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Abstract

This article is about a collaboration inspired by our Zoom group and included Tuomas
Sorakivi and Marko Manninen besides me. Holography = holomorphy vision, reduces field
equations to algebraic equations and predicts that space-times are 4-dimensional minimal
surfaces in H = M4 × CP2 identifiable as roots for a pair f = (f1, f2) of analytic maps
fi : H → C2 depending on single hypercomplex and 3 complex coordinates of H. The analytic
maps g = (g1, g2) : C2 → C2 act as dynamical symmetries. The simplest choices of fi and gi
are as polynomials. The graphical visualization of the space-time surfaces with the assistance
of a large language model (LLM) was one part of the project. In the case studied, the model
reduced to a visualization of elliptic surfaces as surfaces in C2 determined by analytically
solvable third order polynomial.

The origin of the p-adic primes as characterizers of elementary particles and p-adic length
scale hypothesis are two key problems of TGD. The working hypothesis has been that the
p-adic primes correspond to ramified primes characterizing polynomials, say as g = (g1 =
P1, g2 = Id). There is also a second option. One can define the notion of primeness for f resp.
g as maps not decomposing as f = g ◦ h resp. g = g1 ◦ g2. These prime maps are polynomials
with degree which is prime p and universal in the sense that only the degree as a counterpart
of ordinary p-adic prime p matters.

Holography = holomorphy vision allows to sharpen these two hypotheses and ask could
p-adic primes p near power of 2 be associated with iterates P k

2 for a suitable P2. The concrete
LLM assisted test of ramified prime hypothesis involved the calculation of the roots of the
iterates P ◦k

2 for P2 = x(x− 1). The results were not encouraging. This led to the realization
that there seems to be no way to guess what the correct polynomial might be and why it
would be physically special.

The concrete study of the alternative hypothesis led to what might be regarded as a solution
of the two key problems, perhaps even as breakthrough. One ends up to a generalization of
the arithmetics of maps g based on ordinary product × and sum + to an arithmetics based on
functional composition ◦ replacing × and × replacing sum. The condition that the polynomial
coefficients ak in ak ◦ P ◦k

p appearing in the pinary expansion of a functional p-adic number,
with ak and Pp being analogs of quantum mechanical observables, commute with Pp and also
mutually, implies that functional p-adic numbers have a natural morphism to ordinary p-adic
numbers.

The functional p-adic counterparts of ordinary primes can be identified, the p-adic length
scale hypothesis can be understood, and the origin of p-adic physics can be identified. It is also
possible to understand how the predicted slight failure of classical determinism corresponds to
p-adic non-determinism, how quantum criticality is realized, and how the hierarchy of effective
Planck constants emerges.
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1 Introduction

In TGD, geometric and number theoretic visions of physics are complementary. This complemen-
tarity is analogous to momentum position duality of quantum theory and implied by the replace-
ment of a point-like particle with 3-surface, whose 4-dimensional Bohr orbit defines space-time
surface.

1. Space-time surfaces are identified as roots of f = (f1, f2) is a pair of analytic functions H =
M4×CP2 → C2. Analyticity means that they depend only on the second hypercomplex (real)
coordinate of the pair (u, v), say u, complex coordinates w of M4, and complex coordinates
(ξ1, ξ2) of CP2 but not on their complex conjugates. Light-like coordinates (u, v) = (t+z, t−
z), where (t, z) are Minkowski coordinates for M2 ⊂M4 = M2×E2 and complex coordinate
w = x+ iy of the plane E2 represents the basic example.

2. The functional compositions g ◦ f , and g = (g1, g2) : C2 → C2 is a pair analytic functions
of 2 complex variables, define a spectrum generating algebra. The interpretation is as a
cognitive hierarchy of function of functions of .... and the pairs (f1, f2) which do not allow a
composition of form f = g ◦ h correspond to elementary function and to the lowest levels of
this hierarchy, kind of elementary particles of cognition. Also the pairs g can be expressed
as composites of elementary functions.

If g1 and g2 are polynomials with coefficients in field E identified as an extension of rationals,
one can assign to g ◦ f root a set of pairs (r1, r2) as roots f1, f2) = (r1, r2) and ri are
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algebraic numbers defining disjoint space-time surfaces. One can assign to the set of root
pairs the analog of the Galois group as automorphisms of the algebraic extension of the field
E appearing as the coefficient field of (f1, f2) and (g1, g2). This hierarchy leads to the idea
that physics could be seen as an analog of a formal system appearing in Gödel’s theorems and
that the hierarchy of functional composites could correspond to a hierarchy of meta levels in
mathematical cognition.

3. The quantum generalization of integers, rationals and algebraic numbers to their functional
counterparts is possible for maps g : C2 → C2. The counterpart of the ordinary product is
functional composition ◦ for maps g. Degree is multiplicative in ◦. In sum, call it +e, the
degree should be additive, which leads to the identification of the sum +e as an element-wise
product. The neutral element 1◦ of ◦ is 1◦ = Id and the neutral element 0e of +e is the
ordinary unit 0e = 1.

The inverses correspond to g−1 for ◦, which in general is a many-valued algebraic function
and to 1/g for times. The maps g, which do not allow decomposition g = h ◦ i, can be
identified as functional primes and have prime degree. f : H → C2 is prime if it does not
allow composition f = g ◦ h. Functional integers are products of functional primes.

The non-commutativity of ◦ could be seen as a problem. The fact that the maps g act
like operators suggest that the functional primes gp in the product commute. Functional
integers/rationals can be mapped to ordinary by a morphism mapping their degree to inte-
ger/rational.

4. One can define functional polynomials P (X), quantum polynomials, using these operations.
In P (X), the terms pn ◦ Xn, pn and X should commute. The sum

∑
e pnX

n corresponds
to +e. The zeros of functional polynomials satisfy the condition P (X) = 0e = 1 and give
as solutions roots Xk as functional algebraic numbers. The fundamental theorem of algebra
generalizes at least formally if Xk and X commute. The roots have representation as a
space-time surface. One can also define functional discriminant D as the ◦ product of root
differences Xk −e Xl, with −e identified as element-wise division and the functional primes
dividing it have space-time surface as a representation.

