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Abstract

Twistor Grassmannian formalism has made a breakthrough in N = 4 supersymmetric
gauge theories and the Yangian symmetry suggests that much more than mere technical
breakthrough is in question. Twistors seem to be tailor made for TGD but it seems that
the generalization of twistor structure to that for 8-D embedding space H = M4 × CP2 is
necessary. M4 (and S4 as its Euclidian counterpart) and CP2 are indeed unique in the sense
that they are the only 4-D spaces allowing twistor space with Kähler structure.

The Cartesian product of twistor spaces P3 = SU(2, 2)/SU(2, 1) × U(1) and F3 defines
twistor space for the embedding space H and one can ask whether this generalized twistor
structure could allow to understand both quantum TGD and classical TGD defined by the
extremals of Kähler action. In the following I summarize the background and develop a
proposal for how to construct extremals of Kähler action in terms of the generalized twistor
structure. One ends up with a scenario in which space-time surfaces are lifted to twistor
spaces by adding CP1 fiber so that the twistor spaces give an alternative representation for
generalized Feynman diagrams.

There is also a very closely analogy with superstring models. Twistor spaces replace Calabi-
Yau manifolds and the modification recipe for Calabi-Yau manifolds by removal of singularities
can be applied to remove self-intersections of twistor spaces and mirror symmetry emerges
naturally. The overall important implication is that the methods of algebraic geometry used
in super-string theories should apply in TGD framework.

The physical interpretation is totally different in TGD. The landscape is replaced with
twistor spaces of space-time surfaces having interpretation as generalized Feynman diagrams
and twistor spaces as sub-manifolds of P3 × F3 replace Witten’s twistor strings.

The classical view about twistorialization of TGD makes possible a more detailed formu-
lation of the previous ideas about the relationship between TGD and Witten’s theory and
twistor Grassmann approach. Furthermore, one ends up to a formulation of the scattering
amplitudes in terms of Yangian of the super-symplectic algebra relying on the idea that scat-
tering amplitudes are sequences consisting of algebraic operations (product and co-product)
having interpretation as vertices in the Yangian extension of super-symplectic algebra. These
sequences connect given initial and final states and having minimal length. One can say that
Universe performs calculations.

1 Introduction

Twistor Grassmannian formalism has made a breakthrough in N = 4 supersymmetric gauge
theories and the Yangian symmetry suggests that much more than mere technical breakthrough
is in question. Twistors seem to be tailor made for TGD but it seems that the generalization of
twistor structure to that for 8-D embedding space H = M4×CP2 is necessary. M4 (and S4 as its
Euclidian counterpart) and CP2 are indeed unique in the sense that they are the only 4-D spaces
allowing twistor space with Kähler structure.

The Cartesian product of twistor spaces P3 = SU(2, 2)/SU(2, 1)×U(1) and F3 defines twistor
space for the embedding space H and one can ask whether this generalized twistor structure could
allow to understand both quantum TGD [K19, K13, K15] and classical TGD [K4] defined by the
extremals of Kähler action.

In the following I summarize first the basic results and problems of the twistor approach. After
that I describe some of the mathematical background and develop a proposal for how to construct
extremals of Kähler action in terms of the generalized twistor structure. One ends up with a
scenario in which space-time surfaces are lifted to twistor spaces by adding CP1 fiber so that the
twistor spaces give an alternative representation for generalized Feynman diagrams having as lines
space-time surfaces with Euclidian signature of induced metric and having wormhole contacts as
basic building bricks.

There is also a very close analogy with superstring models. Twistor spaces replace Calabi-Yau
manifolds [A1, A6] and the modification recipe for Calabi-Yau manifolds by removal of singularities
can be applied to remove self-intersections of twistor spaces and mirror symmetry [B3]emerges
naturally. The overall important implication is that the methods of algebraic geometry used in
super-string theories should apply in TGD framework.

The physical interpretation is totally different in TGD. Twistor space has space-time as base-
space rather than forming with it Cartesian factors of a 10-D space-time. The Calabi-Yau landscape
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is replaced with the space of twistor spaces of space-time surfaces having interpretation as gener-
alized Feynman diagrams and twistor spaces as sub-manifolds of P3 × F3 replace Witten’s twistor
strings [B8]. The space of twistor spaces is the lift of the “world of classical worlds” (WCW)
by adding the CP1 fiber to the space-time surfaces so that the analog of landscape has beautiful
geometrization.

The classical view about twistorialization of TGD makes possible a more detailed formulation of
the previous ideas about the relationship between TGD and Witten’s theory and twistor Grassmann
approach.

1. The notion of quaternion analyticity extending the notion of ordinary analyticity to 4-D
context is highly attractive but has remained one of the long-standing ideas difficult to take
quite seriously but equally difficult to throw to paper basked. Four-manifolds possess almost
quaternion structure. In twistor space context the formulation of quaternion analyticity be-
comes possible and relies on an old notion of tri-holomorphy about which I had not been aware
earlier. The natural formulation for the preferred extremal property is as a condition stating
that various charges associated with generalized conformal algebras vanish for preferred ex-
tremals. This leads to ask whether Euclidian space-time regions could be quaternion-Kähler
manifolds for which twistor spaces are so called Fano spaces. In Minkowskian regions so
called Hamilton-Jacobi property would apply.

2. The generalization of Witten’s twistor theory to TGD framework is a natural challenge and
the 2-surfaces studied defining scattering amplitudes in Witten’s theory could correspond to
partonic 2-surfaces identified as algebraic surfaces characterized by degree and genus. Besides
this also string world sheets are needed. String worlds have 1-D lines at the light-like orbits
of partonic 2-surfaces as their boundaries serving as carriers of fermions. This leads to a
rather detailed generalization of Witten’s approach using the generalization of twistors to
8-D context.

3. The generalization of the twistor Grassmannian approach to 8-D context is second fascinating
challenge. If one requires that the basic formulas relating twistors and four-momentum
generalize one must consider the situation in tangent space M8 of embedding space (M8−H
duality) and replace the usual sigma matrices having interpretation in terms of complexified
quaternions with octonionic sigma matrices.

The condition that octonionic spinors are are equivalent with ordinary spinors has strong
consequences. Induced spinors must be localized to 2-D string world sheets, which are (co-
)commutative sub-manifolds of (co-)quaternionic space-time surface. Also the gauge fields
should vanish since they induce a breaking of associativity even for quaternionic and complex
surface so that CP2 projection of string world sheet must be 1-D. If one requires also the
vanishing of gauge potentials, the projection is geodesic circle of CP2 so that string world
sheets are restricted to Minkowskian space-time regions. Although the theory would be free
in fermionic degrees of freedom, the scattering amplitudes are non-trivial since vertices cor-
respond to partonic 2-surfaces at which partonic orbits are glued together along common
ends. The classical light-like 8-momentum associated with the boundaries of string world
sheets defines the gravitational dual for 4-D momentum and color quantum numbers associ-
ated with imbedding space spinor harmonics. This leads to a more detailed formulation of
Equivalence Principle which would reduce to M8 −H duality basically.

Number theoretic interpretation of the positivity of Grassmannians is highly suggestive since
the canonical identification maps p-adic numbers to non-negative real numbers. A possible
generalization is obtained by replacing positive real axis with upper half plane defining hyper-
bolic space having key role in the theory of Riemann surfaces. The interpretation of scattering
amplitudes as representations of permutations generalizes to interpretation as braidings at
surfaces formed by the generalized Feynman diagrams having as lines the light-like orbits of
partonic surfaces. This because 2-fermion vertex is the only interaction vertex and induced
by the non-continuity of the induced Dirac operator at partonic 2-surfaces. OZI rule gener-
alizes and implies an interpretation in terms of braiding consistent with the TGD as almost
topological QFT vision. This suggests that non-planar twistor amplitudes are constructible
as analogs of knot and braid invariants by a recursive procedure giving as an outcome planar
amplitudes.
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4. Yangian symmetry is associated with twistor amplitudes and emerges in TGD from com-
pletely different idea interpreting scattering amplitudes as representations of algebraic ma-
nipulation sequences of minimal length (preferred extremal instead of path integral over
space-time surfaces) connecting given initial and final states at boundaries of causal dia-
mond. The algebraic manipulations are carried out in Yangian using product and co-product
defining the basic 3-vertices analogous to gauge boson absorption and emission. 3-surface
representing elementary particle splits into two or vice versa such that second copy carries
quantum numbers of gauge boson or its super counterpart. This would fix the scattering
amplitude for given 3-surface and leave only the functional integral over 3-surfaces.

2 Background And Motivations

In the following some background plus basic facts and definitions related to twistor spaces are
summarized. Also reasons for why twistor are so relevant for TGD is considered at general level.

2.1 Basic Results And Problems Of Twistor Approach

The author describes both the basic ideas and results of twistor approach as well as the problems.

2.1.1 Basic results

There are three deep results of twistor approach besides the impressive results which have emerged
after the twistor resolution.

1. Massless fields of arbitrary helicity in 4-D Minkowski space are in 1-1 correspondence with
elements of Dolbeault cohomology in the twistor space CP3. This was already the discovery
of Penrose..The connection comes from Penrose transform. The light-like geodesics of M4

correspond to points of 5-D sub-manifold of CP3 analogous to light-cone boundary. The
points of M4 correspond to complex lines (Riemann spheres) of the twistor space CP3: one
can imagine that the point of M4 corresponds to all light-like geodesics emanating from it
and thus to a 2-D surface (sphere) of CP3. Twistor transform represents the value of a
massless field at point of M4 as a weighted average of its values at sphere of CP3. This
correspondence is formulated between open sets of M4 and of CP3. This fits very nicely with
the needs of TGD since causal diamonds which can be regarded as open sets of M4 are the
basic objects in zero energy ontology (ZEO).

2. Self-dual instantons of non-Abelian gauge theories for SU(n) gauge group are in one-one
correspondence with holomorphic rank-N vector bundles in twistor space satisfying some
additional conditions. This generalizes the correspondence of Penrose to the non-Abelian
case. Instantons are also usually formulated using classical field theory at four-sphere S4

having Euclidian signature.

3. Non-linear gravitons having self-dual geometry are in one-one correspondence with spaces
obtained as complex deformations of twistor space satisfying certain additional conditions.
This is a generalization of Penrose’s discovery to the gravitational sector.

Complexification of M4 emerges unavoidably in twistorial approach and Minkowski space iden-
tified as a particular real slice of complexified M4 corresponds to the 5-D subspace of twistor
space in which the quadratic form defined by the SU(2,2) invariant metric of the 8-dimensional
space giving twistor space as its projectivization vanishes. The quadratic form has also positive
and negative values with its sign defining a projective invariant, and this correspond to complex
continuations of M4 in which positive/negative energy parts of fields approach to zero for large
values of imaginary part of M4 time coordinate.

Interestgingly, this complexification of M4 is also unavoidable in the number theoretic approach
to TGD: what one must do is to replace 4-D Minkowski space with a 4-D slice of 8-D complexified
quaternions. What is interesting is that real M4 appears as a projective invariant consisting of
light-like projective vectors of C4 with metric signature (4,4). Equivalently, the points of M4

represented as linear combinations of sigma matrices define hermitian matrices.
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2.1.2 Basic problems of twistor approach

The best manner to learn something essential about a new idea is to learn about its problems.
Difficulties are often put under the rug but the thesis is however an exception in this respect. It
starts directly from the problems of twistor approach. There are two basic challenges.

1. Twistor approach works as such only in the case of Minkowski space. The basic condition for
its applicability is that the Weyl tensor is self-dual. For Minkowskian signature this leaves
only Minkowski space under consideration. For Euclidian signature the conditions are not
quite so restrictive. This looks a fatal restriction if one wants to generalize the result of
Penrose to a general space-time geometry. This difficulty is known as “googly” problem.

According to the thesis MHV construction of tree amplitudes of N = 4 SYM based on topo-
logical twistor strings in CP3 meant a breakthrough and one can indeed understand also have
analogs of non-self-dual amplitudes. The problem is however that the gravitational theory
assignable to topological twistor strings is conformal gravity, which is generally regarded as
non-physical. There have been several attempts to construct the on-shell scattering ampli-
tudes of Einstein’s gravity theory as subset of amplitudes of conformal gravity and also thesis
considers this problem.

2. The construction of quantum theory based on twistor approach represents second challenge.
In this respect the development of twistor approach to N = 4 SYM meant a revolution and
one can indeed construct twistorial scattering amplitudes in M4.

2.2 Results About Twistors Relevant For TGD

First some background.

1. The twistors originally introduced by Penrose (1967) have made breakthrough during last
decade. First came the twistor string theory of Edward Witten [B8] proposed twistor string
theory and the work of Nima-Arkani Hamed and collaborators [B10] led to a revolution in the
understanding of the scattering amplitudes of scattering amplitudes of gauge theories [B5,
B4, B11]. Twistors do not only provide an extremely effective calculational method giving
even hopes about explicit formulas for the scattering amplitudes of N = 4 supersymmetric
gauge theories but also lead to an identification of a new symmetry: Yangian symmetry [A2],
[B6, B7], which can be seen as multilocal generalization of local symmetries.

