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Abstract

In this article a more precise view about the 3-D light-like trajectories of 2-dimensional
parton surfaces is developed on the basis of holograpy= holomorphy hypothesis (H-H). Par-
tonic orbits are identified as light-like 3-surfaces at which the signature of the induced metric
changes from Minkowskian to Euclidian so that the metric determinant vanishes.

The so-called CP2 type extremals, having 4-D CP2projection1 −Dlight− likecurveasM4

projection, and their deformations have been known from the very beginning and satisfy H-H.
However, all attempts to obtain them from (f1, f2) = (0, 0) ansatz failed since CP2 projection
was 3-D and this spoiled the holomorphy property.

In Minkowskian regions one has two kinds of solutions for which hypercomplex coordinate
u or v appears in fi. If the space-time surface is invariant under generalized conjugation, these
should correspond to a single solution and the only way is to consider their union. The two
regions in question have a natural identification as Minkowskian space-time sheets connected
by a wormhole contact with an Euclidean signature of the induced metric and identifiable as
a deformation of a CP2 type extremal.

One must give up (f1, f2) = (0, 0) ansatz and construct the Euclidean regions as regions
with v = v0 (u = u0) by replacing v (u) with a real CP2 coordinate s which is function of
light-like coordinate v (u) of M4. The two sheets meet at the 3-surface u0 = v0 and there is an
edge at which u and v coordinate lines meet. The interpretation is as a defect of the standard
smooth structure making it an exotic smooth structure. Physically the edge can be assigned
with fermion scattering or creation of a fermion pair. Note that two M4 time coordinates,
with time coordinate included, are constant for the vertex.
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The light-likeness condition for the partonic orbits generalizes the Virasoro conditions for
1-dimensional light-like curves to the 3-dimensional light-like partonic orbits. Also an explicit
procedure for finding the partonic orbits is discussed.
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1 Introduction

3-D light-like partonic orbits are a central piece of the TGD view of elementary particles. In the
sequel a more precise identification of these surfaces is considered.

It is however useful to start by clarifying some basic aspects of dynamics in the TGD Universe.

1. There are two kinds of degrees of freedom in TGD: geometric, i.e. degrees of freedom of
the space-time surface, and fermionic. All elementary particles are made up of fermions and
antifermions: bosons emerge. There are no bosonic primary quantum fields.

2. The basic result from the solution of the Dirac equation for H spinor fields, assuming that
M4 has a non-trivial Kähler structure [L5], is that the mass scale of colored partial waves of
fermions is given by CP2 mass scale and there are no free massless gluons or quarks. However,
massless color singlets for which the difference in the numbers of quarks and antiquarks is
a multiple of three, are possible. This gives baryons and mesons. p-Adic thermodynamics
gives small thermal masses for the massless modes states appearing as ground states for the
generalization of super-conformal representations.

Here comes a crucial difference between QCD and TGD. In lattice QCD there would be no
g − 2 anomaly whereas the approach based on the information given by physical hadrons
imply the anomaly (see this). In TGD, color singlets, in particular hadrons, are indeed the
fundamental objects. The anomaly would be real and the new physics implied by TGD
predicts it [L5]. For example, copies of hadron physics at larger mass scales are predicted.
Also the color singlets formed from higher color partial waves of quarks and leptons give rise
to an infinite number of new hadrons and also leptons: I have called them lepto hadrons
and there is evidence for them [K3]. This could not be farther from the notion of the desert
assumed in GUTs. It will be exciting to see whether QCD or TGD is right.

3. The arguments of the n-point functions of the second quantized free fermion fields of H
(scattering amplitudes) are points of the spacetime surface so that the dynamics of the
spacetime surface affects the scattering amplitudes. Effectively, the spacetime surface defines
the classical background in terms of the induced fields: induced metric, spinor connection,
etc... Free fermion field do not allow pair creation in ordinary QFTs. The possibillity of
exotic smooth structures for 4-D space-times comes in rescue here [L4] [?] The exotic smooth
structure can be seen as the ordinary smooth structure with defects. Defects define analogs
of vertices for the creation of fermion pair interpreted as turning of a fermion line in time
direction. Since bosons correspond bound states of fermions and antifermions rather than
primary quantum fields, all interaction vertices reduce to this vertex.