5. The iteration of functional rimes gp defines analogs for the powers of p-adic primes and one
can define a functional generalization of p-adic numbers as quantum p-adics. The coefficients
of gkp are now polynomials with degree smaller than p. The generalization of

Witt polynomials as a representation of p-adic numbers relies on the same arithmetics as
the definition of integers and makes it possible to realize the functional p-adic numbers as
space-time surfaces. The space-time surfaces as roots of Witt polynomials are characterized
by ramified primes. The iterates of prime polynomials gp might allow us to understand the
p-adic length scale hypothesis.

Large powers of prime appearing in p-adic numbers must approach 0e with respect to the
p-adic norm so that gnp must effectively approach Id with respect to ◦. Intuitively, a large
n in gnP corresponds to a long p-adic length scale. For large n, gnp cannot be realized as a
space-time surface in a fixed CD. This would prevent their representation and they would
correspond to 0e and Id. During the sequence of SSFRs the size of CD increases and for
some critical SSFRs a new power can emerge to the quantum p-adic.

6. One can consider also the analogs of multi-p p-adic numbers with functional prime gp replaced
with a functional integer gn = gp1 ◦gp2 ...◦gpm , n = p1×p2...×pm. A functional multi-p-adic
number would be a product of factors ak ◦g◦kn . The coefficients ak as polynomials with degree
smaller than n would ◦-commute with gn and with each other. It is not clear whether gpi

should ◦-commute with each other. These numbers would form functional adeles.

7. In the TGD framework, one can consider a potential connection to biology and genetic code.
TGD associates to genes what I call dark genes [L2, L5]. They consist of dark proton triplets
at monopole flux tubes associated with the DNA. Dark genes would be dynamical units
and superpositions of different dark genes would be analogous to bit sequences and could be
involved with quantum computation-like operations [L7] so that the dark genome would be a
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kind of R& D department of the genome. The ordinary gene would corresponds to the most
probable configuration in a given superposition as a minimum energy state.

If cognition and data processing reduce to the g-sector, also genetic code could do so. Genetic
code involves 61 active codons plus 3 stop codons. Could the 64 DNA codons correspond to
the 64 roots of g◦62 and could the functional prime g61 = g◦62 /g3 correspond to the 61 codons
coding for amino acids to the 3 stop codons.

Since only the degree of the prime polynomial matters, the factors g2,i in the power need not
be identical and therefore need not be ◦-commutative. Could this serve as a correlate for
entanglement of the protons of dark letters and codons? The DNA letters are bit pairs rather
than bits. Could the 4 letters correspond to pairs g2,1 ◦ g2,2 in which g2,1 and g2,2 do not
◦ -commute and therefore form an indivisible whole. Could genes correspond to ◦-products
of codons and could quantum entanglement for codons mean non-commutativity of codons
with respect to ◦?

There are many open questions.

1. Could the transitions f → g ◦ f correspond to the classical non-determinism in which one
root of g is selected? If so, the p-adic non-determinism would correspond to classical non-
determinism. Quantum superposition of the roots would make it possible to realize the
quantum notion of concept.

2. What is the interpretation of the maps g−1 which in general are many-valued algebraic
functions if g is rational function? g increases the complexity but g−1 preserves or even
reduces it so that its action is entropic. Could selection between g and g−1 relate to a
conscious choice between good and evil?

3. Could one understand the p-adic length scale hypothesis in terms of functional primes. The
counter for functional Mersenne prime would be gn2 /g1, where division is with respect to
elementwise product defining +e? For g2 and g3 and also their iterates the roots allow
analytic expression. Could primes near powers of g2 and g3 be cognitively very special?

This article summarizes results of a collaboration inspired by our Zoom group and included
Tuomas Sorakivi and Marko Manninen besides me who provided the IT knowhow that I do
not have. Holography = holomorphy vision reduces field equations to algebraic equations and
predicts that space-times are 4-dimensional minimal surfaces in H = M4 × CP2 identifiable as
roots for a pair f = (f1, f2) of analytic maps fi : H → C2 depending on single hypercomplex
and 3 complex coordinates of H. The analytic maps g = (g1, g2) : C2 → C2 act as dynamical
symmetries. The simplest choices of fi and gi are as polynomials.

What is especially nice is that the dynamics associated with g and f separate. The roots of
g ◦ f = 0 are roots of g independently of f . This has an analogy in computer science. f is
analogous to the substrate and g to the program. The assignment of correlates of cognition to the
hierarchies of functional compositions of g is analogous to this principle but does not mean that
conscious experience is substrate independent.

The graphical visualization of the space-time surfaces with the assistance of a large
language model (LLM) was one part of the project. In the case studied, the model is reduced to a
visualization of elliptic surfaces as surfaces in C2 determined by analytically solvable third order
polynomials.

The origin of the p-adic primes as characterizers of elementary particles and p-adic length
scale hypothesis are two key problems of TGD. The working hypothesis has been that the p-adic
primes correspond to ramified primes characterizing polynomials, say as g = (g1 = P1, g2 = Id).
There is also a second option. One can define the notion of primeness for f resp. g as maps not
decomposing as f = g ◦ h resp. g = g1 ◦ g2. These prime maps are polynomials with degree which
is prime p and universal in the sense that only the degree as a counterpart of ordinary p-adic
prime p matters.

Holography = holomorphy vision allows to sharpen these two hypotheses and ask could p-adic
primes p near power of 2 be associated with iterates P k

2 for a suitable P2. The concrete LLM
assisted test of ramified prime hypothesis involved the calculation of the roots of the iterates P ◦k2

for P2 = x(x− 1). The results were not encouraging. This led to the realization that there seems
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to be no way to guess what the correct polynomial might be and why it would be physically
special. The concrete study of the alternative hypothesis led to what might be regarded as a
solution of the two key problems, perhaps even as breakthrough. One ends up to a generalization
of the arithmetics of maps g based on ordinary product × and sum + to an arithmetics based on
functional composition ◦ replacing × and × replacing sum. The condition that the polynomial
coefficients ak in ak◦P ◦kp appearing in the pinary expansion of a functional p-adic number, with ak
and Pp being analogs of quantum mechanical observables, commute with Pp and also mutually,
implies that functional p-adic numbers have a natural morphism to ordinary p-adic numbers.