This approach, if suitably generalized, is tailor-made also for the needs of TGD. This is why I
got seriously interested on whether and how the twistor approach in empty Minkowski space
M4 could generalize to the case of H = M4 × CP2. The twistor space associated with H
should be just the cartesian product of those associated with its Cartesian factors. Can one
assign a twistor space with CP2?

2. First a general result [A4] deserves to be mentioned: any oriented manifold X with Riemann
metric allows 6-dimensional twistor space Z as an almost complex space. If this structure is
integrable, Z becomes a complex manifold, whose geometry describes the conformal geometry
of X. In general relativity framework the problem is that field equations do not imply
conformal geometry and twistor Grassmann approach certainly requires conformal structure.

3. One can consider also a stronger condition: what if the twistor space allows also Kähler
structure? The twistor space of empty Minkowski space M4 (and its Euclidian counterpart
S4 is the Minkowskian variant of P3 = SU(2, 2)/SU(2, 1)× U(1) of 3-D complex projective
space CP3 = SU(4)/SU(3)× U(1) and indeed allows Kähler structure.

The points of the Euclidian twistor space CP3 = SU(4)/SU(3)×U(1) can be represented by
any column of the 4×4 matrix representing element of SU(4) with columns differing by phase
multiplication being identified. One has four coordinate charts corresponding to four different
choices of the column. The points of its Minkowskian variant CP2,1 = SU(2, 2)/SU(2, 1) ×
U(1) can be represented in similar manner as U(1) gauge equivalence classes for given column
of SU(3,1) matrices, whose rows and columns satisfy orthonormality conditions with respect
to the hermitian inner product defined by Minkowskian metric ε = (1, 1,−1,−1).
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Rather remarkably, there are no other space-times with Minkowski signature allowing twistor
space with Kähler structure [A4]. Does this mean that the empty Minkowski space of special
relativity is much more than a limit at which space-time is empty?

This also means a problem for GRT. Twistor space with Kähler structure seems to be needed
but general relativity does not allow it. Besides twistor problem GRT also has energy prob-
lem: matter makes space-time curved and the conservation laws and even the definition of
energy and momentum are lost since the underlying symmetries giving rise to the conservation
laws through Noether’s theorem are lost. GRT has therefore two bad mathematical problems
which might explain why the quantization of GRT fails. This would not be surprising since
quantum theory is to high extent representation theory for symmetries and symmetries are
lost. Twistors would extend these symmetries to Yangian symmetry but GRT does not allow
them.

4. What about twistor structure in CP2? CP2 allows complex structure (Weyl tensor is self-
dual), Kähler structure plus accompanying symplectic structure, and also quaternion struc-
ture. One of the really big personal surprises of the last years has been that CP2 twistor space
indeed allows Kähler structure meaning the existence of antisymmetric tensor representing
imaginary unit whose tensor square is the negative of metric in turn representing real unit.

The article by Nigel Hitchin, a famous mathematical physicist, describes a detailed argument
identifying S4 and CP2 as the only compact Riemann manifolds allowing Kählerian twistor
space [A4]. Hitchin sent his discovery for publication 1979. An amusing co-incidence is that
I discovered CP2 just this year after having worked with S2 and found that it does not really
allow to understand standard model quantum numbers and gauge fields. It is difficult to
avoid thinking that maybe synchrony indeed a real phenomenon as TGD inspired theory of
consciousness predicts to be possible but its creator cannot quite believe. Brains at different
side of globe discover simultaneously something closely related to what some conscious self
at the higher level of hierarchy using us as instruments of thinking just as we use nerve cells
is intensely pondering.

Although 4-sphere S4 allows twistor space with Kähler structure, it does not allow Kähler
structure and cannot serve as candidate for S in H = M4 × S. As a matter of fact, S4 can
be seen as a Wick rotation of M4 and indeed its twistor space is CP3.

In TGD framework a slightly different interpretation suggests itself. The Cartesian products
of the intersections of future and past light-cones - causal diamonds (CDs) - with CP2 -
play a key role in ZEO (ZEO) [K1]. Sectors of “world of classical worlds” (WCW) [K10, K7]
correspond to 4-surfaces inside CD×CP2 defining a the region about which conscious observer
can gain conscious information: state function reductions - quantum measurements - take
place at its light-like boundaries in accordance with holography. To be more precise, wave
functions in the moduli space of CDs are involved and in state function reductions come as
sequences taking place at a given fixed boundary. This kind of sequence is identifiable as self
and give rise to the experience about flow of time. When one replaces Minkowski metric with
Euclidian metric, the light-like boundaries of CD are contracted to a point and one obtains
topology of 4-sphere S4.

5. Another really big personal surprise was that there are no other compact 4-manifolds with
Euclidian signature of metric allowing twistor space with Kähler structure! The embedding
space H = M4×CP2 is not only physically unique since it predicts the quantum number spec-
trum and classical gauge potentials consistent with standard model but also mathematically
unique!

After this I dared to predict that TGD will be the theory next to GRT since TGD generalizes
string model by bringing in 4-D space-time. The reasons are many-fold: TGD is the only
known solution to the two big problems of GRT: energy problem and twistor problem. TGD
is consistent with standard model physics and leads to a revolution concerning the identifi-
cation of space-time at microscopic level: at macroscopic level it leads to GRT but explains
some of its anomalies for which there is empirical evidence (for instance, the observation
that neutrinos arrived from SN1987A at two different speeds different from light velocity [?]
has natural explanation in terms of many-sheeted space-time). TGD avoids the landscape
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problem of M-theory and anthropic non-sense. I could continue the list but I think that this
is enough.

6. The twistor space of CP2 is 3-complex dimensional flag manifold F3 = SU(3)/U(1) × U(1)
having interpretation as the space for the choices of quantization axes for the color hyper-
charge and isospin. This choice is made in quantum measurement of these quantum numbers
and a means localization to single point in F3. The localization in F3 could be higher level
measurement leading to the choice of quantizations for the measurement of color quantum
numbers.

F3 is symmetric space meaning that besides being a coset space with SU(3) invariant metric
it also has involutions acting as a reflection at geodesics through a point remaining fixed
under the involution. As a symmetric space with Fubini-Study metric F3 is positive constant
curvature space having thus positive constant sectional curvatures. This implies Einstein
space property. This also conforms with the fact that F3 is CP1 bundle over CP2 as base
space (for more details see http://tinyurl.com/ychdeqjz ).

The points of flag manifold SU(3)/U(1)×U(1) can be represented locally by identifying SU(3)
matrices for which columns differ by multiplication from left with exponential ei(aY+bI3), a
and b arbitrary real numbers. This transformation allows what might be called a “gauge
choice”. For instance, first two elements of the first row can be made real in this manner.
These coordinates are not global.

7. Analogous interpretation could make sense for M4 twistors represented as points of P3.
Twistor corresponds to a light-like line going through some point of M4 being labelled by 4
position coordinates and 2 direction angles: what higher level quantum measurement could
involve a choice of light-like line going through a point of M4? Could the associated spatial
direction specify spin quantization axes? Could the associated time direction specify preferred
rest frame? Does the choice of position mean localization in the measurement of position? Do
momentum twistors relate to the localization in momentum space? These questions remain
fascinating open questions and I hope that they will lead to a considerable progress in the
understanding of quantum TGD.

8. It must be added that the twistor space of CP2 popped up much earlier in a rather unexpected
context [K9]: I did not of course realize that it was twistor space. Topologist Barbara
Shipman [A3] has proposed a model for the honeybee dance leading to the emergence of
F3. The model led her to propose that quarks and gluons might have something to do with
biology. Because of her position and specialization the proposal was forgiven and forgotten
by community. TGD however suggests both dark matter hierarchies and p-adic hierarchies
of physics [K8, ?]. For dark hierarchies the masses of particles would be the standard ones
but the Compton scales would be scaled up by heff/h = n [?]. Below the Compton scale
one would have effectively massless gauge boson: this could mean free quarks and massless
gluons even in cell length scales. For p-adic hierarchy mass scales would be scaled up or
down from their standard values depending on the value of the p-adic prime.

2.3 Basic Definitions Related To Twistor Spaces

One can find from web several articles explaining the basic notions related to twistor spaces and
Calabi-Yau manifolds. At the first look the notions of twistor as it appears in the writings of
physicists and mathematicians don’t seem to have much common with each other and it requires
effort to build the bridge between these views. The bridge comes from the association of points of
Minkowski space with the spheres of twistor space: this clearly corresponds to a bundle projection
from the fiber to the base space, now Minkowski space. The connection of the mathematician’s
formulation with spinors remains still somewhat unclear to me although one can understand CP1

as projective space associated with spinors with 2 complex components. Minkowski signature poses
additional challenges. In the following I try my best to summarize the mathematician’s view, which
is very natural in classical TGD.

There are many variants of the notion of twistor depending on whether how powerful assump-
tions one is willing to make. The weakest definition of twistor space is as CP1 bundle of almost

http://tinyurl.com/ychdeqjz
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complex structures in the tangent spaces of an orientable 4-manifold. Complex structure at given
point means selection of antisymmetric form J whose natural action on vector rotates a vector
in the plane defined by it by π/2 and thus represents the action of imaginary unit. One must
perform this kind of choice also in normal plane and the direct sum of the two choices defines the
full J . If one chooses J to be self-dual or anti-self-dual (eigenstate of Hodge star operation), one
can fix J uniquely. Orientability makes possible the Hodge star operation involving 4-dimensional
permutation tensor.

The condition i1 = −1 is translated to the condition that the tensor square of J equals to
J2 = −g. The possible choices of J span sphere S2 defining the fiber of the twistor spaces. This is
not quite the complex sphere CP1, which can be thought of as a projective space of spinors with
two complex components. Complexification must be performed in both the tangent space of X4

and of S2. Note that in the standard approach to twistors the entire 6-D space is projective space
P3 associated with the C8 having interpretation in terms of spinors with 4 complex components.

One can introduce almost complex structure also to the twistor space itself by extending the
almost complex structure in the 6-D tangent space obtained by a preferred choice of J by identifying
it as a point of S2 and acting in other points of S2 identified as antisymmetric tensors. If these
points are interpreted as imaginary quaternion units, the action is commutator action divided by
2. The existence of quaternion structure of space-time surfaces in the sense as I have proposed in
TGD framework might be closely related to the twistor structure.

Twistor structure as bundle of almost complex structures having itself almost complex structure
is characterized by a hermitian Kähler form ω defining the almost complex structure of the twistor
space. Three basic objects are involved: the hermitian form h, metric g and Kähler form ω
satisfying h = g + iω, g(X,Y ) = ω(X, JY ).

In the base space the metric of twistor space is the metric of the base space and in the tangent
space of fibre the natural metric in the space of antisymmetric tensors induced by the metric of the
base space. Hence the properties of the twistor structure depend on the metric of the base space.

The relationship to the spinors requires clarification. For 2-spinors one has natural Lorentz
invariant antisymmetric bilinear form and this seems to be the counterpart for J?

One can consider various additional conditions on the definition of twistor space.

1. Kähler form ω is not closed in general. If it is, it defines symplectic structure and Kähler
structure. S4 and CP2 are the only compact spaces allowing twistor space with Kähler
structure [A4].

2. Almost complex structure is not integrable in general. In the general case integrability
requires that each point of space belongs to an open set in which vector fields of type (1,
0) or (0, 1) having basis ∂/∂zk and ∂/∂zk expressible as linear combinations of real vector
fields with complex coefficients commute to vector fields of same type. This is non-trivial
conditions since the leading names for the vector field for the partial derivatives does not yet
guarantee these conditions.

This necessary condition is also enough for integrability as Newlander and Nirenberg have
demonstrated. An explicit formulation for the integrability is as the vanishing of Nijenhuis
tensor associated with the antisymmetric form J (see (http://tinyurl.com/ybp9vsa5 and
http://tinyurl.com/y8j36p4m ). Nijenhuis tensor characterizes Nijenhuis bracket gener-
alizing ordinary Lie bracket of vector fields (for detailed formula see http://tinyurl.com/

y83mbnso ).

3. In the case of twistor spaces there is an alternative formulation for the integrability. Curvature
tensor maps in a natural manner 2-forms to 2-forms and one can decompose the Weyl tensor
W identified as the traceless part of the curvature tensor to self-dual and anti-self-dual parts
W+ and W−, whose actions are restricted to self-dual resp. antiself-dual forms (self-dual
and anti-self-dual parts correspond to eigenvalue + 1 and -1 under the action of Hodge ∗

operation: for more details see http://tinyurl.com/ybkhj4np ). If W+ or W− vanishes
- in other worlds W is self-dual or anti-self-dual - the assumption that J is self-dual or
anti-self-dual guarantees integrability. One says that the metric is anti-self-dual (ASD).
Note that the vanishing of Weyl tensor implies local conformal flatness (M4 and sphere are
obviously conformally flat). One might think that ASD condition guarantees that the parallel
translation leaves J invariant.

http://tinyurl.com/ybp9vsa5 
http://tinyurl.com/y8j36p4m
http://tinyurl.com/y83mbnso
http://tinyurl.com/y83mbnso
http://tinyurl.com/ybkhj4np
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ASD property has a nice implication: the metric is balanced. In other words one has d(ω ∧
ω) = 2ω ∧ dω = 0.

