 gives rise to infinite tesselation of H3. Also tesselations
in hyperbolic manifolds H3/G are possible and in closed case contain a finite number of basic
elements.

Tesselations by regular polytopes [A6] satisfy strong constraints and there are only four tessela-
tions by regular polytopes in H3 and one in E3.The list of tesselations is following.

(a) E2 allows three regular tesselations by squares, triangles and hexagons: the Schäfli symbols
for them are (4,4), (3,6), (6,3).

(b) H2 is exceptional and allows infinite number of tesselations.

(c) E3 allows single tesselation by cubes: the Schläfli symbol is (4, 3, 4).

(d) H3 allows four tesselations. The Schläfli symbols are (3,5,3), (4,3,5), (5,3,4), (5,3,5). Second
and third tesselation are dual tesselations by cubes and dodecahedra. First and fourth tes-
selation correspond to self-dual tesselations by icosahedra and dodecadedra. For instance,
for (5,3,5) means each edge has 5 dodecahedrons around it.

The large voids with size of order 108 ly give rise to honeycomb like structures. Could
they correspond to ordinary matter condensed around dark matter honeycomb consisting
of dodecahedra?

(e) For n > 4 there are three regular tesselations by convex polyhedra in Euclidian space.
There are no regular hyperbolic tesselations by convex polyhedra in dimensions n > 5.

4. If an infinite n-D tesselation is induced by n + 1-D regular polytope, it seems obvious that
the polygon must have infinite number of basic units. There indeed exists this kind of infinite
polytopes known as infinite skew polytopes [A4]. 1-D lattice requires 2-D zigzag curve reflected
from the real axis at the lattice points. In 1-D cases zigzag curve actually gives two parallel lines
carrying lattices and the parallel lines together define a boundary of a stripe. Similar doubling
is expected in higher dimensions since it is the boundaries of polytopes, which must give rise to
Hn or En.

5. The tesselations having E3/G as a unit cell are obtained by assuming G to be a subgroup
of translations. As already noticed this subgroup in question is generated by 3 generators
represented by - in general non-orthogonal vectors - and the fundamental domain is parallelpiped
generated by these vectors. When the vectors are orthogonal and have same length one obtains
the regular tesselation by cubes. The four tesselations by regular polytopes must be distinguished
from the infinite number of tesselations defined by the orbit of discrete subgroup G ⊂ PSL(2, C)
in H3 with fundamental domain H3/G replacing the polyhedron as a basic unit. The case of E3

suggests that these tesselations give as a special case the 4-tesselations using regular polytopes.
A good first guess is that G is generated by Lorentz boosts with same velocity in 3 orthogonal
directions.

http://en.wikipedia.org/wiki/Schläfli_symbol
http://en.wikipedia.org/wiki/Schläfli_symbol
http://en.wikipedia.org/wiki/List_of_regular_polytopes
http://en.wikipedia.org/wiki/Infinite_skew_polyhedron
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2.3 Tesselations of H3

Consider now the case of H3 more closely.

1. In the case of H3 a discrete subgroup G of Lorentz group SL(2, C) with infinite number of
elements representing Lorentz boots replaces discrete subgroup of translations in E3. G is
known as Kleinian group [A5]. G can be also restricted to be a subgroup of the modular group
SL(2, Z). Note that G = SL(2, Z) is braid group for 3-braid divided by its center and isomorphic
to the knot group of trefoil as one learns from Wikipedia [A7]. Therefore the subgroups of the
knot group of trefoil are very interesting concerning lattices in H3. The complement of trefoil
and any torus knot however fails to defined hyperbolic 3-manifold. For larger subgroups of
SL(2, C) one obtains smaller fundamental domain and more lattice points.

2. For non-compact discrete subgroups of SL(2, Z) (and also SL(2, C)!) the lattice consists in the
language of cosmologist of locations of astrophysical objects (possibly consisting of dark matter)
with quantized redshifts and direction angles. The counterparts of parallelepipeds are interiors
of hyperbolic 3-manifolds and there are very many of them. For prime knot complements which
very often are hyperbolic 3-manifolds, the boundary is torus and allows a constant sectional
curvature metric with vanishing sectional curvature. This motivates the question whether g > 1
negative constant sectional curvature 2-surfaces could appear as boundaries of hyperbolic 3-
manifolds.