The functional p-adic counterparts of ordinary primes can be identified, the p-adic length
scale hypothesis can be understood, and the origin of p-adic physics can be identified. It is also
possible to understand how the predicted slight failure of classical determinism corresponds to
p-adic non-determinism, how quantum criticality is realized, and how the hierarchy of effective
Planck constants emerges.

2 Holography= holomorphy vision and space-time as a 4-
dimensional surface in the 8-dimensional space H = M 4 ×
CP2

.
In this section the holography= holomorphy vision in its recent form is described at the end

of the section the LLM assisted study of graphical illustrations of space-time surfaces is briefly
discussed and the details related to the elliptic surfaces are left to Appendix A.

2.1 Space-time surfaces according to holography= holomorphy vision

Holography= holomorphy vision allows to solve the classical field equations explicitly by reducing
field equations to local algebraic equations. The solutions are universal in the sense that minimal
surfaces are obtained irrespective of the action as long as it is general coordinate invariant and
depends only on the induced geometry.

1. The generalized complex structure on the space H = M4 × CP2 means following.

(a) M4 is associated with a complex coordinate w and a hypercomplex coordinate pair
(u, v). u and v are real and v is the hypercomplex conjugate of u. Both can act as
time coordinates. The simplest example of u and v is (u = t− z, v = t+ z). These are
light-like coordinates.

(b) CP2 is associated with two complex coordinates ξ1 and ξ2.

2. The space-time surface is complex in the sense that it is a root for the function pair (f1, f2)
i.e. (f1, f2) = (0, 0). (f1, f2) is an analytical map H → C2 i.e. f1 and f2 depend only on the
coordinates (u,w, ξ1, ξ2) but not on their conjugate coordinates v, w, ξ1, ξ2.

This guarantees that the classical field equations are automatically valid. The space-time
surface is a minimal surface regardless of the action principle except for lower-dimensional
singularities.

The conditions f1 = 0 and f2 = 0 give 2 conditions each and they thus determine a 4-
dimensional surface, which corresponds to the space-time surface. It is natural to speak
of the regions of the space-time surface as roots of f = (f1, f2). At each point we obtain
algebraic equations that are analogous to the equations determining the roots of polynomi-
als. Extremely nonlinear partial differential equations reduce to algebraic equations and the
classical theory is exactly solvable.

3. We restrict ourselves to studying the important special case: (f1, f2) = (P1, P2), where
P1(u,w, ξ1, ξ2) and P2(u,w, ξ1, ξ2) are polynomials. When the roots of the polynomials P1

and P2 are solved in the space-time surface. This gives a physically important special case
where P2 = w − ξ1 (or more generally wn − ξ21). In this case, ξ1 = w can be solved and it
can be placed in P1 and we obtain the condition P1 = (u, ξ1, w, ξ2 = w) = 0.
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This polynomial equation has several roots and they correspond to different regions of the
space-time surface.

From this we can solve ξ1 as a function ξ1(w, u) of u and w or also as a function w = w(ξ1, u)
of w, u and ξ1 .

2.2 Restriction of (f1, f2) to polynomial pairs (P1, P2)

In the simplest case, the polynomial P1 (P2) has n1 (n2) roots if its degree is n1 (n2). In total, we
get n1n2 roots and in the simplest case they correspond to different regions of a uniform space-time
surface. In the more general case, we get a set of separate space-time surfaces that are distributed
in the same way.

The maps f → g◦(f1, f2), where g : C2 → C2 is an analytic map, produce new solutions/space-
time surfaces. If the surface map f = (f1, f2) : H → C2 cannot be represented in the form f = g◦h,
then it is a space-time surface: f is the analogy of a prime number and a uniform surface.

On the other hand, if f = g◦h holds, then the roots correspond to the surfaces (P1, P2 = (r1, r2),
where (r1, r2) is the root of g = (g1, g2). These surfaces have no common points. We obtain a
set of distinct space-time surfaces. There are reasons to expect that only g = (g1, Id) need to be
considered.

The space-time regions corresponding to the two roots r1, r2 meet when the roots for P1 (and
P2) are the same: r1 = r2. In the case under consideration, this means that the two roots
ξ1 = r1(w, u) and ξ2 = r2(2, u) of P1 coincide. The result is a 3-dimensional surface, an ”interface”
between the 4-dimensional regions. These regions correspond to criticality and are of particular
interest physically.

The cusp catastrophe is a useful analogy (found on Wikipedia). In the space of a surface (x,a,b)
determine the real roots x1, x2, x3 of the 3-degree polynomial P3(x, a, b). In the cusp region, 3 roots
are obtained. Two of them meet at the edges of the cusp, which are folds. The projection of the
cusp on the a,b plane is a V-shaped curve. On the sides of v (folds), the real roots x1 and x2 (x2
and x3) meet. At the vertex of V, where the folds meet, x1 = x2 = x3.

In the 4-dimensional case, the folds are 3-D surfaces.

2.3 The maps f → g◦f as dynamical symmetries

The maps f = (f1, f2) → g ◦ (f1, f2), where f : H → C2 are dynamic symmetries and produce
new solutions. As a special case, we obtain the iterations f → g ◦ f → g ◦ g ◦ f..., which produce
analogies of Mandelbrot fractals and Julia sets.

When g is a polynomial this map increases algebraic complexity because the degree g ◦ f is the
product of the degrees g and f . Complexity increases exponentially in iteration. In biology this
would correspond to evolution. From the point of view of the cognitive model f → g◦f corresponds
to abstraction, the emergence of a new level of reflection. The system becomes aware of itself.
At the lowest level, where f cannot be represented in the form f = g ◦ h, there is no reflective
awareness.

2.4 Graphical representations in the case of elliptic surfaces

The illustration of space-time surface in 8-D embedding space as such is impossible. The holography
holomorphy hypothesis however makes it possible to illustrate the essential information for time=
constant snapshots so that animation is obtained.

1. In the graphical representation u corresponds to time and the time evolution can be described
as an animation, i.e. a series of snapshots ξ1 = ξ1(w, un) or w = w(ξ1, un). These functions
can be multi-valued. It is useful to print both to get a better idea of the structure of the
surface which is complex because it is multi-leafed.