A particle can be seen in two ways:

1. Particle as a 3-surface and its Bohr orbit as a four-surface X4.

2. Particle as a fermion and its orbit, the fermion line, is a light-like curve, maybe even a
light-like geodesic line in M4 × CP2 or M4.

The spacetime surface X4 has a rich anatomy and this leads to a more detailed view of what
particles are.

1. X4 has internal structure and the 3-D partonic orbits define light-like surfaces X3 at which
the Minkoski signature of the surface becomes Euclidean so that the metric determinant
vanishes.

https://bigthink.com/starts-with-a-bang/anomaly-muon-g-2-puzzle/
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2. A fermion line would be an intersection of 2-D string world sheet and a 3-D light-like partonic
orbit. The proposal is that string world sheet can be obtained as the intersection of two
spacetime surfaces X4 and Y 4 if they have the same Hamilton-Jacobi structure at the level
of H [L2], i.e. allow the same generalized complex H coordinates u, w, ξ1, ξ2 and their
conjugates (u = v). The corrected view of generalized analyticity however forces to challenges
this assumption although it is physically very attractive.

One can ask whether the mutual interactions of particles as space-time surfaces occur only
when they have the same Hamilton-Jacobi (H-J) structure. If so, the interactions can be
described in terms of their intersections consisting of string world sheets and fermion lines at
their boundaries. If so, a strong analogy with string models would emerge. The second option
is that the intersections are discrete. Also now fermionic n-point functions are well-defined.

Also the self-interactions could be described by considering infinitesimal deformation of the
space-time surface preserving H-J structure and finding the string world sheets in this case.

3. In TGD, the genus of the parton surface is an important topological quantum number [K2].
The genera g = 0, 1, 2 corresponds to the observed fermion generations. g = 2 allows a
bound state for the 2 handles of the sphere that are like particles. This is because g ≤ 2
allows global conformal symmetry. In the g ≥ 2 topology, g handles are like particles in a
multiparticle state, and the mass spectrum of the states is continuous, unlike for elementary
particles.

Also the homological charge of the partonic 2-surface, identifiable as Kähler magnetic charge
of the space-time surface is an important topological quantum number.

This article was born as an attempt to develop a more precise view about the 3-D light-like
trajectories of 2-dimensional parton surfaces on the basis of holograpy= holomorphy hypothesis
(H-H).

1. CP2 type extremals [K1] have a 1-D light-like curve as M4 projection. Their complex defor-
mations satisfy H-H. The projection corresponds to a coordinate curve of the hypercomplex
coordinate u or v. The generalization of the (f1, f2) = (0, 0) hypothesis to them turned out
to be impossible: CP2 projection turned out to be 3-dimensional and failed to satisfy H-H.

The assumption that the space-time surface X4 is invariant under generalized conjugation
taking u to v and vice versa, implies that X4 must have two sheets with v = v0 or u = u0
permuted by the generalized conjugation. They meet at the 3-surface X3 u = v. This implies
u0 = v0 implying that two M4 coordinates u, v are constant and one has 3-D surface of CP2

invariant under complex conjugation of complex H coordinates. At this surface, the light-like
curves for the two sheets meet at an edge, which has an interpretation in terms of an exotic
smooth structure in turn having interpretation in terms of a vertex for a creation of a fermion
pair.

2. Partonic orbits can be identified as light-like 3-surfaces at which the signature of the induced
metric changes from Minkowskian to Euclidian so that the metric determinant vanishes and
the induced 4-metric degenerates to an effectively 2-D metric.

3. The light-like u or v coordinate lines can have edges at the partonic orbits. This has led
to a proposal for how exotic smooth structures necessary for defining fermion pair creation
vertices emerge via partonic orbits as defects of the standard smooth structure [L4, L1].
Fermion pair as a fermion returning backwards in time would correspond to the edge of u (or
v) coordinate line. These conditions generalize the Virasoro conditions for 1-dimensional
light-like curves to the 3-dimensional light-like partonic orbits.