4. If the existence of complex structure is taken as a part of definition of twistor structure, one
encounters difficulties in general relativity. The failure of spin structure to exist is similar
difficulty: for CP2 one must indeed generalize the spin structure by coupling Kähler gauge
potential to the spinors suitably so that one obtains gauge group of electroweak interactions.

5. One could also give up the global existence of complex structure and require symplectic
structure globally: this would give dω = 0. A general result is that hyperbolic 4-manifolds
allow symplectic structure and ASD manifolds allow complex structure and hence balanced
metric.

2.4 Why Twistor Spaces With Kähler Structure?

I have not yet even tried to answer an obvious question. Why the fact that M4 and CP2 have
twistor spaces with Kähler structure could be so important that it could fix the entire physics?
Let us consider a less general question. Why they would be so important for the classical TGD -
exact part of quantum TGD - defined by the extremals of Kähler action [K3] ?

1. Properly generalized conformal symmetries are crucial for the mathematical structure of
TGD [K7, K20, K6, K18]. Twistor spaces have almost complex structure and in these two
special cases also complex, Kähler, and symplectic structures (note that the integrability
of the almost complex structure to complex structure requires the self-duality of the Weyl
tensor of the 4-D manifold).

For years ago I considered the possibility that complex 3-manifolds of CP3×CP3 could have
the structure of S2 fiber space and have space-time surfaces as base space. I did not realize
that these spaces could be twistor spaces nor did I realize that CP2 allows twistor space with
Kähler structure so that CP3 × F3 looks a more plausible choice.

The expectation was that the Cartesian product CP3 × F3 of the two twistor spaces with
Kähler structure is fundamental for TGD. The obvious wishful thought is that this space
makes possible the construction of the extremals of Kähler action in terms of holomorphic
surfaces defining 6-D twistor sub-spaces of CP3 × F3 allowing to circumvent the technical
problems due to the signature of M4 encountered at the level of M4 × CP2. It would also
make the magnificent machinery of the algebraic geometry so powerful in string theories
a tool of TGD. Here CP3 could be replaced with its non-compact form and the problem
is that one can have only compactification of M4 for which metric is defined only modulo
conformal scaling. There is however a problem: the compactified Minkowski space or its
complexification has a metric defined only modulo conformal factor. This is not a problem
in conformally invariant theories but becomes a problem if one wants to speak of induced
metric.

The next realization was that M4 allows twistor bundle also in purely geometric sense and
this bundle is just T (M4) = M4 × CP2. The two variants of twistor space would naturally
apply at the level of momentum space and embedding space.

2. Every 4-D orientable Riemann manifold allows a twistor space as 6-D bundle with CP1 as fiber
and possessing almost complex structure. Metric and various gauge potentials are obtained
by inducing the corresponding bundle structures. Hence the natural guess is that the twistor
structure of space-time surface defined by the induced metric is obtained by induction from
that for T (M4) × F3 by restricting its twistor structure to a 6-D (in real sense) surface
of T (M4) × F3 with a structure of twistor space having at least almost complex structure
with CP1 as a fiber. For the embedding of the twistor space of space-time this requires the
identification of S2 fibers of T (M4) and F3. If so then one can indeed identify the base space
as 4-D space-time surface in M4 × CP2 using bundle projections in the factors T (M4) and
F3.

3. There might be also a connection to the number theoretic vision about the extremals of Kähler
action. At space-time level however complexified quaternions and octonions could allow
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alternative formulation. I have indeed proposed that space-time surfaces have associative of
co-associative meaning that the tangent space or normal space at a given point belongs to
quaternionic subspace of complexified octonions.

3 The Identification Of 6-D Twistor Spaces As Sub-Manifolds
Of 12-D Twistor Space

How to identify the 6-D sub-manifolds with the structure of twistor space? Is this property all
that is needed? Can one find a simple solution to this condition? What is the relationship of
twistor spaces to the Calabi-Yau manifolds of super string models? In the following intuitive
considerations of a simple minded physicist. Mathematician could probably make much more
interesting comments.

3.1 Conditions For Twistor Spaces As Sub-Manifolds

Consider the conditions that must be satisfied using local trivializations of the twistor spaces. It
will be assumed that the twistor space T (M4) is CP3 or its Minkowskian variant. It has turned
out that a more reasonable option T (M4) = M4 × CP1 is possible. The following consideration
is however for CP3 option. Before continuing let us introduce complex coordinates zi = xi + iyi
resp. wi = ui + ivi for CP3 resp. F3.

1. 6 conditions are required and they must give rise by bundle projection to 4 conditions relating
the coordinates in the Cartesian product of the base spaces of the two bundles involved and
thus defining 4-D surface in the Cartesian product of compactified M4 and CP2.

2. One has Cartesian product of two fiber spaces with fiber CP1 giving fiber space with fiber
CP 1

1 × CP 2
1 . For the 6-D surface the fiber must be CP1. It seems that one must identify

the two spheres CP i1. Since holomorphy is essential, holomorphic identification w1 = f(z1)
or z1 = f(w1) is the first guess. A stronger condition is that the function f is meromorphic
having thus only finite numbers of poles and zeros of finite order so that a given point of CP i1
is covered by CP i+1

1 . Even stronger and very natural condition is that the identification is
bijection so that only Möbius transformations parametrized by SL(2, C) are possible.

3. Could the Möbius transformation f : CP 1
1 → CP 2

1 depend parametrically on the coordinates
z2, z3 so that one would have w1 = f1(z1, z2, z3), where the complex parameters a, b, c, d
(ad − bc = 1) of Möbius transformation depend on z2 and z3 holomorphically? Does this
mean the analog of local SL(2, C) gauge invariance posing additional conditions? Does this
mean that the twistor space as surface is determined up to SL(2, C) gauge transformation?

What conditions can one pose on the dependence of the parameters a, b, c, d of the Möbius
transformation on (z2, z3)? The spheres CP1 defined by the conditions w1 = f(z1, z2, z3)
and z1 = g(w1, w2, w3) must be identical. Inverting the first condition one obtains z1 =
f−1(w1, z2, z3). If one requires that his allows an expression as z1 = g(w1, w2, w3), one must
assume that z2 and z3 can be expressed as holomorphic functions of (w2, w3): zi = fi(wk),
i = 2, 3, k = 2, 3. Of course, non-holomorphic correspondence cannot be excluded.

4. Further conditions are obtained by demanding that the known extremals - at least non-
vacuum extremals - are allowed. The known extremals [K3] can be classified into CP2

type vacuum extremals with 1-D light-like curve as M4 projection, to vacuum extremals
with CP2 projection, which is Lagrangian sub-manifold and thus at most 2-dimensional, to
massless extremals with 2-D CP2 projection such that CP2 coordinates depend on arbitrary
manner on light-like coordinate defining local propagation direction and space-like coordinate
defining a local polarization direction, and to string like objects with string world sheet as
M4 projection (minimal surface) and 2-D complex sub-manifold of CP2 as CP2 projection, .
There are certainly also other extremals such as magnetic flux tubes resulting as deformations
of string like objects. Number theoretic vision relying on classical number fields suggest a
very general construction based on the notion of associativity of tangent space or co-tangent
space.
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5. The conditions coming from these extremals reduce to 4 conditions expressible in the holo-
morphic case in terms of the base space coordinates (z2, z3) and (w2, w3) and in the more
general case in terms of the corresponding real coordinates. It seems that holomorphic ansatz
is not consistent with the existence of vacuum extremals, which however give vanishing contri-
bution to transition amplitudes since WCW (“world of classical worlds”) metric is completely
degenerate for them.

The mere condition that one has CP1 fiber bundle structure does not force field equations
since it leaves the dependence between real coordinates of the base spaces free. Of course,
CP1 bundle structure alone does not imply twistor space structure. One can ask whether
non-vacuum extremals could correspond to holomorphic constraints between (z2, z3) and
(w2, w3).

6. The metric of twistor space is not Kähler in the general case. However, if it allows complex
structure there is a Hermitian form ω, which defines what is called balanced Kähler form [A5]
satisfying d(ω ∧ ω) = 2ω ∧ dω = 0: ordinary Kähler form satisfying dω = 0 is special case
about this. The natural metric of compact 6-dimensional twistor space is therefore balanced.
Clearly, mere CP1 bundle structure is not enough for the twistor structure. If the Kähler
and symplectic forms are induced from those of CP3 × Y3, highly non-trivial conditions are
obtained for the embedding of the twistor space, and one might hope that they are equivalent
with those implied by Kähler action at the level of base space.

7. Pessimist could argue that field equations are additional conditions completely independent
of the conditions realizing the bundle structure! One cannot exclude this possibility. Mathe-
matician could easily answer the question about whether the proposed CP1 bundle structure
with some added conditions is enough to produce twistor space or not and whether field
equations could be the additional condition and realized using the holomorphic ansatz.

3.2 Twistor Spaces By Adding CP1 Fiber To Space-Time Surfaces

The physical picture behind TGD is the safest starting point in an attempt to gain some idea
about what the twistor spaces look like.

1. Canonical embeddings of M4 and CP2 and their disjoint unions are certainly the natural
starting point and correspond to canonical embeddings of CP3 and F3 to CP3 × F3.

2. Deformations of M4 correspond to space-time sheets with Minkowskian signature of the
induced metric and those of CP2 to the lines of generalized Feynman diagrams. The simplest
deformations of M4 are vacuum extremals with CP2 projection which is Lagrangian manifold.

Massless extremals represent non-vacuum deformations with 2-D CP2 projection. CP2 co-
ordinates depend on local light-like direction defining the analog of wave vector and local
polarization direction orthogonal to it.

The simplest deformations of CP2 are CP2 type extremals with light-like curve as M4 projec-
tion and have same Kähler form and metric as CP2. These space-time regions have Euclidian
signature of metric and light-like 3-surfaces separating Euclidian and Minkowskian regions
define parton orbits.

String like objects are extremals of type X2 × Y 2, X2 minimal surface in M4 and Y 2 a
complex sub-manifold of CP2. Magnetic flux tubes carrying monopole flux are deformations
of these.

Elementary particles are important piece of picture. They have as building bricks wormhole
contacts connecting space-time sheets and the contacts carry monopole flux. This requires
at least two wormhole contacts connected by flux tubes with opposite flux at the parallel
sheets.

3. Space-time surfaces are constructed using as building bricks space-time sheets, in particular
massless exrremals, deformed pieces of CP2 defining lines of generalized Feynman diagrams
as orbits of wormhole contacts, and magnetic flux tubes connecting the lines. Space-time
surfaces have in the generic case discrete set of self intersections and it is natural to remove
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them by connected sum operation. Same applies to twistor spaces as sub-manifolds of CP3×
F3 and this leads to a construction analogous to that used to remove singularities of Calabi-
Yau spaces [A5].

Physical intuition suggests that it is possible to find twistor spaces associated with the basic
building bricks and to lift this engineering procedure to the level of twistor space in the sense that
the twistor projections of twistor spaces would give these structure. Lifting would essentially mean
assigning CP1 fiber to the space-time surfaces.

1. Twistor spaces should decompose to regions for which the metric induced from the CP3×F3

metric has different signature. In particular, light-like 5-surfaces should replace the light-like
3-surfaces as causal horizons. The signature of the Hermitian metric of 4-D (in complex
sense) twistor space is (1, 1, -1, -1). Minkowskian variant of CP3 is defined as projective
space SU(2, 2)/SU(2, 1)× U(1). The causal diamond (CD) (intersection of future and past
directed light-cones) is the key geometric object in ZEO (ZEO) and the generalization to the
intersection of twistorial light-cones is suggestive.

2. Projective twistor space has regions of positive and negative projective norm, which are
3-D complex manifolds. It has also a 5-dimensional sub-space consisting of null twistors
analogous to light-cone and has one null direction in the induced metric. This light-cone has
conic singularity analogous to the tip of the light-cone of M4.

These conic singularities are important in the mathematical theory of Calabi-You manifolds
since topology change of Calabi-Yau manifolds via the elimination of the singularity can be
associated with them. The S2 bundle character implies the structure of S2 bundle for the
base of the singularity (analogous to the base of the ordinary cone).

3. Null twistor space corresponds at the level of M4 to the light-cone boundary (causal diamond
has two light-like boundaries). What about the light-like orbits of partonic 2-surfaces whose
light-likeness is due to the presence of CP2 contribution in the induced metric? For them
the determinant of induced 4-metric vanishes so that they are genuine singularities in metric
sense. The deformations for the canonical embeddings of this sub-space (F3 coordinates
constant) leaving its metric degenerate should define the lifts of the light-like orbits of partonic
2-surface. The singularity in this case separates regions of different signature of induced
metric.

It would seem that if partonic 2-surface begins at the boundary of CD, conical singularity
is not necessary. On the other hand the vertices of generalized Feynman diagrams are 3-
surfaces at which 3-lines of generalized Feynman digram are glued together. This singularity
is completely analogous to that of ordinary vertex of Feynman diagram. These singularities
should correspond to gluing together 3 deformed F3 along their ends.