2. When the time coordinate is fixed (u = un) then depending on whether ξ1 = ξ1(w, un) or
w = w(ξ1, un) is chosen, the mapping w → ξ1 or x1 → w must be presented. That is, the
mapping of the complex plane w to the complex plane ξ1 or vice versa. 4 dimensions would
be needed and the mapping would be a 2-dimensional surface in a 4-dimensional space.
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The problem is solved when a representation in a 3-dimensional space (x, y, z) is used. In this
case, for example, w = x + iy corresponds to the (x, y) plane and Re(ξ1)(x, y) corresponds
to the z-coordinate and the value of Im(ξ1)(x, y) corresponds to the color.

Graphical representation are examined in the situations in which P1 is a third-degree polynomial
in either ξ1 or w. The reason is that in this case the roots for ξ1 or w can be solved analytically.
This dramatically simplifies the calculation and reduces errors. Even if P1 is of degree four, an
analytical solution is possible. For higher degrees it is not possible in general case. Situation
changes for iterates of polynomials whose degree is smaller than 5.

When degree is 3, with certain additional assumptions, we are dealing with an elliptic 2-
surfaces in 4-D space. These surface have 2-dimensional discrete translations as symmetries and
the graphical results should make this visible. It is precisely elliptic surfaces that have been
considered. The details related to the mathematics of elliptic surfaces are discussed in Appendix
A.

Tuomas Sorakivi has carried out together with me a large language model (LLM) assisted ex-
perimentation with the graphical representation of the space-time surfaces satisfying holography=
holomorphy hypothesis.

1. A brief summary TGD based model can be found at https://gitlab.com/topological-geometrodynamics/
tgd-modelhttps://gitlab.com/topological-geometrodynamics/tgd-model.

2. The equations for the space-time surface associated with a third order polynomial P3(ξ1, w, u)
can be solved analytically. In 2-dimensional algebraic geometry, these surfaces correspond to
elliptic surfaces in 2-dimensional complex space with ξ1 and w as coordinates. Space-time
surface can be represented as an animation for the time evolution of an elliptic surface. A
graphical representation is constructed (see this).

3. The roots of the polynomial defining space-time surface have as interfaces 3-dimensional
surfaces at which two roots are identical. For the illustration of the interfaces see this.

4. Weierstrass elliptic functions (see this) are particular case of elliptic functions, being mero-
morphic and doubly periodic. For a visualization in this case see this.

3 Do ramified primes correspond to p-adic primes and how
to understand p-adic length scale hypothesis

The surprisingly successful p-adic mass calculations [K2, K1] [L4] led to the conclusion that ele-
mentary particles and also more general systems are characterized by p-adic primes, which assign
to these systems p-adic length scale. The identification of the p-adic primes remained the problem

The original hypothesis was that p-adic primes correspond to ramified primes appearing as
divisors of the discriminant of a polynomial defined as the product of root differences. Assuming
holography= holomorphy vision, the identification of the polynomial of a single variable in question
is not trivial but is possible. The p-adic length scale hypothesis was that iterates of a suitable
second-degree polynomial P2 could produce ramified primes close to powers of two. Tuomas So-
rakivi helped with LLM assisted calculation to study this hypothesis for the iterates of the chosen
polynomial P2 = x(x− 1) did not support this hypothesis and I became skeptical.

This inspired the question whether the p-adic prime p correspond to a functional prime that
is a polynomial Pp of degree p, which is therefore a prime in the sense that it cannot be written
as functional composite of lower-degree polynomials. The concept of a prime would become much
more general but these polynomials could be mapped to ordinary primes and this is in spirit with
the notion of morphism in category theory.

This led to a burst of several ideas allowing to unify loosely related ideas of holography=holomorphy
vision.

3.1 Functional primes and connection to quantum measurement theory

Could functional p-adic numbers correspond to ”sums” of powers of the initial polynomial Pp

multiplied by polynomials Q of lower degree than p. This is possible, but it must be assumed

https://gitlab.com/topological-geometrodynamics/tgd-model
https://gitlab.com/topological-geometrodynamics/tgd-model
https://gitlab.com/topological-geometrodynamics/tgd-model/-/blob/main/notebooks/proofs/tgd_sympy_wormhole_vertices_3rd.ipynb?ref_type=heads
https://gitlab.com/topological-geometrodynamics/tgd-model/-/blob/main/notebooks/proofs/tgd_surface_intersections_3rd_1.gif?ref_type=heads
https://en.wikipedia.org/wiki/Weierstrass_elliptic_function
https://gitlab.com/topological-geometrodynamics/tgd-model/-/blob/main/notebooks/proofs/z(P)_ellipticfunction.ipynb?ref_type=heads
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that the product is replaced by the function composition ◦ and the usual sum by the product of
polynomials. In the g = (g1, g2) and h = (h1, h2) the analytic functions gi : C2 → C2 and hi are
multiplied and in the physically interesting special case the product reduces to the product of g1
and h1.

The non-commutativity for ◦ is a problem. In functional composition f → g ◦ f the effect of
g is analogous to the effect of an operator on quantum state in quantum mechanics and functions
are like quantum mechanical observables represented as operators. In quantum mechanics, only
mutually commuting observables can be measured simultaneously. The equivalent of this would
be that when Pp is fixed, only the coefficients Q (lower degree polynomials) to powers of Pp are
such that Q ◦ Pp = Pp ◦ Q and also the Qs commute with respect to ◦. One can talk about
quantum-padic numbers or functional p-adic numbers.

p-adic primes correspond to functional primes that can be described by ordinary primes: this
is easy to understand if you think in category theoretical terms. All prime polynomials of degree
p correspond to the same ordinary prime p. One can talk about universality. Number-theoretic
physics, just like topological field theory, is the same for all surfaces that a polynomial of degree p
corresponds to.

Electron, characterized by Mersenne prime p = M127 = 2127 − 1, would correspond to an
extremely large number of space-time surfaces as far p-adic mass calculations are considered.

3.2 The arithmetic of functional polynomials is not conventional

Functional polynomials are polynomials of polynomials. This notion emerges also in the construc-
tion of infinite primes [K3]. Their roots are not algebraic numbers but algebraic functions as
inverses of polynomials. They can be represented in terms of their roots which are space-time
surfaces. In TGD, all numbers can be represented as spacetime surfaces. Mathematical thought
bubbles are, at the basic level, spacetime surfaces (actually 4-D soap bubbles as minimal surfaces!).