3. It is not completely obvious how to define the edges and faces of hyperbolic polygons. Edges
are naturally defined as geodesic lines but what about faces. In E3 they are pieces of plane
which are minimal surfaces but also geodesic sub-manifolds with vanishing second fundamental
form meaning that all geodesics of these surfaces are also geodesics of E3. Minimal 2-surfaces
are by definition manifolds with a negative curvature and this seems to fit with the negative
curvature property of H3. H3, E3, and S3 are very closely related (they define the 3 constant
sectional curvature Robertson Walker cosmologies) In the case of S3 spheres S2 are geodesic
sub-manifolds. In the similar manner H2 defines a geodesic sub-manifold of H3. If so, the
faces would be 2-D hyperbolic manifolds with boundary, and having constant negative sectional
curvature.

4. One can wonder what is the 4-D space used to define H3 tesselations. Is it Minkowski space M4

or is it H4? The first problem is that tesselation is infinite. Second problem is that H3 should
but cannot play the same role as sphere S2 in E3. The problem is that H3 can be thought of as
having boundary at infinity, and therefore is not itself a boundary unlike S2. It is the boundary
property of S2, which allows to assign Platonic solid with the vertices of tedrahedron at the
surface of S2.

Infinite tesselation requires infinite polytope as already noticed. For 1 −D tesselation one has
zigzag curve in planar stripe, and one obtains two copies of the tesselation defining a boundary
of 2-D stripe. Are the segments of zigzag curve replaced by a 4-D object having as boundary
cube, icosahedron, or dodecahedron of H3? Does the boundary property require that there are
two lattices at hyperboloids a = a1 and a = a2 of M4. These hyperboloids define a boundary
and one can speak about the interior and boundary of 4-D polytope.

An interesting question is how this relates to zero energy ontology, where CD plays a key role.
Can one imagine that the pair of H3:s is replaced with a pairs of hyperboloids with opposite
time orientation so that their intersection consists of temporal mirror images of part of H3

glued together along 2-sphere (this could be seen as a generalization of CD)? The boundaries
of CD would correspond to the limiting case a = 0 for H3 giving light-cone boundary for which
radial coordinate does not contribute to metric so that metrically one has 2-D sphere (this
makes possible huge extension of conformal invariance in TGD Universe). How could one define
tesselations of light-cone boundary?

5. For Platonic solids boundary is always topologically a sphere. For prime knot complements the
boundary is 2-torus S1 × S1 . What does this mean geometrically in the gluing of fundamental
domains together? Also 2-surface bundles over spheres are hyperbolic manifolds and are obtained
by identifying the ends of X2 ×D1 by a homeomorphism. The homotopy equivalence class of

http://en.wikipedia.org/wiki/Kleinian_group
http://en.wikipedia.org/wiki/Modular_group
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the map X2 → X2 characterizes the bundle structure. In this case one should fill the twisted
torus like surface by polygon lattice.

3 Quasicrystals

One can also ask whether hyperbolic quasicrystals are possible. In the following some basic facts
about quasicrystals are summarized and some questions relating to the dynamics of quasicrystals are
considered before brief comments on hyperbolic quasicrystals.

3.1 Basic facts about quasicrystals

Quasicrystals are lattices, which do not have translational symmetries. Quasicrystals can be finite or
infinite and only in special cases local matching rules give rise to infinite quasicrystal instead of finite
local empire (to be defined later). The so called empire problem for Penrose tilings has been solved
by Laura Effinger-Dean [A17] .