4. The light-likeness of the coordinate lines generalizes the Virasoro conditions for 1-dimensional
light-like curves to the 3-dimensional light-like partonic orbits and one obtains a set of 1-D
Virasoro conditions parametrized by the points of the partonic 2-surface. In fact, the 1-D
Virasoro conditions emerged first for CP2 type extremals [K1] and led to the realization that
the generalization of conformal invariance in some sense must be a fundamental symmetry
of TGD: the discovery of holography= holomorphy principle finally led to a detailed under-
standing of this symmetry [L3]. Also an explicit procedure for finding the partonic orbits is
discussed.



2. The identification of the partonic orbits 4

2 The identification of the partonic orbits

It took a considerable time to realize that holography= holomorphy vision has delicate technical
problems and the recent view was found by trial and error.

2.1 Definition of hypercomplex conjugation

What does one mean with the generalization of the complex conjugation when applied to the argu-
ment of f? Could it correspond a) to (u,w, ξ1, ξ2)→ (u,w, ξ1, ξ2) so that there is no hypercomplex
conjugation or b) to (v, w, ξ1, ξ2)→ (u,w, ξ1, ξ2) so that there is hypercomplex conjugation.

1. For option a), the roots of f and f represent the same surface. For the roots of f the
contribution of complex coordinates to guv and gvw is vanishing but the components guw and
there is only the contribution of M4 metric to guv. Partonic orbits are not possible.

2. For option b), the roots of the conjugate f do not coincide with the roots of f unless sym-
metries exist. If the space-time surface is invariant under the generalized conjugation (in
analogy with complex plane), it must be a union of the u-type and v-type regions defines
the space-time surface. Hypercomplex conjugation would be a non-local symmetry trans-
forming to each other two parts of the space-time surface. The 3-surface u = v would be a
3-dimensional surface along which the two space-time regions would be glued together.

Consider the option b) in more detail.

1. How to identify the u- and v-type regions? In the model for elementary particles, Euclidian
regions as deformations of CP2 extremals connect two Minkowskian space-time sheets, which
are extremely near to each other having a distance of order CP2 radius. Could the two
Minkowskian space-time sheets correspond to u- and v-type regions and could generalized
complex conjugation (u,w, ξ1, ξ2)↔ (v, w, ξ1, ξ2) transform then to each other.

2. Could the 3-surface X3 at which the sheets intersect so that both u and v coordinates
associated with the sheets are identical, define the 2-surface X2 along which the sheets are
glued together? Could this surface be identifiable as the light-like partonic orbit.

The wormhole contact identified in this way has 3-D CP2 projection and does not correspond
to the CP2 type extremal. It is not clear whether this is a problem or not.

3. Presumably, there would be discontinuity associated with the derivatives of the embedding
space coordinates at X3, where the u- and v-type time evolutions at the two sheets would
be glued together.

4. Could X3 be interpreted in terms of an exotic smooth structure [A2, A3, A1] allowing an
interpretation as the standard smooth structure with defects? Could the u- lines transform
to v-lines at X3 and give rise to edges violating the standard smoothness.

Also the partonic orbits could define analogous defects since the u- resp. v-lines could have
an edge. The identification of fermion lines as these kinds of lines allow the interpretation
of defects as vertices for the creation of fermion-antifermion pair as turning of fermion line
backwards in time [L4, L1]?

2.2 Technical problems of the holography= holomorphy vision

Consider first the technical problems related to the finding of the roots of (f1, f2) appearing in
the Euclidean space-time regions. Note that this is only an ansatz, which is less general than H-H
and need not work for wormhole contacts as deformations of CP2 type extremals [K1].

1. The first problem is that in Minkowskian regions defining the parallel space-time sheets one
has two kinds of solutions for which hypercomplex coordinate u resp. its conjugate v
appears in fi resp. its conjugate. These should correspond to a single solution and the only
way is to consider their union. The two regions in question have a natural identification



2.3 The 3-D light-like orbits of partonic 2-surfaces 5

as Minkowskian space-time sheets connected by a wormhole contact with an Euclidean
signature of the induced metric.

At the surface, where the two sheets are glued, fi must be invariant under conjugation,
which for real coefficients of fi requires u = v and reality of various complex coordinates or
at least that the surface in question is invariant under complex conjugation.