4. These considerations suggest that the construction of twistor spaces is a lift of construction
space-time surfaces and generalized Feynman diagrammatics should generalize to the level of
twistor spaces. What is added is CP1 fiber so that the correspondence would rather concrete.

5. For instance, elementary particles consisting of pairs of monopole throats connected buy
flux tubes at the two space-time sheets involved should allow lifting to the twistor level.
This means double connected sum and this double connected sum should appear also for
deformations of F3 associated with the lines of generalized Feynman diagrams. Lifts for the
deformations of magnetic flux tubes to which one can assign CP3 in turn would connect the
two F3s.

6. A natural conjecture inspired by number theoretic vision is that Minkowskian and Euclidian
space-time regions correspond to associative and co-associative space-time regions. At the
level of twistor space these two kinds of regions would correspond to deformations of CP3

and F3. The signature of the twistor norm would be different in this regions just as the
signature of induced metric is different in corresponding space-time regions.

These two regions of space-time surface should correspond to deformations for disjoint unions
of CP3s and F3s and multiple connected sum form them should project to multiple connected
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sum (wormhole contacts with Euclidian signature of induced metric) for deformed CP3s.
Wormhole contacts could have deformed pieces of F3 as counterparts.

There are interesting questions related to the detailed realization of the twistor spaces of space-
time surfaces.

1. In the case of CP2 J would naturally correspond to the Kähler form of CP2. Could one
identify J for the twistor space associated with space-time surface as the projection of J?
For deformations of CP2 type vacuum extremals the normalization of J would allow to satisfy
the condition J2 = −g. For general extremals this is not possible. Should one be ready to
modify the notion of twistor space by allowing this?

2. Or could the associativity/co-associativity condition realized in terms of quaternionicity of
the tangent or normal space of the space-time surface guaranteeing the existence of quaternion
units solve the problem and J could be identified as a representation of unit quaternion? In
this case J would be replaced with vielbein vector and the decomposition 1+3 of the tangent
space implied by the quaternion structure allows to use 3-dimensional permutation symbol
to assign antisymmetric tensors to the vielbein vectors. Also the triviality of the tangent
bundle of 3-D space allowing global choices of the 3 imaginary units could be essential.

3. Does associativity/co-associativity imply twistor space property or could it provide alterna-
tive manner to realize this notion? Or could one see quaternionic structure as an extension of
almost complex structure. Instead of single J three orthogonal J : s (3 almost complex struc-
tures) are introduced and obey the multiplication table of quaternionic units? Instead of S2

the fiber of the bundle would be SO(3) = S3. This option is not attractive. A manifold with
quaternionic tangent space with metric representing the real unit is known as quaternionic
Riemann manifold and CP2 with holonomy U(2) is example of it. A more restrictive condition
is that all quaternion units define closed forms: one has quaternion Kähler manifold, which is
Ricci flat and has in 4-D case Sp(1)=SU(2) holonomy. (see http://tinyurl.com/y9qtoebe

).

4. Anti-self-dual property (ASD) of metric guaranteeing the integrability of almost complex
structure of the twistor space implies the condition ω ∧ dω = 0 for the twistor space. What
does this condition mean physically for the twistor spaces associated with the extremals of
Kähler action? For the 4-D base space this property is of course identically true. ASD
property need of course not be realized.

3.3 Twistor Spaces As Analogs Of Calabi-Yau Spaces Of Super String
Models

CP3 is also a Calabi-Yau manifold in the strong sense that it allows Kähler structure and complex
structure. Witten’s twistor string theory considers 2-D (in real sense) complex surfaces in twistor
space CP3 or its Minkowskian variant. This choice does not however seem to be natural from the
point of view of the induced geometry although it looks natural at the level of momentum space.
It is less well-known that M4 allows also second twistor space T (M4) = M4×CP1, and this looks
very natural concerning twistor lift of TGD replacing space-time surfaces in H with their twistor
spaces in T (H) = T (M4)× T (CP2).

The original identification T (M4) with CP3 or its Minkowskian variant has been given up bit
it inspired some questions discussed in the sequel.

1. Could TGD in twistor space formulation be seen as a generalization of this theory?

2. General twistor space is not Calabi-Yau manifold because it does does not have Kähler
structure. Do twistor spaces replace Calabi-Yaus in TGD framework?

3. Could twistor spaces be Calabi-Yau manifolds in some weaker sense so that one would have
a closer connection with super string models.

Consider the last question.

http://tinyurl.com/y9qtoebe


3.3 Twistor Spaces As Analogs Of Calabi-Yau Spaces Of Super String Models 15

1. One can indeed define non-Kähler Calabi-Yau manifolds by keeping the hermitian metric
and giving up symplectic structure or by keeping the symplectic structure and giving up
hermitian metric (almost complex structure is enough). Construction recipes for non-Kähler
Calabi-Yau manifold are discussed in [A5]. It is shown that these two ways to give up Kähler
structure correspond to duals under so called mirror symmetry [B3] which maps complex and
symplectic structures to each other. This construction applies also to the twistor spaces.

2. For the modification giving up symplectic structure, one starts from a smooth Kähler Calabi-
Yau 3-fold Y , such as CP3. One assumes a discrete set of disjoint rational curves diffeomor-
phic to CP1. In TGD framework work they would correspond to special fibers of twistor
space.

One has singularities in which some rational curves are contracted to point - in twistorial case
the fiber of twistor space would contract to a point - this produces double point singularity
which one can visualize as the vertex at which two cones meet (sundial should give an idea
about what is involved). One deforms the singularity to a smooth complex manifold. One
could interpret this as throwing away the common point and replacing it with connected sum
contact: a tube connecting the holes drilled to the vertices of the two cones. In TGD one
would talk about wormhole contact.

3. Suppose the topology looks locally like S3 × S2 × R± near the singularity, such that two
copies analogous to the two halves of a cone (sundial) meet at single point defining double
point singularity. In the recent case S2 would correspond to the fiber of the twistor space. S3

would correspond to 3-surface and R± would correspond to time coordinate in past/future
direction. S3 could be replaced with something else.

The copies of S3×S2 contract to a point at the common end of R+ and R− so that both the
based and fiber contracts to a point. Space-time surface would look like the pair of future
and past directed light-cones meeting at their tips.

For the first modification giving up symplectic structure only the fiber S2 is contracted to a
point and S2 ×D is therefore replaced with the smooth ”bottom” of S3. Instead of sundial
one has two balls touching. Drill small holes two the two S3s and connect them by connected
sum contact (wormhole contact). Locally one obtains S3×S3 with k connected sum contacts.

For the modification giving up Hermitian structure one contracts only S3 to a point instead
of S2. In this case one has locally two CP3: s touching (one can think that CPn is obtained
by replacing the points of Cn at infinity with the sphere CP1). Again one drills holes and
connects them by a connected sum contact to get k-connected sum of CP3.

For k CP1s the outcome looks locally like to a k-connected sum of S3×S3 or CP3 with k ≥ 2.
In the first case one loses symplectic structure and in the second case hermitian structure.
The conjecture is that the two manifolds form a mirror pair.

The general conjecture is that all Calabi-Yau manifolds are obtained using these two modi-
fications. One can ask whether this conjecture could apply also the construction of twistor
spaces representable as surfaces in CP3 × F3 so that it would give mirror pairs of twistor
spaces.

4. This smoothing out procedures isa actually unavoidable in TGD because twistor space is
sub-manifold. The 6-D twistor spaces in 12-D T (M4) × F3 have in the generic case self
intersections consisting of discrete points. Since the fibers CP1 cannot intersect and since
the intersection is point, it seems that the fibers must contract to a point. In the similar
manner the 4-D base spaces should have local foliation by spheres or some other 3-D objects
with contract to a point. One has just the situation described above.

One can remove these singularities by drilling small holes around the shared point at the
two sheets of the twistor space and connected the resulting boundaries by connected sum
contact. The preservation of fiber structure might force to perform the process in such a way
that local modification of the topology contracts either the 3-D base (S3 in previous example
or fiber CP1 to a point.
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The interpretation of twistor spaces is of course totally different from the interpretation of
Calabi-Yaus in superstring models. The landscape problem of superstring models is avoided and the
multiverse of string models is replaced with generalized Feynman diagrams! Different twistor spaces
correspond to different space-time surfaces and one can interpret them in terms of generalized
Feynman diagrams since bundle projection gives the space-time picture. Mirror symmetry means
that there are two different Calabi-Yaus giving the same physics. Also now twistor space for a
given space-time surface can have several embeddings - perhaps mirror pairs define this kind of
embeddings.

To sum up, the construction of space-times as surfaces of H lifted to those of (almost) complex
sub-manifolds in T (M4)timesF3 with induced twistor structure shares the spirit of the vision that
induction procedure is the key element of classical and quantum TGD. It also gives deep connection
with the mathematical methods applied in super string models and these methods should be of
direct use in TGD.

4 Witten’s Twistor String Approach And TGD

The twistor Grassmann approach has led to a phenomenal progress in the understanding of the
scattering amplitudes of gauge theories, in particular the N = 4 SUSY.

As a non-specialist I have been frustrated about the lack of concrete picture, which would
help to see how twistorial amplitudes might generalize to TGD framework. A pleasant surprise
in this respect was the proposal of a particle interpretation for the twistor amplitudes by Nima
Arkani Hamed et al in the article ”Unification of Residues and Grassmannian Dualities” [B12] (see
http://tinyurl.com/y86mad5n )

In this interpretation incoming particles correspond to spheres CP1 so that n-particle state cor-
responds to (CP1)n/Gl(2) (the modding by Gl(2) might be seen as a kind of formal generalization
of particle identity by replacing permutation group S2 with Gl(2) of 2×2 matrices). If the number
of ”wrong” helicities in twistor diagram is k, this space is imbedded to CPnk−1/Gl(k) as a surface
having degree k − 1 using Veronese map to achieve the embedding. The embedding space can be
identified as Grassmannian G(k, n). This surface defines the locus of the multiple residue integral
defining the twistorial amplitude.

The particle interpretation brings in mind the extension of single particle configuration space
E3 to its Cartesian power E3n/Sn for n-particle system in wave mechanics. This description could
make sense when point-like particle is replaced with 3-surface or partonic 2-surface: one would
have Cartesian product of WCWs divided my Sn. The generalization might be an excellent idea
as far calculations are considered but is not in spirit with the very idea of string models and TGD
that many-particle states correspond to unions of 3-surfaces in H (or light-like boundaries of causal
diamond (CD) in Zero Energy Ontology (ZEO).

Witten’s twistor string theory [B8] is more in spirit with TGD at fundamental level since it is
based on the identification of generalization of vertices as 2-surfaces in twistor space.

1. There are several kinds of twistors involved. For massless external particles in eigenstates
of momentum and helicity null twistors code the momentum and helicity and are pairs of
2-spinor and its conjugate. More general momenta correspond to two independent 2-spinors.

One can perform twistor Fourier transform for the conjugate 2-spinor to obtain twistors
coding for the points of compactified Minkowski space. Wave functions in this twistor space
characterized by massless momentum and helicity appear in the construction of twistor ampli-
tudes. BCFW recursion relation [B4] allows to construct more complex amplitudes assuming
that intermediate states are on mass shells massless states with complex momenta.

One can perform twistor Fourier transformation (there are some technical problems in Minkowski
signature) also for the second 2-spinor to get what are called momentum twistors providing
in some aspects simpler description of twistor amplitudes. These code for the four-momenta
propagating between vertices at which the incoming particles arrive and the differences if
two subsequent momenta are equal to massless external momenta.

2. In Witten’s theory the interactions of incoming particles correspond to amplitudes in which
the twistors appearing as arguments of the twistor space wave functions characterized by

http://tinyurl.com/y86mad5n
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momentum and helicity are localized to complex curves X2 of twistor space CP3 or its
Minkowskian counterpart. This can be seen as a non-local twistor space variant of local
interactions in Minkowski space.

The surfaces X2 are characterized by their degree d (of the polynomial of complex coordinates
defining the algebraic 2-surface) the genus g of the algebraic surface, by the number k of
”wrong” (helicity violating) helicities, and by the number of loops of corresponding diagram
of SUSY amplitude: one has d = k − 1 + l, g ≤ l. The interaction vertex in twistor space is
not anymore completely local but the n particles are at points of the twistorial surface X2.

In the following a proposal generalizing Witten’s approach to TGD is discussed.

1. The fundamental challenge is the generalization of the notion of twistor associated with
massless particle to 8-D context, first for M4 = M4 ×E4 and then for H = M4 ×CP2. The
notion of twistor space solves this question at geometric level. As far as construction of the
TGD variant of Witten’s twistor string is considered, this might be quite enough.

2. M8 − H duality and quantum-classical correspondence however suggest that M8 twistors
might allow tangent space description of four-momentum, spin, color quantum numbers and
electroweak numbers and that this is needed. What comes in mind is the identification of
fermion lines as light-like geodesics possessing M8 valued 8-momentum, which would define
the long sought gravitational counterparts of four-momentum and color quantum numbers
at classical point-particle level. The M8 part of this four-momentum would be equal to
that associated with embedding space spinor mode characterizing the ground state of super-
conformal representation for fundamental fermion.