1. Especially interesting example about quasiperiodic 2-D lattices are Penrose tilings [A8] for which
basic objects have 5-fold local rotation symmetry: this is not allowed in ordinary crystallography.
They are also self-similar. Their number is uncountably infinite. There is a theorem [A8] stating
that Penrose tilings are obtained as projections of 5-dimensional lattices to 2-D plane imbedded
in 5-D Euclidian space. If the parameters characterizing the plane have irrational values one
obtains quasicrystal. This theorem generalizes to Euclidian spaces En imbbedded to higher-
dimensional Euclidian spaces En+k carrying lattice structure.

2. In the case of Penrose tiling the plane is characterized by its normal space characterizing the
orientation of the plane: for rational values of the ”slope” of the plane one obtains periodic
lattices with finite number of points projected to same point at E2. For irrationals slopes just
one point is projected to a given point of E2. One can regard the space of the plane imbeddings
containing also Penrose tilings as a coset space SO(5)/SO(2)×SO(3) having dimension D = 10−
1−3 = 6. The space for Penrose tilings (with crystals excluded) is rather delicate mathematical
notion and represents basic example of a non-commutative geometry [A18].

3. An important concept related to Penrose tilings is the notion of empire already mentioned [A17].
One starts from a given ”seed” for a quasicrystal, and builds a larger quasicrystal using local
matching rules forbidding gaps. Local empire is the largest quasicrystal obtained in this manner
and is a connected structure. Empire in turn is the largest set of tiles shared by all tilings
containing the ”seed” and is in general non-connected and can be even infinite. For ordinary
crystals single unit cell fixes the lattice completely as its empire.

3.2 About dynamics of quasicrystals

Consider next possible dynamics of quasicrystals.

1. The fact that the local matching rules are not enough to construct infinite quasicrystal uniquely
and that there is no guarantee that a given seed leads to infinite quasicrystal led Penrose to ask
whether the formation of quasicrystal involves macroscopic quantum phase transition in which
quasicrystal is created in single quantum leap rather than being a result of growth process.
Experimentalist can of course argue that real quasicrystals are always infinite and this is just
because the growth process stops because local matching rules fail at some step.

2. The conditions that quasicrystal property is preserved in the dynamics of quasicrystal is ex-
tremely strong. One manner to satisfy it would be the reduction of the dynamics to dynamics
in the space of quasicrystals and crystals. The rigid body dynamics associated with the rota-
tion of En in En+k containing the mother crystal would induce the variation of the projection
of the crystal to En containing also quasicrystal configurations. In the case of imbeddings
E2 ⊂ E5 containing also Penrose tilings, the analog of rigid body motion would take place in
SO(5)/SO(3)×SO(2). This dynamics can be solved both classically and quantum mechanically.
The special feature of the dynamics would be correlation between short and long scale aspects

http://homes.cs.washington.edu/~effinger/files/empire.pdf
http://en.wikipedia.org/wiki/Penrose_tilings
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of the dynamics since both local consistency rules and global consistency rules are automatically
satisfied.

3. Quasicrystal excitations are known as phasons [D1]. The intriguing observation is that they
can be described using hydrodynamics (long length scale description) and microscopically as
re-arrangements of nearby atoms. There is a strong correlation between short and long length
scales. If quasicrystal property is preserved by the dynamics, this is expected. The reduction to
rigid body dynamics with only 6 degrees of freedom might of course be quite too restrictive an
assumption and it is quite possible that the excitations have nothing to do with quasicrystallinity.
Macroscopic quantum transitions can be also considered. The most mundane explanation would
be in terms of thermodynamics: in ZEO square root of thermodynamics could unify quantal
and thermodynamical explanations.