2. In Euclidean regions, the realization of H-H, using (f1, f2) = (0, 0) ansatz assuming that
either hypercomplex coordinate u or v is a dynamical variable, leads to a problem. Either
u or v is a complex analytic function f of CP2 coordinates and its reality implies Im(f) = 0
so that CP2 projection is 3-dimensional, which means the failure of the holomorphy with
respect to the CP2 coordinates. For a moment I thought that Wick rotation might help but
this was not the case.

3. This forces to give up (f1, f2) = (0, 0) ansatz and assume only H-H. The original vision was
that the Euclidean region as a wormhole contact corresponds to a deformation of a canonically
embedded CP2 so that it has a light-like coordinate curve of u or v as M4 projection. These
space-time surfaces are holomorphic so that field equations are satisfied.

The gluing condition implies constancy condition v = v0 resp. u = u0 and v resp. u is
replaced with a real CP2 coordinate s(u) resp. s(v). M4 complex coordinate w can be a
function of CP2 coordinates.

4. The gluing condition for the two sheets requires u0 = v0 which for u = m0 + m3 and
v = m0 − m3 gives m0 = 2u0 and m3 = 0. At the points of this 3-surface) there is an
edge at which the coordinate curves for u and v meet: the interpretation could be in terms
of an exotic smooth structure [A2, A3, A1] as standard smooth structure with a defect to
which fermion pair creation or fermion scattering vertex can be assigned. The two sheets
are glued together along a 3-surface X3 with 3-D CP2 projection invariant under complex
conjugation. The CP2 projection X3 must contain a homologically non-trivial 2-surface since
the wormhole contact must carry a monopole flux between the space-time sheets.

This tentative picture would relate several key ideas of TGD: H-H involving hypercomplex
numbers, the notion of light-like partonic orbit, the idea that exotic smooth structures make
possible non-trivial scattering theory in 4 dimensional space-time. One can compare this picture
with the intuitive phenomenological picture.

2.3 The 3-D light-like orbits of partonic 2-surfaces

The trajectories of partonic 2-surfaces are singularities at which the Euclidean induced 4-geometry
transforms into Minkowskian. The light-like dimension implies

√
|det(g4)| = 0. The challenge is

to derive the partonic orbits from this.

1. H-J structure defines Kähler structure M4 ⊂ H inducing that of X4 and is independent
of holography= holomorphy hypothesis. The induced Kähler structure of X4 is defined by
the projection of the sum of M4 and CP2 Kähler forms and need not be the same as that
of M4. If the proposal holds true, these structures differ only at the partonic orbits. The
generalized complex coordinates of X4 (hypercomplex coordinate u (or v) and complex
coordinate w) are a subset of the generalized complex coordinates of H, which also include
2 complex coordinates of CP2.

The induced Kähler structure of X4, which is more or less equivalent with Hamilton-Jacobi
structure, defines a slicing of X4 by light-like 3-surfaces with one light-like curves, which
can be taken to correspond to the hypercomplex coordinate u, which is constant along the
lines u = u0. Also its dual slicing, assignable to the v-surface is well-defined.

The 4-metric is hermitian and is a tensor of type (1,1) having only 4 independent components.
The only non-vanishing component of the induced 3-metric g3 atX3 defined by the projection
of the 4-metric is gww so that the slice is metrically 2-dimensional. Light-cone boundary
provides a simple example of this.
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2. The space-time surface X4 is defined by the conditions (f1, f2) = (0, 0), where f1 and f2 are
analytic functions H = M4 × CP2 → C2 depending only on the hypercomplex coordinate
u with light-like coordinate curves and complex coordinates w, ξ1 and ξ2 of H but not on
the coordinate v as hypercomplex conjugate u and the conjugates w, ξ1, ξ2. The surfaces are
same.

As a special case, fi are polynomials or rational functions. Additional restrictions can be
posed on the coefficients of the polynomials. The conditions (f1, f2) = (0, 0) have been
studied in some cases [L6].

3.
√
det(g4) = 0 gives an additional condition and gives a 3-D light-like partonic orbit X3.

2.4 det(g4) = 0 condition as a generalization of Virasoro conditions

The g4uv = 0 condition has an interpretation as a generalization of the Virasoro conditions of string
models to the 4-D context.