Hence one might also think of starting from the 4-D condition relating Minkowski coordinates
to twistors and looking what it could mean in the case of M8. The generalization is indeed
possible in M8 = M4 × E4 by its flatness if one replaces gamma matrices with octonionic
gamma matrices.

In the case of M4 ×CP2 situation is different since for octonionic gamma matrices SO(1, 7)
is replaced with G2, and the induced gauge fields have different holonomy structure than for
ordinary gamma matrices and octonionic sigma matrides appearing as charge matrices bring
in also an additional source of non-associativity. Certainly the notion of the twistor Fourier
transform fails since CP2 Dirac operator cannot be algebraized.

Algebraic twistorialization however works for the light-like fermion lines at which the ordinary
and octonionic representations for the induced Dirac operator are equivalent. One can indeed
assign 8-D counterpart of twistor to the particle classically as a representation of light-like
hyper-octonionic four-momentum having massive M4 and CP2 projections and CP2 part
perhaps having interpretation in terms of classical tangent space representation for color and
electroweak quantum numbers at fermionic lines.

If all induced electroweak gauge fields - rather than only charged ones as assumed hitherto
- vanish at string world sheets, the octonionic representation is equivalent with the ordi-
nary one. The CP2 projection of string world sheet should be 1-dimensional: inside CP2

type vacuum extremals this is impossible, and one could even consider the possibility that
the projection corresponds to CP2 geodesic circle. This would be enormous technical sim-
plification. What is important that this would not prevent obtaining non-trivial scattering
amplitudes at elementary particle level since vertices would correspond to re-arrangement
of fermion lines between the generalized lines of Feynman diagram meeting at the vertices
(partonic 2-surfaces).

3. In the fermionic sector one is forced to reconsider the notion of the induced spinor field. The
modes of the embedding space spinor field should co-incide in some region of the space-time
surface with those of the induced spinor fields. The light-like fermionic lines defined by the
boundaries of string world sheets or their ends are the obvious candidates in this respect.
String world sheets is perhaps too much to require.

The only reasonable identification of string world sheet gamma matrices is as induced gamma
matrices and super-conformal symmetry requires that the action contains string world sheet
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area as an additional term just as in string models. String tension would correspond to
gravitational constant and its value - that is ratio to the CP2 radius squared, would be fixed
by quantum criticality.

4. The generalization of the Witten’s geometric construction of scattering amplitudes relying on
the induction of the twistor structure of the embedding space to that associated with space-
time surface looks surprisingly straight-forward and would provide more precise formulation
of the notion of generalized Feynman diagrams forcing to correct some wrong details. One of
the nice outcomes is that the genus appearing in Witten’s formulation naturally corresponds
to family replication in TGD framework.

4.1 Basic Ideas About Twistorialization Of TGD

The recent advances in understanding of TGD motive the attempt to look again for how twistor
amplitudes could be realized in TGD framework. There have been several highly non-trivial steps
of progress leading to a new more profound understanding of basic TGD.

1. M4×CP2 is twistorially unique [K18] in the sense that its factors are the only 4-D geometries
allowing twistor space with Kähler structure (M4 corresponds to S4 in Euclidian signature)
[A4]. The twistor spaces in question are CP3 for S4 and its Minkowskian variant for M4 (I will
use P 3 as short hand for both twistor spaces) and the flag manifold F = SU(3)/U(1)×U(1)
parametrizing the choices of quantization axes for color group SU(3) in the case of CP2.
Recall that twistor spaces are S2 bundles over the base space and that all orientable four-
manifolds have twistor space in this sense. Note that space-time surfaces allow always almost
quaternionic structure and that preferred extremals are suggested to be quaternionic [K18].

2. The light-likeness condition for twistors in M4 is fundamental in the ordinary twistor ap-
proach. In 8-D context light-likeness holds in generalized sense for the spinor harmonics of
H: the square of the Dirac operator annihilates spinor modes. In the case M8 one can indeed
define twistors by generalizing the standard approach by replacing ordinary gamma matrices
with octonionic ones [?] For H octonionic and ordinary gamma matrices are equivalent at
the fermionic lines defined by the light-like boundaries of string world sheets and at string
world sheets if they carry vanishing induced electro-weak gauge fields that is have 1-D CP2

projection.

3. Twistor spaces emerge in TGD framework as lifts of space-time surfaces to corresponding
twistor spaces realized as 6-surfaces in the lift of M4 × CP2 to T (H) = P 3 × F having as
base spaces space-time surfaces. This implies that that generalized Feynman diagrams and
also generalized twistor diagrams can be lifted to diagrams in T and that the construction
of twistor spaces as surfaces of T has very concrete particle interpretation.

The modes of the embedding space spinor field defining ground states of the extended con-
formal algebras for which classical conformal charges vanish at the ends of the space-time
surface (this defines gauge conditions realizing strong form of holography [K20] ) are lifted to
the products of modes of spinor fields in T (H) characterized by four-momentum and helicity
in M4 degrees of freedom and by color quantum numbers and electroweak quantum numbers
in F degrees of freedom. Thus twistorialization provides a purely geometric representation of
spin and electro-weak spin and it seems that twistorialization allows to a formulation without
H-spinors.

What is especially nice, that twistorialization extends to from spin to include also electroweak
spin. These two spins correspond correspond to M4 and CP2 helicities for the twistor space
amplitude, and are non-local properties of these amplitudes. In TGD framework only twistor
amplitudes for which helicities correspond to that for massless fermion and antifermion are
possible and by fermion number conservation the numbers of positive and negative helicities
are identical and equal to the fermion number (or antifermion number). Separate lepton
and baryon number conservation realizing 8-D chiral symmetry implies that M4 and CP2

helicities are completely correlated.

For massless fermions in M4 sense helicity is opposite for fermion and antifermion and con-
served. The contributions of initial and final states to k are same and equal to ki = kf =
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2(n(F ) − n(F ). This means restriction to amplitudes with k = 2(n(F ) − n(F ). If fermions
are massless only in M8 sense, chirality mixing occurs and this rule does not hold anymore.
This holds true in quark and lepton sector separately.

4. All generalized Feynman graphs defined in terms of Euclidian regions of space-time surface
are lifted to twistor spaces [K6]. Incoming particles correspond quantum mechanically to
twistor space amplitudes defined by their momenta and helicities and and classically to the
entire twistor space of space-time surface as a surface in the twistor space of H. Of course,
also the Minkowskian regions have this lift. The vertices of Feynman diagrams correspond to
regions of twistor space in which the incoming twistor spaces meet along their 5-D ends having
also S2 bundle structure over space-like 3-surfaces. These space-like 3-surfaces correspond to
ends of Euclidian and Minkowskian space-time regions separated from each other by light-
like 3-surfaces at which the signature of the metric changes from Minkowskian to Euclidian.
These ”partonic orbits” have as their ends 2-D partonic surfaces. By strong form of General
Coordinate Invariance implying strong of holography, these 2-D partonic surfaces and their
4-D tangent space data should code for quantum physics. Their lifts to twistor space are 4-D
S2 bundles having partonic 2-surface X2 as base.

5. The well-definedness of em charge for the spinor modes demands that they are localized at
2-D string world sheets [K20] and also these world sheets are lifted to sub-spaces of twistor
space of space-time surface. If one demands that octonionic Dirac operator makes sense at
string world sheets, they must carry vanishing induced electro-weak gauge fields and string
world sheets could be minimal surfaces in M4 × S1, S1 ⊂ CP2 a geodesic circle.

The boundaries of string world sheets at partonic orbits define light-like curves identifiable
as carriers of fermion number and they define the analogs of lines of Feynman diagrams in
ordinary sense. The only purely fermionic vertices are 2-fermion vertices at the partonic 2-
surfaces at which the end of space-time surface meet. As already explained, the string world
sheets can be seen as correlates for the correlations between fermion vertices at different
wormhole throats giving rise to the counterpart of bosonic propagator in quantum field
theories.

The localization of spinor fields to 2-D string world sheets corresponds to the localization
of twistor amplitudes to their 4-D lifts, which are S2 bundles and the boundaries of string
world sheets are lifted to 3-D twistor lifts of fermion lines. Clearly, the localization of spinors
to string world sheets would be absolutely essential for the emergence of twistor description.

6. All elementary particles are many particle bound states of massless fundamental fermions: the
non-collinearity (and possible complex character) of massless momenta explains massivation.
The fundamental fermions are localized at wormhole throats defining the light-like orbits of
partonic 2-surfaces. Throats are associated with wormhole contacts connecting two space-
time sheets. Stability of the contact is guaranteed by non-vanishing monopole magnetic
flux through it and this requires the presence of second wormhole contact so that a closed
magnetic flux tube carrying monopole flux and involving the two space-time sheets is formed.
The net fermionic quantum numbers of the second throat correspond to particle’s quantum
numbers and above weak scale the weak isospins of the throats sum up to zero.

7. Fermionic 2-vertex is the only local many-fermion vertex [K6] being analogous to a mass
insertion. The non-triviality of fundamental 4-fermion vertex is due to classical interactions
between fermions at opposite throats of worm-hole. The non-triviality of the theory involves
also the analog of OZI mechanism: the fermionic lines inside partonic orbits are redistributed
in vertices. Lines can also turn around in time direction which corresponds to creation or
annihilation of a pair. 3-particle vertices are obtained only in topological sense as 3 space-
time surfaces are glued together at their ends. The interaction between fermions at different
wormhole throats is described in terms of string world sheets.

8. The earlier proposal was that the fermions in the internal fermion lines are massless in M4

sense but have non-physical helicity so that the algebraic M4 Dirac operator emerging from
the residue integration over internal four-momentum does not annihilate the state at the end
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of the propagator line. Now the algebraic induced Dirac operator defines the propagator at
fermion lines. Should one assume generalization of non-physical helicity also now?

9. All this stuff must be lifted to twistorial level and one expects that the lift to S2 bundle allows
an alternative description of fermions and spinor structure so that one can speak of induced
twistor structure instead of induced spinor structure. This approach allows also a realization
of M4 conformal symmetries in terms of globally well-defined linear transformations so that it
might be that twistorialization is not a mere reformulation but provides a profound unification
of bosonic and fermionic degrees of freedom.

4.2 The Emergence Of The Fundamental 4-Fermion Vertex And Of Bo-
son Exchanges

The emergence of the fundamental 4-fermion vertex and of boson exchanges deserves a more
detailed discussion.

1. I have proposed that the discontinuity of the Dirac operator at partonic two-surface (corner
of fermion line) defines both the fermion boson vertex and TGD analog of mass insertion
(not scalar but embedding space vector) giving rise to mass parameter having interpretation
as Higgs vacuum expectation and various fermionic mixing parameters at QFT limit of TGD
obtained by approximating many-sheeted space-time of TGD with the single sheeted region of
M4 such that gravitational field and gauge potentials are obtained as sums of those associated
with the sheets.

2. Non-trivial scattering requires also correlations between fermions at different partonic 2-
surfaces. Both partonic 2-surfaces and string world sheets are needed to describe these
correlations. Therefore the string world sheets and partonic 2-surfaces cannot be dual: both
are needed and this means deviation from Witten’s theory. Fermion vertex corresponds to a
”corner” of a fermion line at partonic 2-surface at which generalized 4-D lines of Feynman
diagram meet and light-like fermion line changes to space-like one. String world sheet with its
corners at partonic 2-surfaces (wormhole throats) describes the momentum exchange between
fermions. The space-like string curve connecting two wormhole throats serves as the analog
of the exchanged gauge boson.

3. Two kinds of 4-fermion amplitudes can be considered depending on whether the string con-
nects throats of single wormhole contact (CP2 scale) or of two wormhole contacts (p-adic
length scale - typically of order elementary particle Compton length). If string worlds sheets
have 1-D CP2 projection, only Minkowskian string world sheets are possible. The exchange
in Compton scale should be assignable to the TGD counterpart of gauge boson exchange and
the fundamental 4-fermion amplitude should correspond to single wormhole contact: string
need not to be involved now. Interaction is basically classical interaction assignable to single
wormhole contact generalizing the point like vertex.

4. The possible TGD counterparts of BCFW recursion relations [B4] should use the twistorial
representations of fundamental 4-fermion scattering amplitude as seeds. Yangian invariance
poses very strong conditions on the form of these amplitudes and the exchange of massless
bosons is suggestive for the general form of amplitude.

The 4-fermion amplitude assignable to two wormhole throats defines the analog of gauge
boson exchange and is expressible as fusion of two fundamental 4-fermion amplitudes such
that the 8-momenta assignable to the fermion and anti-fermion at the opposite throats of
exchanged wormhole contact are complex by BCFW shift acting on them to make the ex-
changed momenta massless but complex. This entity could be called fundamental boson (not
elementary particle).