3.3 What about hyperbolic quasicrystals?

Hyperbolic 2-D quasicrystals are of special interest in TGD since they can be assigned to the spaces
H2 imbedded to H3. Could one generalize the construction of Penrose tilings to a construction recipe
for hyperbolic quasicrystals? For the hyperbolic counterparts of Penrose tilings one could imagine
isometric imbedding of H2 ⊂ Hn, n > 2. H3 is the physically preferred option in TGD. Imbedding
would represent 2-D hyperboloid H2 = SO(1, 2)/SO(2) of M3 as constant sectional curvature sub-
manifold of n-dimensional hyperboloid in Hn = SO(1, n)/SO(n). There is a continuum of this kind
of imbeddings. In the compact case one has imbeddings of S2 to S3 and the space of imbeddings
is SO(3)/SO(1) × SO(2) = S1. Same holds true in the hyperbolic case. For Hn ⊂ Hn+k one has
SO(n + k)/SO(n) × SO(k). One can consider also 3-D hyperbolic quasicrystals and the imbedding
H3 → Hn, n > 3 might gives this kind of quasicrystals. This imbedding would not however have a
concrete geometric interpretation in TGD framework.

Could hyperbolic 2-planes or finite pieces of them allow a physical interpretation as 2-D physical
systems in cosmological scales? Certainly the existence of quasicrystals and even more that of crystals
in cosmological scales requires quantum coherence in cosmological scales, and dark matter and dark
energy as phases with large and even gigantic value of Planck constant [K1] [L1] could give rise this
kind of structures.

4 Some considerations relating to the dynamics of quasicrys-
tals

The dynamics of quasicrystalslooks to me very interesting because it shares several features of the
dynamics of Kähler action defining the basic variational principle of classical TGD and defining the
dynamics of space-time surfaces. In the following I will compare the basic features of the dynamics of
quasicrystals to the dynamices of preferred extremals of Kähler action.

Magnetic body carrying dark matter is the fundamental intentional agent in TGD inspired quantum
biology and the cautious proposal is that magnetic flux sheets could define the grid of 3-planes defining
quasiperiodic background fields favoring 4-D quasicrystals in TGD Universe. Quite recently it has
been reported that 3-D curved orthogonal grids characterize the architecture of neural wring so that
this hypothesis might make sense.

4.1 They non-determism for the dynamics of quasicrystals contra non-
determinism of Kähler action

The dynamics of quasicrystals is non-deterministic in the sense that one cannot construct a unique
quasicrystal by starting from a finite portion or even lower-dimensional section of quasicrystal. Four-
dimensional quasicrystals would therefore define a non-deterministic dynamics which could serve as
simple geometric correlate for quantum dynamics: this of course only in the sense of quantum classical
correspondence. The global empires of the 4-D quasicrystal could be interpreted as self-organization
patterns and the global empires would give rise to long range correlations representing the effects of
intentional action.

This is very much analogous to 4-D spin glass degeneracy in TGD framework.

http://euler.phys.cmu.edu/widom/pubs/PDF/PhilMag88_2008_p2339.pdf
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1. In TGD framework the preferred extrremals of so called Kähler action define the dynamics
of space-time surfaces. Kähler action is Maxwell action for the gauge field induced from the
Kähler form of CP2. Symlectic transformations of CP2 act as abelian gauge transformations
and therefore leave the induced Kähler form invariant. They do not however leave the induced
metric invariant so that the action changes by a contribution assignable to classical gravitation.
For vacuum extremals however the symplectic transformations act as symmetries.

2. This implies huge vacuum degeneracy. Every space-time surface for which CP2 projection is
Lagrangian manifold and thus having at most 2-D CP2 projection has vanishing induced Kähler
form and is therefore vacuum extremal: there is infinite number of 6-D vacuum sectors labelled
by Lagrangian sub-manifolds of CP2 transformed to each other by symplectic transformations.
These vacuum extremals behave non-deterministically which means an analogy with quasicrys-
tal dynamics and suggests that quasicrystals might define a simplified model for quantal self-
organization.

3. Small deformations of these define non-vacuum extremals and It is very conceivable that part
of the vacuum degeneracy remains and is manifested as multifurcations. The number n of
branches for a multifurcation has interpretation in terms of effective Planck constant ~eff = n~
to which dark matter is assinged in TGD framework. This degeneracy is very much analogous to
a 4-dimensional spin glass degeneracy meaning that space-time decomposes to deterministically
behaving regions just like spin glass decomposes to magnetized regions with varying direction
of magnetization.