1. If the situation were 2-dimensional instead of 4-D, the det(g4) = 0 condition would give a
light-like curve and the light-likeness would give rise to the Virasoro conditions. This was
actually one of the first observations as I discovered CP2 extremals, whose M4 projection is
a light-like curve for the Kähler action [K1]. For the action defined by the sum of Kähler
action and volume term the light-like curves are replaced with light-like geodesics of M4 and
possibly of H. The conditions as such are not Virasoro conditions. It is the derivative of
the conditions with respect to the curve parameter, which gives the Virasoro conditions. By
taking Fourier transform one obtains the standard form of the Virasoro conditions.

The Virasoro conditions can fail at discrete points and these singularities have an interpreta-
tion as vertices and also as points at which the generalized holomorphy fails. The poles and
zeros of the ordinary analytic function are analogs for this.

2. By holomorphy= holography vision alone implies that the space-time surface is sliced by
light-like curves. These curves satisfy Virasoro conditions so that one has a generalization
of Virasoro conditions to a bundle of conditions parameterized by points of a 3-D section
of the space-time surface. Space-time surface itself does not define a light-like orbit of the
3-surface.

3. For the 4-D generalization, the light-like curve is replaced by a 3-D light-like parton trajectory
identifiable as a 2-D bundle of light-like curves so that 1-D Virasoro conditions are true for
each curve. The analogs of Virasoro conditions are indeed very natural also now because 2-D
conformal invariance is generalized to 4-dimensional one. The Virasoro conditions have one
integer, the conformal weight. Now the Fourier transform with respect to the coordinates of
X4, say u and w gives conditions labelled by two integers having interpretation as conformal
weights.

This suggests that conditions can be seen as analogs of Virasoro conditions. Their generaliza-
tion gives rise to analogs of the corresponding gauge conditions for the Kac-Moody algebra,
just like in the string model. A lot of physics would be involved.

4. A new element brought by TGD is that algebras would have non-negative conformal weights
meaning that an entire fractal hierarchy of isomorphic algebras is predicted such that sub-
algebra and its commutator with the entire algebra annihilate the physical states [L3]. This
makes possible a hierarchy of gauge symmetry breakings in which a subspace of the entire
algebra transforms from a gauge algebra to a dynamical algebra.

A How to find the partonic orbits?

In the sequel, the partonic orbit refers to the light-like boundary at which the signature of the
induced metric changes from Minkowskian to Euclidian. In the Minkowskian region (f1, f2) = (0, 0)
ansatz works and,depending on which sheet one considers, the passive coordinate v or u becomes
constant at the boundary.
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One must solve the induced metric for a given solution f = (f1, f2) = (0, 0) in Minkowskian
region and find what happens to it at the boundary. This means moving from mere algebraic
geometry to differential geometry because the induced metric depends on the partial derivatives
of the imbedding coordinates. The complexity of the task depends on how strong assumptions one
makes.

A.1 Two alternative identifications of partonic orbits

One can consider two alternative identifications of partonic orbits.

1. One could start from a completely general solution in Minkowskian region and consider only
the det(g4) = 0 condition without any additional assumptions such as the Hamilton-Jacobi
structure.

2. If one assumes holography= holomorphy principle, 3-surfaces with g4uv = 0 implying det(g4) =
0 condition, are good candidates candidates for partonic orbits, which must be metrically
2-dimensional. Since the signature transforms to Euclidian, the induced metric must receive
a CP2 contribution, which implis the conditions det(g4) = 0 and g4uv = 0 implying metric
2-dimensionality.

Simple physical considerations help to understand what the partonic orbits look like. The
simplest surface to consider is deformed M4 for which CP2 projection is a geodesic line: Φ = ωt.
The induced metric is gtt = 1−R2ω2, gij = −δij , where R is CP2 length scale. For R2ω2 = 1, the
time-like direction becomes light-like. Something analogous happens also in the general case. The
rapid time variation of the ξi(w, u) and ξi(w, v) is what can change the sign of det(g4). Some partial
derivatives ∂uξi(u, 2) and ∂ξi(v, w) must have order of magnitude 1/R. Therefore the numerical
calculation must start from a situation in which these time derivatives are large.