5. Can one assume that the fundamental 4-fermion amplitude allows a purely formal composi-
tion to a product of FFBv amplitudes, Bv a purely fictive boson? Two 8-momenta at both
FFBv vertices must be complex so that at least two external fermionic momenta must be
complex. These external momenta are naturally associated with the throats of the a worm-
hole contact defining virtual fundamental boson. Rather remarkably, without the assumption
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about product representation one would have general four-fermion vertex rather than boson
exchange. Hence gauge theory structure is not put in by hand but emerges.

4.3 What About SUSY In TGD?

Extended super-conformal symmetry is crucial for TGD and extends to quaternion-super-conformal
symmetry giving excellent hopes about calculability of the theory. N = 4 space-time supersym-
metry is in the key role in the approach of Witten and others.

In TGD framework space-time SUSY could be present as an approximate symmetry.

1. The many fermion states at partonic surfaces are created by oscillator operators of fermionic
Clifford algebra having also interpretation as a supersymmetric algebra but in principle hav-
ing N =∞. This SUSY is broken since the generators of SUSY carry four-momentum.

2. More concrete picture would be that various SUSY multiplets correspond to collinear many-
fermion states at the same wormhole throat. By fermionic statistics only the collinear states
for which internal quantum numbers are different are realized: other states should have
antisymmetric wave function in spatial degrees of freedom implying wiggling in CP2 scale so
that the mass of the state would be very high. In both quark and lepton sectors one would
have N = 4 SUSY so that one would have the analog N = ∀ SUSY (color is not spin-like
quantum number in TGD).

At the level of diagrammatics single line would be replaced with ”line bundle” representing the
fermions making the many-fermion state at the light-like orbit of the partonic 2-surface. The
fusion of neighboring collinear multifermion stats in the twistor diagrams could correspond
to the process in which partonic 2-surfaces and single and many-fermion states fuse.

3. Right handed neutrino modes, which are not covariantly constant, are also localized at the
fermionic lines and defines the least broken N = 2 SUSY. The covariantly constant mode
seems to be a pure gauge degree of freedom since it carriers no quantum numbers and the
SUSY norm associated with it vanishes. The breaking would be smallest for N = 2 variant
assignable to right-handed neutrino having no weak and color interactions with other particles
but whose mixing with left-handed neutrino already induces SUSY breaking.

Why this SUSY has not been observed? One can consider two scenarios [K16].

1. The first scenario relies on the absence of weak and color interactions: one can argue that
the bound states of fermions with right-handed neutrino are highly unstable since only grav-
itational interaction so that sparticle decays very rapidly to particle and right-handed or
left-handed neutrino. By Uncertainty Principle this makes sparticle very massive, maybe
having mass of order CP2 mass. Neutrino mixing caused by the mixing of M4 and CP2

gamma matrices in induced gamma matrices is the weak point of this argument.

2. The mixing of left and right-handed neutrinos could be characterized by the p-adic mass
scale of neutrinos and be long. Sparticles would have same p-adic mass scale as particles and
would be dark having non-standard value of Planck constant heff = n× h: this would scale
up the lifetime by factor n and correlate with breaking of conformal symmetry assignable to
the mixing [K16].

What implications the approximate SUSY would have for scattering amplitudes?

1. k = 2(n(F )− n(F ) condition reduces the number of amplitudes dramatically if the fermions
are massless in M4 sense but the presence of weak iso-spin implies that the number of
amplitudes is 2n as in non-supersymmetric gauge theories. One however expects broken
SUSY with generators consisting of fermionic oscillator operators at partonic 2-surfaces with
symmetry breaking taking place only at the level of physical particles identifiable as many
particle bound states of massless (in 8-D sense) particles. This motivates the guess that
the formal FFBv amplitudes defining fundamental 4-fermion vertex are expressible as those
associated with N = 4 SUSY in quark and lepton sectors respectively. This would reduce
the number of independent amplitudes to just one.
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2. Since SUSY and its breaking emerge automatically in TGD framework, super-space can
provide a useful technical tool but is not fundamental.

Side note: The number of external fermions is always even suggesting that the super-
conformal anomalies plaguing the amplitudes with odd n (http://tinyurl.com/yb85tnvc
) [B15] are absent.

4.4 What Does One Really Mean With The Induction Of Embedding
Space Spinors?

The induction of spinor structure is a central notion of TGD but its detailed definition has remained
somewhat obscure. The attempt to generalize Witten’s approach has made it clear that the mere
restriction of spinor fields to space-time surfaces is not enough and that one must understand in
detail the correspondence between the modes of embedding space spinor fields and those of induced
spinor fields.

Even the identification of space-time gamma matrices is far from obvious at string world sheets.

1. The simplest notion of the space-time gamma matrices is as projections of embedding space
gamma matrices to the space-time surface - induced gamma matrices. If one assumes that
induced spinor fields are defined at the entire space-time surfaces, this notion fails to be
consistent with fermionic super-conformal symmetry unless one replaces Kähler action by
space-time volume. This option is certainly unphysical.

2. The notion of Kähler-Dirac matrices in the interior of space as gamma matrices defined
as contractions of canonical momentum densities of Kähler with embedding space gamma
matrices allows to have conformal super-symmetry with fermionic super charges assignable
to the modes of the induced spinor field. Also Chern-Simons action could define gamma
matrices in the same manner at the light-like 3-surfaces between Minkowskian and Euclidian
space-time regions and at space-like 3-surfaces at the ends of space-time surface. Chern-
Simons-Dirac matrices would involve only CP2 gamma matrices.

It is however not quite clear whether the spinor fields in the interior of space-time surface are
needed at all in the twistorial approach and they seem to be only an un-necessary complication.
For instance, their modes would have well-defined electromagnetic charge only when induced W
gauge fields vanish, which implies that CP2 projection is 2-dimensional. This forces to consider
very seriously the possibility that induced spinor fields reside at string world sheets only (their
ends are at partonic 2-surfaces). This option supported also by strong form of holography and
number theoretic universality.

What about the space-time gamma matrices at string world sheets and their boundaries?

1. The first option would be reduction of Kähler-Dirac gamma matrices by requiring that they
are parallel to the string world sheets. This however poses additional conditions besides the
vanishing of W fields already restricting the dimension to two in the generic case. The condi-
tions state that the embedding space 1-forms defined by the canonical momentum densities
of Kähler action involve only 2 linearly independent ones and that they are proportional to
embedding space coordinate gradients: this gives Frobenius conditions. These conditions
look first too strong but one can also think that one fixes first string world sheets, partonic
2-surfaces, and perhaps also their light-like orbits, requires that the normal components of
canonical momentum currents at string world sheets vanish, and deduces space-time surface
from this data. This would be nothing but strong form of holography!

For this option the string world sheets could emerge in the sense that it would be possible
to express Kähler action as an area of string world sheet in the effective metric defined by
the anticommutator of K-D gamma matrices appearing also in the expressions for the matrix
elements of WCW metric. Gravitational constant would be a prediction of the theory.

2. Second possibility is to use induced gamma matrices automatically parallel to the string
world sheet so that no additional conditions would result. This would also conform with the
ordinary view about string world sheets and spinors.

http://tinyurl.com/yb85tnvc
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Supersymmetry would require the addition of the area of string world sheet to the action
defining Kähler function in Euclidian regions and its counterpart in Minkowskian regions.
This would bring in gravitational constant, which otherwise remains a prediction. Quantum
criticality could fix the ratio of ~G/R2 (R is CP2 radius). The vanishing of induced weak
gauge fields requires that string world sheets have 1-D CP2 projection and are thus restricted
to Minkowskian regions with at most 3-D CP2 projection. Even stronger condition would be
that string world sheets are minimal surfaces in M4 × S1, S1 a geodesic sphere of CP2.

There are however grave objections. The presence of a dimensional parameter G as fun-
damental coupling parameter does not encourage hopes about the renomalizibility of the
theory. The idea that strings connecting partonic 2-surfaces gives rise to the formation of
gravitationally bound states is suggested by AdS/CFT correspondence. The problem is that
the string tension defined by gravitational constant is so large that only Planck length sized
bound states are feasible. Even the replacement ~→ ~eff fails to allow gravitationally bound
states with length scale of order Schwartschild radius. For the K-D option the string tension
behaves like 1/~2 and there are no problems in this respect.

At this moment my feeling is that the first option - essentially the original view - is the correct
one. The short belief that the second option is the correct choice was a sidetrack, which however
helped to become convinced that the original vision is indeed correct, and to understand the
general mechanism for the formation of bound states in terms of strings connection partonic 2-
surfaces (in the earlier picture I talked about magnetic flux tubes carrying monopole flux: the
views are equivalent).

Both options have the following nice features.

1. Induced gammas at the light-like string boundaries would be light-like. Massless Dirac equa-
tion would assign to spinors at these lines a light-like space-time four-momentum and twisto-
rialize it. This four-momentum would be essentially the tangent vector of the light-like curve
and would not have a constant direction. Light-likeness for it means light-likeness in 8-D
sense since light-like curves in H correspond to non-like momenta in M4. Both M4 mass
squared and CP2 mass would be conserved. Even four-momentum could be conserved if M4

projection of stringy curve is geodesic line of M4.

2. A new connection with Equivalence Principle (EP) would emerge. One could interpret the
induced four-momentum as gravitational four-momentum which would be massless in 4-D
sense and correspond to inertial 8-momentum. EP wold state in the weakest form that only
the M4 masses associated with the two momenta are identical. Stronger condition would
be that the Minkowski parts of the two momenta co-incide at the ends of fermion lines
at partonic 2-surfaces. Even stronger condition is that the 8-momentum is 8-momentum
is conserved along fermion line. This is certainly consistent with the ordinary view about
Feynman graphs. This is guaranteed if the light-like curve is light-like geodesic of embedding
space.

The induction of spinor fields has also remained somewhat imprecise notion. It how seems that
quantum-classical correspondence forces a unique picture.

1. Does the induced spinor field co-incide with embedding space spinor harmonic in some do-
main? This domain would certainly include the ends of fermionic lines at partonic 2-surfaces
associated with the incoming particles and vertices. Could it include also the boundaries of
string world sheets and perhaps also the string world sheets? The Kähler-Dirac equation
certainly does not allow this for entire space-time surface.

2. Strong form of holography suggest that the light-like momenta for the Dirac equation at
the ends of light-like string boundaries has interpretation as 8-D light-like momentum has
M4 projection equal to that of H spinor-harmonic. The mass squared of M4 momentum
would be same as the CP2 momentum squared in both senses. Unless the gravitational four-
momentum assignable to the induced Dirac operato r is conserved one cannot pose stronger
condition.
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3. If the induced spinor mode equals to embedding space-spinor mode also at fermion line, the
light like momentum is conserved. The fermion line would be also light-like geodesic of the
embedding space so that twistor polygons would have very concrete interpretation. This
condition would be clearly analogous to the conditions in Witten’s twistor string theory. A
stronger condition would be that the mode of the embedding space spinor field co-incides
with induced spinor field at the string world sheet.

4. p-Adic mass calculations require that the massive excitations of embedding space spinor
fields with CP2 mass scale are involved. The thermodynamics could be for fermion line,
wormhole throat carrying possible several fermions, or wormhole contact carrying fermion at
both throats. In the case of fermions physical intuition suggests that p-adic thermodynamics
must be associated with single fermionic line. The massive excitations would correspond to
light-like geodesics of the embedding space.

To minimize confusion I must confess that until recently I have considered a different options
for the momenta associated with fermionic lines.

1. The action of the Kähler-Dirac operator on the induced spinor field at the fermionic line
equals to that of 4-D Dirac operator pkγk for a massless momentum identified as M4 mo-
mentum [K6].

Now the action reduces to that of 8-D massless algebraic Dirac operator for light-like string
boundaries in the case of induced gamma matrices. Explicit calculation shows that in case of
K-D gamma matrices and for light-like string boundaries it can happen that the 8-momentum
of the mode can be tachyonic. Intriguingly, p-adic mass calculations require a tachyonic
ground state?

2. For this option the helicities for virtual fermions were assumed to be non-physical in order to
get non-vanishing fermion lines by residue integration: momentum integration for Dirac op-
erator would replace Dirac propagators with Dirac operators. This would be the counterpart
for the disappearance of bosonic propagators in residue integration.

3. This option has problems: quantum classical correspondence is not realized satisfactorily and
the interpretation of p-adic thermodynamics is problematic.

4.5 About The Twistorial Description Of Light-Likeness In 8-D Sense
Using Octonionic Spinors

The twistor approach to TGD [K18] require that the expression of light-likeness of M4 momenta
in terms of twistors generalizes to 8-D case. The light-likeness condition for twistors states that
the 2× 2 matrix representing M4 momentum annihilates a 2-spinor defining the second half of the
twistor. The determinant of the matrix reduces to momentum squared and its vanishing implies
the light-likeness. This should be generalized to a situation in one has M4 and CP2 twistor which
are not light-like separately but light-likeness in 8-D sense holds true.

4.5.1 The case of M8 = M4 × E4

M8 −H duality [K17] suggests that it might be useful to consider first the twistorialiation of 8-D
light-likeness first the simpler case of M8 for which CP2 corresponds to E4. It turns out that
octonionic representation of gamma matrices provide the most promising formulation.