4. The interpretation for the situation in TGD framework is in terms of quantum classical corre-
spondence: not only quantum states correspond to space-time geometries as analogs of Bohr or-
bits but also quantum jump sequences defining contents of consciousness have non-deterministic
space-time geometries as geometric correlates. Space-time geometry and topology are like writ-
ten text telling about contents of consciousness.

5. Also p-adic topology as effective topology of space-time surfaces and natural topology for the
landscape of extrema of Kähler action emerges naturally from this degeneracy. In physics obeying
effective p-adic topology the counterpart would be short range chaos with long range correlations
in the sense that one would have periodicity in the sense that physical states at time time at
and t + kpn, n large enough, would be very near to each other. The interpretation in terms of
intentional action would be natural. One could also imagine of define the analogs of empires
as connected deterministic regions of space-time surface and the analogs of empires would be
unions of disconnected components perhaps understable in terms of p-adicity. Self-organization
patterns would naturally correspond to these regions. Many-sheeted space-time would imply
fractal hierarchy of self-orgnization patterns within self-organization patterns.

4.2 The dynamics of quasicrystals as a model for fundamental dynamics
or high level symbolic dynamics?

Stephen Wolfram has suggested that cellular automatons could define the fundamental dynamics. It
is not difficult to invent grave objections against this view. One of the objections is that this kind
of dynamics is based on simple and reather ad hoc rules and applies to a society rather than to
elementary particles. It is difficult to invent objections to this counter argument. One can however
ask in what scale the symblic dynamics emerges? My answer for few years ago would have been: in
biological length scales. TGD Universe is however fractal and this forces to ask whether this symbolic
dynamics emerges already at fundamental scales. In any case, even in this case this dynamics would
not be identifiable as the fundamental dynamics but as analogous to rules of behavior in society.

The dynamics of quasicrystals indeed suggests an identification as dynamics of self organization
patterns obeyd at relatively high level of dynamical hierarchy. One could speak of symbolic dynamics
which prevails at the level of biomolecules (genetic code) and at higher levels. This dynamics is
dynamics for a society of conscious entities, which can decide whether to obey the rules or not. Rules
as such do not matter too much: what is important that they make possible to predict the behavior
of individuals and therefore make possible co-operation and formation of coherent and synchronous
large scale structures making possible collective consciousness. In our society moral rules, laws, traffic
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rules, grammatic rules of language, etc... are examples about symbolic dynamics having very little to
do with laws of physics at fundamental level. They are also rather arbitrary and often even irrational
but this not essential.

A natural question is whether the non-unique rules for building quasicrystals could provide a
simplified model for this dynamics - or even semi-realistic model at the molecular level? These rules
would be like rules of society and invididuals- say molecular clusters - could also refuse to follow them:
this would lead to a breakdown of the quasicrystal growth and isolate the individual from the society.
If this interpretation is correct, the quasicrystals can be seen as idealized structures having maximal
complexity and resulting only when the dynamics in question is very coherent. (Quantum) Critical
systems have universal dynamics and there is large number of models making same predictions for
given system: this is used to find the simplest possible model to simplify the mathematical description.
From this point of view quasicrystals could be seen as an especially simple model possibly able to
catch the universal properties of a real world system.

Does this self-organization dynamics then emerge at and above biomolecular scales or in all scales?
In TGD framework the dynamics at fundamental level would be the dynamics of space-time surfaces
and that of WCW (”world of classical worlds”) spinor fields. The fractality of TGD Universe however
suggests that self-organization occurs in all length scales above CP2 scale which is about 104 Planck
scale. If so structures analogous to finite pieces quasicrystals should appear in all scales down to CP2

scale. I have also proposed method to construct preferred extremals of Kähler action and this recipe
leads to an iteration procedure. Quite generally, iteration is known to lead to fractals as fixed sets
of iteration. Therefore space-time surfaces could be seen as space-time correlates of self-organization
patterns and fractals.