For functional polynomials product and division are replaced with ◦. + and - operations
are replaced with product and division of polynomials. Also rational functions R= P/Q must be
allowed and this leads to the generalization of complex analysis from dimension D=2 to dimension
D=4. This is an old dream that was now realized in a precise sense.

1. The non-conventional arithmetic of functional polynomials makes it possible to understand
the p-adic length-scale hypothesis. Functional polynomials lead to an explicit formula for
the functional analogs of Mersenne primes and more generally for primes close to powers of
two, and even more generally primes near powers of small primes. The functional Mersenne

prime is P
(
2 ◦ n)/P1 and any P2 will do!

2. The same p-adic prime p corresponds to all polynomials Pp of degree p. p-Adic primes are
universal and depend very little on the space-time surfaces associated with them: this is very
important concerning p-adic mass calculations. The problem with the ramified prime option
was that they depend strongly on the space-time surface determined as root of (f1, f2): the
effect of (g1, Id) giving (g1 ◦ f1, f2) does not have particle mass at all.

3.3 Inverse functions of polynomials are also needed

The inverse element with respect to ◦ corresponds to the inverse function of the polynomial, which
is an n-valued algebraic function for an n-degree polynomial. They must also be allowed. Operating
the polynomial g1 on f increases the degree and complexity. Operating with the inverse function
preserves the number of roots or even reduces it if g1 operates on g1 iterated. The complexity can
decrease. Complexity can be considered as a kind of universal IQ and evolution would correspond
to the increase in complexity in statistical sense. Inverse polynomials can reduce it by dismantling
algebraic structures.

In TGD inspired theory of consciousness I have associated ethics with the number theoretic
evolution as increase of algebraic complexity. A good deed increases potential conscious infor-
mation, i.e. algebraic complexity, and this is indeed what happens in a statistical sense. Could
conscious and intentional evil deed correspond to these inverse operations? Evil deed would make
good deed undone. If so, it is easy to see that negentropy still increases in a statistical sense. This
however would mean that evil deed can be regarded as a genuine choice.
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3.4 How do quantum criticality, classical non-determinism and p-adic
non-determinism to each other?

3.4.1 What criticality means mathematically?

The simplest representation of criticality is by means of a monomial xn. It has n identical roots
at x=0 and extremely small perturbation can transform them to separate roots. Mathematicians
consider them as separate, if there were on n copies of the root x = 0 on top of each other. g1 = fn1
as the equivalent of this gives n identical space-time surfaces as roots on top of each other. Are
they the same surface or separate? A mathematician would say that they are separate. If the
polynomial is slightly perturbed, there are n separate roots. This would be the classical equivalent
of quantum criticality.

At quantum criticality, the functional polynomials would have g1 = fn1 at quantum criticality.
The corresponding spacetime surface would be susceptible to breaking up into separate spacetime
surfaces when the monomial fn1 becomes a more general polynomial and n roots are obtained as
separate space-time surfaces.

There is a fascinating connection with cell replication. In TGD it would be controlled by the
field body and one can ask whether f21 = P 2

2 as a critical polynomial representing the field body
is perturbed and leads to two field bodies which become controllers of separate cells. One can ask
whether in a cell replication sequence P ◦2n2 becomes less critical step by step so that eventually
there are 2n separate field bodies and cells.

In zero energy ontology (ZEO) one can also ask whether the creation of a critical space-time
surface characterized by fn1 could give rise to n space-time surfaces when criticality is lost. Zero
energy ontology understood in the Eastern sense would allow this without conflict with conservation
laws.

3.4.2 Mother Nature likes her theorists

If the critical surface is considered as a single surface, the classical action associated with it is n-fold
compared to the surface corresponding to one root. This means that the Kähler coupling strength
αK is smaller by a factor of 1/n after the splitting. This was the basic idea in the hypothesis that
I formulated by saying that Mother Nature likes theorists.

When the perturbation theory ceases to converge (a catastrophe for the theorist), criticality
arises, the polynomial takes the form Pp = fp1 . Deformation and splitting of the surface into a p
discrete surface follows, the coupling strength decreases by a factor of 1/p and the perturbation
theory converges again. The theorist is happy again.

3.4.3 Classical non-determinism corresponds to p-adic non-determinism

Criticality is associated with non-determinism. In classical time evolution, mild non-determinism
corresponds to such a criticality. In these phase transitions, a choice is made between p alternatives
in the ”small” state function reduction (SSFR). The essential thing is that this series of phase
transitions can be realized as a classical time evolution. Without criticality, this would not be
possible.

The fact that a choice is made between p alternatives corresponds to the fact that the dynamics
is effectively p-adic. So that classical non-determinism corresponds to p-adic non-determinism.

3.4.4 Connection to the p-adic length-scale hypothesis

What is particularly interesting is that if p = 2 or 3, the roots of the polynomial Pp can be solved
analytically. The same applies to the iterates of Pp. Therefore these cases are cognitively special
as every mathematician knows from her own experience! The p-adic length-scale hypothesis says
that the rather large p-adic primes p are close to powers of small prime q = 2, 3, ... (denoted by p
above). Intriguingly, there is empirical evidence for the hypothesis in the cases q = 2 and q = 3!

In the cusp catastrophe, the Mother of all catastrophes, which is 2-dimensional surface in the
space (x, a, b) defined by the real roots xi, i = 1, 2, 3 of P3(x, a, b), q = 2 and q = 3 occur. The
projection of the cusp to the (a,b) plane is V-shaped. At the tip of V, the polynomial P3(x, a, b)
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determining the cusp is proportional to x3, i.e. 3 roots concide. At the two folds, whose projections
on (a,b) plane define the sides of V, two roots co-incide .

To sum up, it seems that finally the basic ideas of TGD have found each other and form a
coherent whole. I managed also to clarify the relationship of M8 − H duality to the hologra-
phy=holomorphism hypothesis.

4 Conclusions

The project contained two parts: graphical illustrations of space-time surfaces in H = M4 × CP2

and the study of ramified primes associated with the iterates of polynomials of order 2 motivated
by the p-adic length scale hypothesis.

The study of possible visualization of the space-time surfaces in H = M4 × CP2. As far
as information content is considered, the holomorphy= holography principle allows to cast the
problem to a visualization of time evolution 2-D surfaces in C2 which can be represented as an
animation.