In order to obtain quadratic dispersion relation, one must have 2× 2 matrix unless the deter-
minant for the 4× 4 matrix reduces to the square of the generalized light-likeness condition.

1. The first approach relies on the observation that the 2 × 2 matrices characterizing four-
momenta can be regarded as hyper-quaternions with imaginary units multiplied by a com-
muting imaginary unit. Why not identify space-like sigma matrices with hyper-octonion
units?

2. The square of hyper-octonionic norm would be defined as the determinant of 4 × 4 matrix
and reduce to the square of hyper-octonionic momentum. The light-likeness for pairs formed
by M4 and E4 momenta would make sense.
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3. One can generalize the sigma matrices representing hyper-quaternion units so that they
become the 8 hyper-octonion units. Hyper-octonionic representation of gamma matrices
exists (γ0 = σz×1, γk = σy×Ik) but the octonionic sigma matrices represented by octonions
span the Lie algebra of G2 rather than that of SO(1, 7). This dramatically modifies the
physical picture and brings in also an additional source of non-associativity. Fortunately, the
flatness of M8 saves the situation.

4. One obtains the square of p2 = 0 condition from the massless octonionic Dirac equation as
vanishing of the determinant much like in the 4-D case. Since the spinor connection is flat
for M8 the hyper-octonionic generalization indeed works.

This is not the only possibility that I have by-passingly considered [K6].

1. Is it enough to allow the four-momentum to be complex? One would still have 2× 2 matrix
and vanishing of complex momentum squared meaning that the squares of real and imaginary
parts are same (light-likeness in 8-D sense) and that real and imaginary parts are orthogonal
to each other. Could E4 momentum correspond to the imaginary part of four-momentum?

2. The signature causes the first problem: M8 must be replaced with complexified Minkowski
space M4

c for to make sense but this is not an attractive idea although M4
c appears as sub-

space of complexified octonions.

3. For the extremals of Kähler action Euclidian regions (wormhole contacts identifiable as defor-
mations of CP2 type vacuum extremals) give imaginary contribution to the four-momentum.
Massless complex momenta and also color quantum numbers appear also in the standard
twistor approach. Also this suggest that complexification occurs also in 8-D situation and is
not the solution of the problem.

4.5.2 The case of M8 = M4 × CP2

What about twistorialization in the case of M4 ×CP2? The introduction of wave functions in the
twistor space of CP2 seems to be enough to generalize Witten’s construction to TGD framework and
that algebraic variant of twistors might be needed only to realize quantum classical correspondence.
It should correspond to tangent space counterpart of the induced twistor structure of space-time
surface, which should reduce effectively to 4-D one by quaternionicity of the space-time surface.

1. For H = M4×CP2 the spinor connection of CP2 is not trivial and the G2 sigma matrices are
proportional to M4 sigma matrices and act in the normal space of CP2 and to M4 parts of
octonionic embedding space spinors, which brings in mind co-associativity. The octonionic
charge matrices are also an additional potential source of non-associativity even when one
has associativity for gamma matrices.

Therefore the octonionic representation of gamma matrices in entire H cannot be physical.
It is however equivalent with ordinary one at the boundaries of string world sheets, where
induced gauge fields vanish. Gauge potentials are in general non-vanishing but can be gauge
transformed away. Here one must be of course cautious since it can happen that gauge
fields vanish but gauge potentials cannot be gauge transformed to zero globally: topological
quantum field theories represent basic example of this.

2. Clearly, the vanishing of the induced gauge fields is needed to obtain equivalence with or-
dinary induced Dirac equation. Therefore also string world sheets in Minkowskian regions
should have 1-D CP2 projection rather than only having vanishing W fields if one requires
that octonionic representation is equivalent with the ordinary one. For CP2 type vacuum
extremals electroweak charge matrices correspond to quaternions, and one might hope that
one can avoid problems due to non-associativity in the octonionic Dirac equation. Unless
this is the case, one must assume that string world sheets are restricted to Minkowskian
regions. Also embedding space spinors can be regarded as octonionic (possibly quaternionic
or co-quaternionic at space-time surfaces): this might force vanishing 1-D CP2 projection.
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(a) Induced spinor fields would be localized at 2-surfaces at which they have no interaction
with weak gauge fields: of course, also this is an interaction albeit very implicit one!
This would not prevent the construction of non-trivial electroweak scattering amplitudes
since boson emission vertices are essentially due to re-groupings of fermions and based
on topology change.

(b) One could even consider the possibility that the projection of string world sheet to
CP2 corresponds to CP2 geodesic circle so that one could assign light-like 8-momentum
to entire string world sheet, which would be minimal surface in M4 × S1. This would
mean enormous technical simplification in the structure of the theory. Whether the
spinor harmonics of embedding space with well-defined M4 and color quantum numbers
can co-incide with the solutions of the induced Dirac operator at string world sheets
defined by minimal surfaces remains an open problem.

(c) String world sheets cannot be present inside wormhole contacts which have 4-D CP2

projection so that string world sheets cannot carry vanishing induced gauge fields.

4.6 How To Generalize Witten’s Twistor String Theory To TGD Frame-
work?

The challenge is to lift the geometric description of particle like aspects of twistorial amplitudes
involving only algebraic curves (2-surfaces) in twistor space to TGD framework.

1. External particles correspond to the lifts of H-spinor harmonics to spinor harmonics in the
twistor space and are labeled by four-momentum, helicity, color, and weak helicity (isospin)
so that there should be no need to included fermions explicitly. The twistorial wave functions
would be superpositions of the eigenstates of helicity operator which would become a non-local
property in twistor space. Light-likeness would hold true in 8-D sense for spinor harmonics
as well as for the corresponding twistorial harmonics.

2. The surfaces X2 in Witten’s theory would be replaced with the lifts of partonic 2-surfaces
X2 to 4-D surfaces with bundle structure with X2 as base and S2 as fiber. S2 would be
non-dynamical. Whether X2 or its lift to 4-surface allows identification as algebraic surface
is not quite clear but it seems that X2 could be the relevant object identifiable as surface of
the base space of T (X4). If X2 is the basic object one would have the additional constraint
(not present in Witten’s theory) that it belongs to the base space X4. The genus of the lift
of X2 would be that of its base space X2. One obtains a union of partonic 2-surfaces rather
than single surface and lines connecting them as boundaries of string world sheets.

The n points of given X2 would correspond to the ends of boundaries of string world sheets at
the partonic 2-surface X2 carrying fermion number so that the helicities of twistorial spinor
modes would be highly fixed unless M4 chiralities mix making fermions massive in M4 sense.
This picture is in accordance with the fact that the lines of fundamental fermions should
correspond to QFT limit of TGD.

3. In TGD genus g of the partonic 2-surface labels various fermion families and g < 3 holds true
for physical fermions. The explanation could be that Z2 acts as global conformal symmetry
(hyper-ellipticity) for g < 3 surfaces irrespective of their conformal moduli but for g > 3 only
in for special moduli. Physically for g > 2 the additional handles would make the partonic
2-surface to behave like many-particle state of free particles defined by the handles.

This assumption suggests that assigns to the partonic surface what I have called modular
invariant elementary particle vacuum functional (EVPF) in modular degrees of freedom such
that for a particle characterized by genus g one has l ≥ g and l > g amplitudes are possible
because the EPVF leaks partially to higher genera [K5]. This would also induce a mixing of
boundary topologies explaining CKM mixing and its leptonic counterpart. In this framework
it would be perhaps more appropriate to define the number of loops as l1 = l − g.

A more precise picture is as follows. Elementary particles have actually four wormhole
throats corresponding to the two wormhole contacts. In the case of fermions the wormhole
throat carrying the electroweak quantum numbers would have minimum value g of genus
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characterized by the fermion family. Furthermore, the universality of the standard model
physics requires that the couplings of elementary fermions to gauge bosons do not depend
on genus. This is the case if one has quantum superposition of the wormhole contacts
carrying the quantum numbers of observed gauge bosons at their opposite throats over the
three lowest genera g = 0, 1, 2 with identical coefficients. This meas SU(3) singlets for the
dynamical SU(3) associated with genus degeneracy. Also their exotic variants - say octets -
are in principle possible.

4. This description is not complete although already twistor string description involves integra-
tion over the conformal moduli of the partonic 2-surface. One must integrate over the “world
of classical worlds” (WCW) -roughly over the generalized Feynman diagrams and their com-
plements consisting of Minkowskian and Euclidian regions. TGD as almost topological QFT
reduces this integration to that of the boundaries of space-time regions.

By quaternion conformal invariance [K18] this functional integral could reduce to ordinary
integration over the quaternionic-conformal moduli space of space-time surfaces for which the
moduli space of partonic 2-surfaces should be contained (note that strong form of holography
suggests that only the modular invariants associated with the tangent space data should enter
the description). One might hope that twistor space approach allows an elegant description
of the moduli assignable to the tangent space data.

4.7 Yangian Symmetry

One of the victories of the twistor Grassmannian approach is the discovery of Yangian symmetry
[A2], [B7, B11], [K18], whose variant associated with extended super-conformal symmetries is
expected to be in key role in TGD.

1. The very nature of the residue integral implies that the complex surface serving as the
locus of the integrand of the twistor amplitude is highly non-unique. Indeed, the Yangian
symmetry [K18] acting as multi-local symmetry and implying dual of ordinary conformal
invariance acting on momentum twistors, has been found to reduce to diffeomorphisms of
G(k, n) respecting positivity property of the decomposition of G(k, n) to polyhedrons. It is
quite possible that this symmetry corresponds to quaternion conformal symmetries in TGD
framework.

2. Positivity of a given regions means parameterization by non-negative coordinates in TGD
framework a possible interpretation is based on the observation that canonical identification
mapping reals to p-adic number and vice versa is well-defined only for non-negative real
numbers. Number theoretical Universality of spinor amplitudes so that they make sense in
all number fields, would therefore be implied.

3. Could the crucial Yangian invariance generalizing the extended conformal invariance of TGD
could reduce to the diffeomorphisms of the extended twistor space T (H) respecting positivity.
In the case of CP2 all coordinates could be regarded as angle coordinates and be replaced
by phase factors coding for the angles which do not make sense p-adically. The number
theoretical existence of phase factors in p-adic case is guaranteed if they belong to some
algebraic extension of rationals and thus also p-adics containing these phases as roots of
unity. This implies discretization of CP2.

ZEO allows to reduce the consideration to causal diamond CD defined as an intersection of
future and past directed light-cones and having two light-like boundaries. CD is indeed a
natural counterpart for S4. One could use as coordinates light-cone proper time a invari-
ant under Lorentz transformations of either boundary of CD, hyperbolic angle η and two
spherical angles (θ, φ). The angle variables allow representation in terms of finite algebraic
extension. The coordinate a is naturally non-negative and would correspond to positivity.
The diffeomorphisms perhaps realizing Yangian symmetry would respect causality in the
sense that they do not lead outside CD.

Quaternionic conformal symmetries the boundaries of CD×CP2 continued to the interior by
translation of the light-cones serve as a good candidates for the diffeomorphisms in question
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since they do not change the value of the Minkowski time coordinate associated with the line
connecting the tips of CD.

4.8 Does BCFW Recursion Have Counterpart In TGD?

Could BCFW recursion for tree diagrams and its generalization to diagrams with loops have a
generalization in TGD framework? Could the possible TGD counterpart of BCFW recursion have
a representation at the level of the TGD twistor space allowing interpretation in terms of geometry
of partonic 2-surfaces and associated string world sheets? Supersymmetry is essential ingredient
in obtaining this formula and the proposed SUSY realized at the level of amplitudes and broken
at the level of states gives hopes for it. One could however worry about the fact that spinors are
Dirac spinors in TGD framework and that Majorana property might be essential element.

4.8.1 How to produce Yangian invariants

Nima Arkani-Hamed et al [B11] (http://tinyurl.com/y97rlzqb ) describe in detail various ways
to form Yangian invariants defining the singular parts of the integrands of the amplitudes allowing
to construct the full amplitudes. The following is only a rough sketch about what is involved using
particle picture and I cannot claim of having understood the details.

1. One can add particle ((k, n)→ (k+ 1, n+ 1)) to the amplitude by deforming the momentum
twistors of two neighboring particles in a way depending on the momentum twistor of the
added particle. One inserts the new particle between n-1:th and 1st particle, modifies their
momentum twistors without changing their four-momenta, and multiplying the resulting
amplitude by a twistor invariant known as [n − 2, n − 1, n, 1, 2] so that there is dependence
on the added n:th momentum twistor.

2. One can remove particle ((k, n)→ (k− 1, n− 1)) by contour integrating over the momentum
twistor variable of one particle.

3. One can fuse invariants simply by multiplying them.

4. One can merge invariants by identifying momentum twistors appearing in the two invariants.
The integration over the common twistor leads to an elimination of particle.

5. One can form a BCFW bridge between n1 + 1-particle invariant and n2 + 1-particle invariant
to get n = n1 + n2-particle invariant using the operations listed. One starts with the fusion
giving the product I1(1, ..., n1, I)I2(n1+1, ..n, I) of Yangian invariants followed by addition of
n1 +1 to I1 between n1 and I and 1 to I2 between I and n1 +1 (see the first item for details).
After that follows the merging of lines labelled by I next to n1 in I1 and the precedessor of
n1 + 1 in I2 reducing particle number by one unit and followed by residue integration over
ZI reducing particle number further by one unit so that the resulting amplitude is n-particle
amplitude.