Fractality would mean that even inanimate matter should share some aspects assigned to living
matter and that also systems like species and biosphere should behave like living organisms. Sheldrake
has proposed the not only the notion of memory at the level of entire species but that even inanimate
systems could have ”habits”. For instance, minerals would have adopted a habit to crystallize to a
particular crystal form. In this framework living matter would differ from solids in that its habits
would be much more flexible.

For instance, water forms multilayered lattice like structures around biomolecule known as quasi-
lattices (to be distinguished from quasicrystals!). These quasilattices around molecules are analogous
to ice coverings. Could these quasilattices be actually deformed quasicrystals having water molecule
as a basic tedrahedral building blocks giving rise to icosahedral blocks (as suggested in discussions):
the 4 electron pairs of water molecule are indeed located at the vertices of tedrahedron and for lattice
like structures a regular tedrahedron is in question.

This molecular ice would form a quasicrystal, which could store a lot of information about environ-
ment via its structural degeneracy. In the presence of energy feed inducing ”molecular summer” the
molecular ice would melt, globular proteins would open and self-organize to form molecular aggregates
as a reaction to the energy feed. After the energy feed stops, molecules would fold back to globular
form but the memory from the ”molecular summer” would be stored by the molecular aggregates,
perhaps also carried by the quasicrystal like structure surrounding them as ice.

4.3 What could be the variational principle behind self-organization?

Quasicrystals (say Penrose tilings) have a huge ground state degeneracy: given region of quasicrystal
can be completed to infinite number of quasicrystals. For crystals the situation is different: empire is
the entire infinite crystal. Quasicrystals clearly analogous to spin glass systems possessing also large
ground state degeneracy.

TGD Universe is a 4-D spin glass, and this degeneracy would imply non-determinism analogous
to the non-determinism of quasi-crystal dynamics in 4-D 4-D Minkowski space)with local empires
interpreted as self-organization patterns and global empiress reflecting the long range correlations due
to intentional action and obeyance of social rules. In human society the ability to predict what person
probably does next year at given day only by knowing his title, would be example about this kind of
long range correlation due to intentional action and willingness to obey social dynamics.
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4.3.1 Wy Negentropy Maximization Principle would favor quasicrystals?

In TGD inspired theory of consciousness Negentropy Maximization Principle (NMP) is the basic
variational principle. Therefore entanglement negentropy is expected to be the fundamental quantity.

1. Since conscious entities forming larger coherent structures (societies) are in question, it seems
that one should characterize the quasilattice by a negentropy, which should be maximized (purely
mathematically negentropy is very similar to entropy which is maximed for a closed system).
This negentropy would not correspond to the negative of the ordinary thermodynamical entropy
which characterizes ensemble of particles rather than single coherent unit of them.

2. In TGD framework this negentropy could be a counterpart for the number theoretic negentropy
characterizing negentropic entanglement identified as a measure for conscious information. This
information measure is assigned with the magnetic flux tubes connecting biomolecules and other
units of living organism and even living organisms to larger coherent structures. In the case of
quasicrystals flux tubes or flux sheets give rise to the long range constraints binding the units
of quasi-crystal to each other.

3. The maximization of negentropy characterizing information content of conscious experience
should be equivalent with the maximation of complexity as the number of almost degenerate
ground states of quasicrystal. It is intuitively clear why quasicrystals would be favored over crys-
tals. But how quasicrystals could maximize entanglement negentropy? Why the entanglement
negentropy would be large for quasicrystals? Why the negentropic entanglement would grow
with the number of quasicrystal configurations? Is the entanglement is between two different
quasicrystals it means formation of quantum superposition of pairs of quasicrystal configura-
tions and the large the number of quasicrystal degeneracy the large the maximal entanglement
negentropy.

4.3.2 Maximal capacity to represent information with minimal metabolic energy costs
as a basic variational principle?

The interpretation as symbolic dynamics assignable to conscious entities would suggest that the max-
imation of the capacity to represent information (perhaps with minimal metabolic costs) could be
the variational principle behind this dynamics. The number of different quasicrystals formed using
the given rules should be maximal. This would give rise to very large number of states with nearly
same energy allowing to represent the states of the external world (primitive sensory system). The
larger the size of quasicrystal, the larger the number of degenerate configurations. Here of physical
constraints would pose an upper limit of the size.