The study of the ramified primes associated with the iterates of second order polynomials
P2(x) = x(x−1) demonstrated that the identification of ramified primes as p-adic primes assignable
to these iterates is not plausible. This led to the realization of what is in hindsight obvious: the
ramified find prime hypothesis is in practice non-testable: there are two many polynomials to be
tested.

The assignment of p-adic primes to the prime degrees of prime polynomials g1 however turned
out to be plausible. This led to various theoretical developments based on the notion of a functional
counterpart of ordinary arithmetics of polynomials replacing ordinary arithmetic operations × and
with functional composition ◦ and product ×. One could also speak of quantum arithmetics
and quantum p-adics. The outcome was the identification of the origin of p-adic physics and
understanding of p-adic length scale hypothesis and the preferred cognitive role of powers of primes
2 and 3, the natural identification of classical and p-adic non-determinism, the identification of the
fundamental geometric mechanism behind quantum criticality implying the hierarchy of effective
Planck constants, and justification of the ”Mother Nature likes her theoreticians” principle.

A Holography = holomorphy vision and elliptic functions
and curves in TGD framework

Holography = holography principle [L9, L3, L6, L8] leads to an explicit construction of the solutions
of field equations by reducing the field equations from extremely nonlinear partial differential
equations to algebraic equations. In this article, elliptic curves and functions are considered as an
application.

A.1 Holography=holomorphy as the basic principle

Holography=holomorphy principle allows to solve the field equations for the space-time surfaces
exactly by reducing them to algebraic equations.

1. Two functions f1 and f2 that depend on the generalized complex coordinates of H = M4 ×
CP2 are needed to solve the field equations. These functions depend on the two complex
coordinates ξ1 and ξ2 of CP2 and the complex coordinate w of M4 and the hypercomplex
coordinate u for which the coordinate curves are light-like. If the functions are polynomials,
denote them f1 ≡ P1 and f2 ≡ P2.

Assume that the Taylor coefficients of these functions are rational or in the expansion of
rational numbers, although this is not necessary either.

2. The condition f1 = 0 defines a 6-D surface in H and so does f2 = 0. This is because the
condition gives two conditions (both real and imaginary parts for fi vanish). These 6-D
surfaces are interpreted as analogs of the twistor bundles corresponding to M4 and CP2.
They have fiber which is 2-sphere. This is the physically motivated assumption, which might
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require an additional condition stating that ξ1 and ξ2 are functions of w as analogs of the
twistor bundles corresponding to M4 and CP2. This would define the map mapping the
twistor sphere of the twistor space of M4 to the twistor sphere of the twistor space of CP2

or vice versa. The map need not be a bijection but would be single valued.

The conditions f1 = 0 and f2 = 0 give a 4-D spacetime surface as the intersection of these
surfaces, identifiable as the base space of both twistor bundle analogies.

3. The equations obtained in this way are algebraic equations rather than partial differential
equations. Solving them numerically is child’s play because they are completely local. TGD
is solvable both analytically and numerically. The importance of this property cannot be
overstated.

4. However, a discretization is needed, which can be number-theoretic and defined by the ex-
pansion of rationals. This is however not necessary if one is interested only in geometry and
forgets the aspects related to algebraic geometry and number theory.

5. Once these algebraic equations have been solved at the discretization points, a discretization
for the spacetime surface has been obtained.

The task is to assign a spacetime surface to this discretization as a differentiable surface.
Standard methods can be found here. A method that produces a surface for which the
second partial derivatives exist because they appear in the curvature tensor.

An analogy is the graph of a function for which the (y, x) pairs are known in a discrete set.
One can connect these points, for example, with straight line segments to obtain a continuous
curve. Polynomial fit gives rise to a smooth curve.

6. It is good to start with, for example, second-degree polynomials P1 and P2 of the generalized
complex coordinates of H.

A.2 How could the solution be constructed in practice?

For simplicity, let’s assume that f1 ≡ P1 and f2 ≡ P2 are polynomials.

1. First, one can solve for instance the equation P2(u,w, ξ1, ξ2) = 0 giving for example ξ2(u,w, ξ1)
as its root. Any complex coordinates w, ξ1 or ξ2 is a possible choice and these choices can
correspond to different roots as space-time regions and all must be considered to get the full
picture. A completely local ordinary algebraic equation is in question so that the situation
is infinitely simpler than for second order partial differential equations. This miracle is a
consequence of holomorphy.

2. Substitute ξ2(u,w, ξ1) in P1 to obtain the algebraic function P1(u,w, ξ1, ξ2(u,w, ξ1)) = Q1(u,w, ξ1).

3. Solve ξ1 from the condition Q1 = 0. Now we are dealing with the root of the algebraic func-
tion, but the standard numerical solution is still infinitely easier than for partial differential
equations.

After this, the discretization must be completed to get a space-time surface using some
method that produces a surface for which the second partial derivatives are continuous.

Very interesting special cases are polynomials with order not larger than 4 since for these the
roots can be solved explicitly. I have proposed that P2 characterizes the cosmological constant as
a correspondence between the twistor spheres of M4 and CP2 and is characterized by the winding
number. In standard cosmology Λ is a constant of Nature but in TGD it is predicted to have a
hierarchy of values. The simplest relationship would be P2 = ξ2 − wn, n integer. In this case, one
can solve ξ2(w) and substitute it to P1 to obtain the condition

P1(ξ1, ξ2(w), w, u) = 0 . (A.1)

If P1 as a polynomial of ξ1 has order lower than 5, the roots of ξ1 can be solved explicitly.
Elliptic curves satisfy the condition
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ξ21 − w3 + aw + b = 0 . (A.2)

The projections of the w-plane are doubly periodic curves and therefore of special interest. For
P2 = ξ2 − w2 and P1 = ξ21 − wξ2 + aw + b, the space-time surface would be a 4-D analog of an
elliptic curve. If a and b depend on u, the 3-surface becomes dynamical.

ratpoints3

A.3 Elliptic curves as an application

One can test whether the numerical method works when the equation giving ξ1 in terms of w can be
solved analytically. For elliptic curves ξ1 = ξ1(w) , which I have discussed already earlier [L1, L3],
this is the case.