To find the partonic orbits defined in the way already discussed, it is useful to find a region of
space-time surface whether the gradients of CP2 coordinates as functions of u coordinate are of
order 1/R so that g4uv can be near zero.

A.2 det(g4) = 0 condition as a possible definition of the parton orbit

This section gives some idea about how concrete calculations might proceed. The condition
det(g4) = 0 is a natural guess for the precise definition of the partonic orbit as light-like 3-surfaces
at which 4-metric degenerates to 2-dimensional metric.

The condition det(g4) = 0 is a natural guess for the precise definition of the partonic orbit
as light-like 3-surfaces at which 4-metric degenerates to 2-dimensional metric. Consider in more
detail the det(g4 = 0) option for partonic surfaces using H-J coordinates but without assuming
H-H vision. The following also describes how to calculate the induced metric.

For X4 Kähler form is obtained by inducing the sum of Kähler forms of M4 and CP2 and is in
general different from that M4. The H-J coordinates are however the same. If the coordinates of
X4 are not H-J coordinates one must det(g4) = 0 condition without hermiticity conditions on the
induced metric. This requires an additional computational effort.

For H-J coordinates for X4, the det(g4) = 0 is equivalent with the g4uv = 0 condition and the
situation simplifies dramatically and one must find the 3-surfaces with g4uv = 0.

1. The general form of the induced metric is

gαβ = hkl∂αh
k∂βh

l . (A.1)

For H-J coordinates, α and β refer to u, v, w,w and k and l refer to u, v, w,w, ξ1, ξ2. The
metric of H in these coordinates can be written easily. From this, we one can calculate the
induced metric.

2. For the generalized complex coordinates, not necessarily consistent with the H-J structure,
the rows of the induced metric g can be written as a matrix in the general case in the form
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(guu g4uv guw guw)
(gvu gvv gvw gvw)
(gwu gwv gww gww)
(gwu gwv gww gww)

(A.2)

All components of the metric are in general non-vanishing.

3. Holomorphy, implying that the embedding space metric and induced metric are tensors of
type (1,1), implies the vanishing of a large fraction of elements of g4. This gives


0 g4uv 0 guw
gvu 0 gvw 0
0 gwv 0 gww
gwu 0 gww 0

 (A.3)

The symmetry gαβ = gβα leaves only 4 independent matrix elements. g4uv, guw, gvw, gww.
The determinant of this metric vanishes if a partonic orbit is in question.

This is the expression of the induced metric in the Euclidean regions. Partonic orbit corre-
sponds to the interfaces at which guv = 0 is true. The field equations (f1 = 0, f2 = 0) in the
Euclidean region must be solved using Wick rotation.

4. In the Minkowskian regions, where u (or v) serves as a parameter, g4uv reduces to its
Minkowskian contribution and components gvw and guw vanish. Partonic orbits are not pos-
sible in these regions. The induced 3-metric g3 at light-like u coordinate lines in Minkowskian
regions reduces to

 0 0 0
0 0 gww
0 gww 0

 (A.4)

The situation is metrically 2-dimensional. Also g4 is metrically 2-dimensional if the metric
changes from Minkowskian to Euclidean so that g4uv vanishes.

5. If one has f2 = ξ2 − w and f1(ξ1, w, h) is a polynomial of degree n < 5 with respect to
w, analytic expressions for ξi(h,w) are possible and the analytic calculation of the partial
derivatives can be considered. Otherwise, we have to use numerical methods. One could
hope that a symbolic program for calculating partial derivatives could be found .

6. If the reduction of the condition det(g4) = 0 to the condition g4uv = 0 indeed takes place, the
key variable is

g4uv = ∂uh
k∂vh

l = g0uv + skl∂us
k∂vs

l . (A.5)

Here g0uv denotes the M4 contribution to the induced metric. For det(g4) = 0 the M4 and
CP2 contributions cancel each other and one has

g0uv = −skl∂s
ksl . (A.6)

A generalization of a light-like geodesic of H to a bundle of light-like curves parameterized
by the points of the partonic 2-surface is in question.

Acknowledgements: I am grateful for Tuomas Sorakivi for the help in studying the graphical
representations of the space-time surfaces satisfying holography = holomorphy condition.
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