But can one really assume rigid rules of construction giving rise to only quasicrystals? If the basic
dynamical units are conscious entities they refuse to obey strict rules although they can decide to do so
under ”social pressures” (absence of metabolic energy feed can transform a sinner a saint!). Should also
the rules be an outcome of the variational principle alone? Or are they forced by some minimization
principle - say minimization of metabolic energy feed - in presence of background field configuration
regarded as an external field inducing the quasiperiodicity and thus favoring quasicrystals?

To my opinion all configurations of basic units must be accepted a priori: even random spatial
configurations of the basic units. For random configurations complexity would be maximal but co-
operation minimal, long range correlations would be absent, and the ability to represent information
would be minimal. For crystals long range correlations and co-operation would be maximal but
crystal would have minimal capacity to represent and mimic. The natural manner to achieve long
range correlations is to assume slowly varying quasiperiodic fields configurations.

4.3.3 A possible realization for 4-D dynamics favoring quasicrystals

Can one imagine a physical realization of 4-D quasicrystal dynamics in TGD framework? The basic
problem is to understand how the rules for the formation of quasicrystals are forced. Certainly the
hyper-plane grids associated with the basic polytope defining the quasicrystal force the long range
correlations. But how to realize these grids physically?



MATHEMATICS 12

1. In TGD Universe magnetic body acts as intentional agent using ordinary living matter as a motor
organ and sensory receptor. This suggests that the plane grids parallel to the faces of icosahedron
in the case of 3-D quasicrystal could in TGD Universe be realized as thin (and thus effectively
2-D) magnetic flux sheets forming the magnetic body around which the ordinary matter would
self-organize to form a quasicrystal as a configuration sustainable by using minimum metabolic
energy feed. The grids would form the magnetic body. Rather remarkably, quite recent findings
strongly suggest that brain involves an orthogonal grid of curved planes. Maybe this grid
correspond to a quasilattice associated with a cubic basic unit serving as a basic information
processing unit.

2. Maybe the basic variational principle could be minimization of metabolic energy feed in pres-
ence of fixed grid structure formed by flux sheets representing the slow dynamics to which the
molecular dynamics would rapidly respond. The motor activities of the magnetic body itself
would deform the quasicrystals: the flux sheets could be deformed and the distances between the
flux sheets could also vary. This would lead to a new quasicrystal configurations distinguished
by their high negentropic content. Maybe also the paradoxixal properties of phasons could be
understood in this framework as being induced from the dynamics of flux sheets.

3. Also other configurations would be possible but would require higher metabolic energy feed to
preserve entangelement negentropy (amount of conscious information). In 4-D case one would
have similar grids of thin and effectively 3-D magnetic flux sheets associated with the 3-D faces
(maybe icosahedrons) of 4-D building brick of quasicrystals. Magnetic flux sheets would carry
dark matter and give rise to negentropic entanglement between the units of the quasicrystal.

To sum up, the basic variational principle of quasicrystal dynamics might be minimization of
metabolic energy feed in presence of fixed configuration of the magnetic body obeying a relatively
slow dynamics ( note that the time scale of EEG is in the range .01-.1 seconds to be compared to the
time scale of 10−10 seconds of conformational dynamics biomolecules). This would mean constraints
coming from the existence of grids of thin 3-planes parallel to the basic units of the 3-faces of 4-D
basic unit of quasicrystal.

To show that this picture makes sense, one should be able to estimate reliably the metabolic energy
feed needed to preserve a given negentropic entanglement entropy for a given configuration of the basic
units (say clusters of water molecules) and to show that it is minimized for quasicrystal configurations
in presence of the grid structure formed by flux sheets. This is probably relatively easy since the first
guess for the equilibrium configurations corresponds to the highly symmetric crossing points for three
3-planes.
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