A.3.1 Elliptic curves

The third order polynomial characterizing the elliptic curve (see this) can be be expressed in terms
of the root of a third order polynomial P3(w) as

E : ξ21 = 4(w − e1)(w − e2)(w − e3) , (A.3)

One can choose the complex w in such a manner that the equation contains no term proportional
to w2. This is guaranteed if the condition e1 + e2 + e3 = 0 holds true. In this case one obtains the
form

E : ξ21 = 4w3 − g2w − g3 , ,

g2 = −4(e1e2 + e2e3 + e3e1) , g3 = 4e1e2e3 , e1 + e2 + e3 = 0 .
(A.4)

A.3.2 Connection with Weierstrass elliptic functions

There is a connection with Weierstrass elliptic functions, which satisfy the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 . (A.5)

Clearly, By using z as a complex coordinate instead of w, ξ1(w) and w for the elliptic curve
can be expressed in terms of Weierstrass elliptic function, which is a solution of this differential
equation

ξ1(w) = ℘′(z) , w(z) = ℘(z) . (A.6)

Elliptic functions are doubly periodic and using z = ℘−1(w) as a complex coordinate instead
of w, this periodicity becomes manifest. The solution possesses a discrete conformal symmetry
consisting of a discrete subgroup of 2-D translations and this gives rise to a lattice structure. This
conforms with the fact that the elliptic curve, as a compact 2-D surface in the space spanned by
coordinates (ξ1, w) has the topology of a torus and therefore can allow translations as conformal
symmetries. This is the case for the elliptic curves considered.

One can represent torus in a complex plane with coordinate z in terms of Weierstrass elliptic
function ℘ having a double periodicity in z-plane as conformal symmetries. The torus corresponds
to the fundamental domain (2-D lattice cell) obtained by identifying the opposite boundaries of
the lattice cell. The periods ω1 and ω2 define non-orthogonal directions and their ratio τ = ω1/ω2

is conformal invariant.
One can solve the fundamental periods ω1 and ω2 in the following way. Define the auxiliary

quantities

https://en.wikipedia.org/wiki/Elliptic_curve
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a0 =
√
e1 − e3, b0 =

√
e1 − e2, c0 =

√
e2 − e3, . (A.7)

The condition e1 + e2 + e3 = 0 allows to eliminate e3 so that one has

a0 =
√
−e2, b0 =

√
e1 − e2, c0 =

√
−e1, . (A.8)

The fundamental periods ω1 and ω2 for the elliptic curve can be calculated very rapidly by

ω1 =
π

M(a0, b0)
, ω2 =

π

M(c0, ib0)
(A.9)

Or more explicitly

ω1 =
π

M(
√
−e2,

√
e1 − e2)

, ω2 =
π

M(
√
−e1, i

√
e1 − e2)

. (A.10)

Here M(x, y) is defined as arithmo-geometric mean of x and y by a geometric iteration (see this).
Assuming x ≥ y ≥ 0 one has

a0 = x, g0 = y , an+1 = (an + gn)/2, gn+1 =
√

(angn) . (A.11)

At the limit n→∞ one has an+1

simeqan → a and gn+1 ' gn → g and one has a = (a+ g)/2 and g =
√
ag implying a = g so that

arithmetic and geometric means are identical. Care is required to take the correct sign of square
root at each step of iteration (positive in the case considered). The iteration generalizes to the
complex case and there probably exist tested programs performing the iteration.

B Could p-adic primes correspond to ramified primes for
the iterates g◦np ?

p-Adic length scale hypothesis [K2, K1] [L4] states that physically interesting p-adic primes p are
near to powers of q = 2 and possibly also q = 3. Could p-adic length scale hypothesis relate to
the iteration of polynomials Pq? A second conjecture, or rather question, is whether p-adic primes
p assigned to elementary particles in p-adic mass calculations correspond to ramified primes for a
suitably identified polynomial. The following argument does not support this conjecture.

One can ask whether the analogs of ramified primes polynomials assignable abstraction hierar-
chies g◦g◦ ...◦f and powers g◦n. The physically interesting special case corresponds to g = (gp, Id)
for which the degrees of the iterates g◦np are n× p, p the prime assignable to prime polynomial gp.

1. The ramified primes for gp◦gp◦ ...gp◦f and gnp define analogs of powers pn of p-adic numbers.
Note that the roots of gp ◦ gp ◦ ...gp ◦ f are a property of gp ◦ gp ◦ ...gp and do not depend on
f in case that they exist as surfaces inside the CD.

2. There is hope that even the p-adic length scale hypothesis could be understood as a ramified
primes assignable to some functional prime. The large values of p-adic primes require that
very large ramified primes for the functional primes (f1, f2). This would suggest that the
iterate g ◦ ..... ◦ g ◦ f acting on prime f is involved. For p ' qk, kth power of g characterized
by prime g is the first guess.

Generalized p-adic numbers as such are a very large structure and the systems satisfying the
p-adic length scale hypothesis should be physically and mathematically special. Consider the
following assumptions.

https://en.wikipedia.org/wiki/Arithmetic\OT1\textendash geometric_mean
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1. Consider generalized p-adic primes associated restricted to the case when f2 is not affected
in the iteration so that one has g = (g1, Id) and g1 = g1(f1) is true. This would conform
with the hypothesis that f2 defines the analog of a slowly varying cosmological constant.
If one assumes that the small prime corresponds to q = 2, the iteration reduces to the
iteration appearing in the construction of Mandelbrot fractals and Julia sets. If one assumes
g1 = g1(f1, f2), f2 defines the analog of the complex parameter appearing in the definition
of Mandelbrot fractals. The values of f2 for which the iteration converges to zero would
correspond to the Mandelbrot set having a boundary, which is fractal.

2. For the generalized p-adic numbers one can restrict the consideration to mere powers gn1 as
analogs of powers pn. This would be a sequence of iterates as analogs of abstractions. This
would suggest g1(0) = 0.

3. The physically interesting polynomials g1 should have special properties. One possibility is
that for q = 2 the coefficients of the simplest polynomials make sense in finite field F2 so that
the polynomials are P2(z ≡ f1, ε) = z2 + εz = z(z + ε), ε = ±1 are of special interest. For
q > 2 the coefficients could be analogous to the elements of the finite field Fq represented as
phases exp(i2πk/3).

One can see what these premises imply. Here Tuomas Sorakivi helped to do the calculations
using the assistance of a large language model.

1. Quite generally, the roots of P ◦n(g1) are given R(n) = P ◦−n(0). P (0) = 0 implies that the
set Rn of roots at the level n are obtained as Rn = Rn(new)∪Rn−1, where Rn(new) consist
of q new roots emerging at level n. Each step gives qn−1 roots at the previous level and qn−1

new roots.

2. It is possible to analytically solve the roots for the iterates of polynomials with degree 2 or
3. Hence for q = 2 and 3 (there is evidence for the 3-adic length scale hypothesis) the inverse
of g1 can be solved analytically. The roots at level n are obtained by solving the equation
P (rn) = rn−1,k for all roots rn−1,k at level n − 1. The roots in Rn−1(new) give qn−1 new
roots in Rn(new).

3. For q = 2, the iteration would proceed as follows:

0→ {0, r1} → {0, r1} ∪ {r21, r22} → {0, r1} ∪ {r21, r22} ∪ {r121, r221, r122, r222} → ... .

4. The expression for the discriminant D of g◦n1 can be deduced from the structure of the root
set. D satisfies the recursion formula D(n) = D(n, new)×D(n−1)×D(n, new;n−1). Here
D(n, new) is the product ∏

ri,rj∈∈D(n,new)

(ri − rj)2

and

D(n, new;n− 1) is the product ∏
ri∈D(n,new),rj∈D(n−1)

(ri − rj)2 .

5. At the limit n→∞, the set Rn(new) approaches the boundary of the Fatou set defining the
Julia set.

As an example one can study discriminant D and ramified primes for the iterates of g1(z) =
z(z − ε). Does it produce Mersenne primes or primes near a power of 2 as ramified primes as the
p-adic length scale hypothesis predicts? Of course, there exists an endless variety of these kinds of
polynomials but one might hope that the chosen polynomial might be special because of its 2-adic
features. The study was carried out with Tuomas Sorakivi (see this).

https://gitlab.com/topological-geometrodynamics/tgd-model/-/blob/main/notebooks/p-adic_length_scale/P-Adic_Length_Scale_results_calculation.ipynb?ref_type=heads
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1. The roots of z(z − ε) = 0 are {0, r1} = {0, ε}. At second level, the new roots satisfy
z(z − ε) = r1 = ε given by {(ε/2)(1 ±

√
1 + 4r1}. At the third level the new roots satisfy

z(z − ε) = r2 and given by {(ε/2)(1±
√

1 + 4r2}.

2. The points z = 0 and z = ε are fixed points. Assume ε = 1 for definiteness. The image points
w(z) = z(z− ε) satisfy the condition |w(z)/z| = |z− 1|. For the disk D(1, 1) : |z− 1| ≤ 1 the
image points therefore satisfy |w| ≤ |z| ≤ 2 and belong to the disk D(0, 2) : |z| ≤ 2.

For the points in D(0, 2)\D(1, 1) the image point satisfies |w| = |z − 1||z| giving |z| − 1| ≤
|w| ≤ |z|+1. Inside D(0, 2)\D(1, 1) this gives 0 ≤ |w| ≤ 3. Therefore w can be inside D(2, 0)
including D(1, 1) also inside disk D(0, 3).

For the points z outside D(2, 0) |w| = |z − 1||z| ≥ 2. So that the iteration leads to infinity
here.

3. For the inverse of the iteration relevant for finding the roots of f◦(−n) leads from the exterior
of D(2, 0) to its interior but cannot lead from interior to the exterior since in this case f
would lead to exterior to interior. Hence the values of the roots wn in ∪nf◦(−n)(0) belong to
the disc D(2, 0).

4. One can look at the asymptotic situation for very large values of n. At nth step 2n−1 new
roots emerge by doubling and one has rn+1,± = (1/2)(1±

√
1 + 4rn,±). For rn,± < −1/4 the

root pair becomes complex and could stay complex at the next steps. This happens already

at the step from r2 = 1/2(1±
√√

5)→ r3. If the iteration gives at some step a double real
root, its further iterations could approach a fixed point at this limit. This root rn → r would
satisfy r = (1/2)(1 ±

√
1 + 4r) giving r2 − 2r = 0 with root r1 = 2 and r1 = 0 these are

the intersections of the disk D(0, 2) with real axis. Note that r1 = 2 is not a fixed point of
z(z − 1).

There should exist a root rn, which at the real axes in the range (0, 2). This would require
that 1 + 4rn = 0 giving a double root rn = −1/4. The next steps would give rn+1 =

+1/2±
√

3→ rn+2 = 1/2(1±
√

2±
√

3). Second root would be complex. The positive real
roots are rn+1,+ ' 1.366 and rn+2,+ = 1.7708. This suggests that the convergence to r = 2
takes place for the positive roots. If this is the case the D discriminant contains the product
of the differences for these positive roots approaching zero. There is however no guarantee
that the double root rn = 1/2 emerges in the iteration.

The prime decompositions of D for k = 1, 2, ..., 7 are {1 : 1}, {5 : 1}, {5 : 3, 11 : 1}, {5 : 7, 11 :
3, 311 : 1}, {2 : 48, 3 : 3, 43 : 1, 73 : 1, 6577 : 1, 5521801 : 1,−1 : 1}, {2 : 209, 59 : 2, 3117269 :
1, 356831 : 1}, {2 : 596, 2358900226164371 : 1,−1 : 1}, where p : m denotes the prime and its
multiplicity. −1 : 1 tells that the discriminant is negative.

The conjecture was that the discriminant D for the iterate has Mersenne primes as factors for
primes n defining Mersenne primes Mn = 2n − 1 and that also for other values of n D contains as
a factor ramified primes near to 2n. The above calculation shows that this is not the case for the
polynomial P2(x) = x(x−1) for small n. There are an infinite number of polynomials of order two
but the idea of starting to search all of them does not look attractive. This result challenged the
proposal that p-adic primes could correspond to ramified primes and led to the realization that
functional primes as polynomials with prime degree provide a more natural explanation of p-adic
length scale hypothesis. The p-adic length scale hypothesis however looks attractive.
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