6. One can perform entangled removal of two particles. One could remove them one-by-one by
independent contour integrations but one can also perform the contour integrations in such
a way that one first integrates over two twistors at the same complex line and then over the
lines: this operation adds to n-particle amplitude loop.

4.8.2 BCFW recursion formula

BCFW recursion formula allows to express n-particle amplitudes with l loops in terms of amplitudes
with amplitudes having at most l−1 loops. The basic philosophy is that singularities serve as data
allowing to deduce the full integrands of the amplitudes by generalized unitarity and other kinds
of arguments.

Consider first the arguments behind the BCFW formula.

1. BCFW formula is derived by performing the canonical momentum twistor deformation Zn →
zn+zZn−1, multiplying by 1/z and performing integration along small curve around origin so
that one obtains original amplitude from the residue inside the curve. One obtains also and

http://tinyurl.com/y97rlzqb
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alternative of the residue integral expression as sum of residues from its complement. The
singularities emerge by residue integral from poles of scattering amplitudes and eliminate two
lines so that the recursion formula for n-particle amplitude can involve at most n+2-particle
amplitudes.

It seems that one must combine all n-particle amplitudes to form a single entity defining the
full amplitude. I do not quite understand what how this is done. In ZEO zero energy state
involving different particle numbers for the final state and expressible in terms of S-matrix
(actually its generalization to what I call M-matrix) might allow to understand this.

2. In the general formula for the BCFW bridge of the ”left” and ”right” amplitudes one has
nL + nR = n+ 2, kL + kR = k − 1, and lL + lR = l.

3. The singularities are easy to understand in the case of tree amplitudes: they emerge from the
poles of the conformally invariant quantities in the denominators of amplitudes. Physically
this means that the sum of the momenta for a subset of particles corresponds to a complex
pole (BCFW deformation makes two neighboring momenta complex). Hence one obtains
sum over products of j+ 1-particle amplitudes BCFW bridged with n− j-particle amplitude
to give n-particle amplitude by the merging process.

4. This is not all that is needed since the diagrams could be reduced to products of 1 loop
3-particle amplitudes which vanish by the triviality of coupling constant evolution in N = 4
SUSY. Loop amplitudes serving as a kind of source in the recursion relation save the situation.
There is indeed also a second set of poles coming from loop amplitudes.

One-loop case is the simplest one. One begins from n+ 2 particle amplitude with l−1 loops.
At momentum space level the momenta the neighboring particles have opposite light-like
momenta: one of the particles is not scattered at all. This is called forward limit. This limit
suffers from collinear divergences in a generic gauge theory but in supersymmetric theories the
limit is well-defined. This forward limit defines also a Yangian invariant at the level of twistor
space. It can be regarded as being obtained by entangled removal of two particles combined
with merge operation of two additional particles. This operation leads from (n + 2, l − 1)
amplitude to (n, l) amplitude.

4.8.3 Does BCFW formula make sense in TGD framework?

In TGD framework the four-fermion amplitude but restricted so that two outgoing particles have
(in general) complex massless 8-momenta is the basic building brick. This changes the character
of BCFW recursion relations although the four-fermion vertex effectively reduces to FFB vertex
with boson identified as wormhole contact carrying fermion and antifermion at its throats.

The fundamental 4-fermion vertices assignable to wormhole contact could be formally expressed
in terms of the product of two FFBv vertices (MHV expression), where Bv is purely formal gauge
boson, using the analog of MHV expression and taking into account that the second FF pair is
associated with wormhole contact analogous to exchanged gauge boson.

If the fermions at fermion lines of the same partonic 2-surface can be assumed to be collinear
and thus to form single coherent particle like unit, the description as superspace amplitude seems
appropriate. Consequently, the effective FFBv vertices could be assumed to have supersymmetry
defined by the fermionic oscillator operator algebra at the partonic 2-surface (Clifford algebra).
A good approximation is to restrict this algebra to that generating various spinor components of
embedding space spinors so that N = 4 SUSY is obtained in leptonic and quark sector. Together
these give rise to N = 8 SUSY at the level of vertices broken however at the level of states.

Side note: The number of external fermions is always even suggesting that the super-conformal
anomalies plaguing the SUSY amplitudes with odd n (http://tinyurl.com/yb85tnvc ) [B15] are
absent in TGD: this would be basically due to the decomposition of gauge bosons to fermion pairs.

The leading singularities of scattering amplitudes would naturally correspond to the boundaries
of the moduli space for the unions of partonic 2-surfaces and string world sheets.

1. The tree contribution to the gauge boson scattering amplitudes with k = 0, 1 vanish as
found by Parke and Taylor who also found the simple twistorial form for the k = 2 case
(http://tinyurl.com/y7nas26b ). In TGD framework, where lowest amplitude is 4-fermion

http://tinyurl.com/yb85tnvc
http://tinyurl.com/y7nas26b
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amplitude, this situation is not encountered. According to Wikipedia article the so called
CSW rules inspired by Witten’s twistor theory have a problem due to the vanishing of ++−
vertex which is not MHV form unless one changes the definition of what it is to be ”wrong
helicity”. + +− is needed to construct + + ++ amplitude at one loop which does not vanish
in YM theory. In SUSY it however vanishes.

In TGD framework one does not encounter these problems since 4-fermion amplitudes are
the basic building bricks. Fermion number conservation and the assumption that helicities
do not mix (light-likeness in M4 rather than only M8-sense) implies k = 2(n(F )− n(F ).

In the general formula for the BCFW bridge of the ”left” and ”right” amplitudes one has
nL + nR = n + 2, kL + kR = k − 1. If the TGD counterpart of the bridge eliminates two
antifermions with the same ”wrong” helicity -1/2, and one indeed has kL + kR = k − 1
if fermions have well-defined M4 helicity rather than being in superposition in completely
correlated M4 and CP2 helicities.

2. In string theory loops correspond to handles of a string world sheet. Now one has partonic
2-surfaces and string world sheets and both can in principle have handles. The condition
l ≥ g of Witten’s theory suggests that l− g defines the handle number for string world sheet
so that l is the total number of handles.

The identification of loop number as the genus of partonic 2-surface is second alternative: one
would have l = g and string world sheets would not contain handles. This might be forced by
the Minkowskian signature of the induced metric at string world sheet. The signature of the
induced metric would be presumably Euclidian in some region of string world sheet since the
M4 projection of either homology generator assignable with the handle would presumably
define time loop in M4 since the derivative of M4 time coordinate with respect to string
world sheet time should vanish at the turning points for M4 time. Minimal surface property
might eliminate Euclidian regions of the string world sheet. In any case, the area of string
world sheet would become complex.

3. In the moduli space of partonic 2-surfaces first kind of leading singularities could correspond
to pinches formed as n partonic 2-surfaces decomposes to two 2-surfaces having at least
single common point so that moduli space factors into a Cartesian product. This kind of
singularities could serve as counterparts for the merge singularities appearing in the BCFW
bridging of amplitudes. The numbers of loops must be additive and this is consistent with
both interpretations for l.

4. What about forward limit? One particle should go through without scattering and is elimi-
nated by entangled removal. In ZEO one can ask whether there is also quantum entanglement
between the positive and negative energy parts of this single particle state and state func-
tion reduction does not occur. The addition of particle and merging it with another one
could correspond to a situation in which two points of partonic 2-surface touch. This means
addition of one handle so that loop number l increases.

It seems that analytically the loop is added by the entangled removal but at the level of
partonic surface it is added by the merging. Also now both l > g and l = g options make
sense.

4.9 Possible Connections Of TGD Approach With The Twistor Grass-
mannian Approach

For a non-specialist lacking the technical skills, the work related to twistors is a garden of mysteries
and there are a lot of questions to be answered: most of them of course trivial for the specialist.
The basic questions are following.

How the twistor string approach of Witten and its possible TGD generalization relate to the
approach involving residue integration over projective sub-manifolds of Grassmannians G(k, n)?

1. In [B12] Nima et al argue that one can transform Grassmannian representation to twistor
string representation for tree amplitudes. The integration over G(k, n) translates to integra-
tion over the moduli space of complex curves of degree d = k − 1 + l, l ≥ g is the number of
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loops. The moduli correspond to complex coefficients of the polynomial of degree d and they
form naturally a projective space since an overall scaling of coefficients does not change the
surfaces. One can expect also in the general case that moduli space of the partonic 2-surfaces
can be represented as a projective sub-manifold of some projective space. Loop corrections
would correspond to the inclusion of higher degree surfaces.

2. This connection gives hopes for understanding the integration contours in G(k, n) at deeper
level in terms of the moduli spaces of partonic 2-surfaces possibly restricted by conformal
gauge conditions.

Below I try to understand and relate the work of Nima Arkani Hamed et al with twistor
Grassmannian approach to TGD.

4.9.1 The notion of positive Grassmannian

The notion of positive Grassmannian is one of the central notions introduced by Nima et al.

1. The claim is that the sub-spaces of the real Grassmannian G(k, n) contributing to the am-
plitudes for + +−− signature are such that the determinants of the k× k minors associated
with ordered columns of the k × n matrix C representing point of G(k, n) are positive. To
be precise, the signs of all minors are positive or negative simultaneously: only the ratios of
the determinants defining projective invariants are positive.

2. At the boundaries of positive regions some of the determinants vanish. Some k-volumes
degenerate to a lower-dimensional volume. Boundaries are responsible for the leading singu-
larities of the scattering amplitudes and the integration measure associated with G(k, n) has
a logarithmic singularity at the boundaries. These boundaries would naturally correspond to
the boundaries of the moduli space for the partonic 2-surfaces. Here also string world sheets
could contribute to singularities.

3. This condition has a partial generalization to the complex case: the determinants whose ratios
serve as projectively invariant coordinates are non-vanishing. A possible further manner to
generalize this condition would be that the determinants have positive real part so that apart
from rotation by π/2 they would reside in the upper half plane of complex plane. Upper
half plane is the hyperbolic space playing key role in complex analysis and in the theory
of hyperbolic 2-manifolds for which it serves as universal covering space by a finite discrete
subgroup of Lorentz group SL(2, C). The upper half-plane having a deep meaning in the
theory of Riemann surfaces might play also a key role in the moduli spaces of partonic 2-
surfaces. The projective space would be based - not on projectivization of Cn but that of
Hn, H the upper half plane.

Could positivity have some even deeper meaning?

1. In TGD framework the number theoretical universality of amplitudes suggests this. Canonical
identification maps

∑
xnp

n →
∑
xnp

−n p-adic number to non-negative reals. p-Adicization
is possible for angle variables by replacing them by discrete phases, which are roots of unity.
For non-angle like variables, which are non-negative one uses some variant of canonical iden-
tification involving cutoffs [K21]. The positivity should hold true for all structures involved,
the G(2, n) points defined by the twistors characterizing momenta and helicities of particles
(actually pairs of orthogonal planes defined by twistors and their conjugates), the moduli
space of partonic 2-surfaces, etc...

2. p-Adicization requires discretization of phases replacing angles so that they come as roots
of unity associated with the algebraic extension used. The p-adic valued counterpart of
Riemann or Lebesque integral does not make sense p-adically. Residue integrals can however
allow to define p-adic integrals by analytic continuation of the integral and discretization of
the phase factor along the integration contour does not matter (not however the p-adically
troublesome factor 2π!).
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3. TGD suggests that the generalization of positive real projectively invariant coordinates to
complex coordinates of the hyperbolic space representable as upper half plane, or equivalently
as unit disk obtained from the upper half plane by exponential mapping w = exp(iz): positive
coordinate α would correspond to the radial coordinate for the unit disk (Poincare hyperbolic
disk appearing in Escher’s paintings). The real measure dα/α would correspond to dz =
dw/w restricted to a radial line from origin to the boundary of the unit disk. This integral
should correspond to integral over a closed contour in complex case. This is the case if
the integrand is discontinuity over a radial cut and equivalent with an integral over curve
including also the boundary of the unit disk. This integral would reduce to the sum of the
residues of poles inside the unit disk.

4.9.2 The notion of amplituhedron

The notion of amplituhedron is the latest step of progress in the twistor Grassmann approach
[B2, B1]. What is so remarkable, is the simplicity of the expressions for all-loop amplitudes and
the fact that positivity implies locality and unitarity for N = 4 SUSY.

Consider first tree amplitudes with general value of k.

1. The notion of amplituhedron relies on the mapping of G(k, n) to G+(k, k + m) n ≥ k + m.
G+(k, k+m) is positive Grassmannian characterized by the condition that all k× k- minors
k × (k + m) matrix representing the point of G+(k, k + m) are non-negative and vanish at
the boundaries G+(k, k + m). The value of m is m = 4 and follows from the conditions
that amplitudes come out correctly. The constraint Y = C · Z, where Y corresponds to
point of G+(k, k + 4) and Z to the point of G(k, n) performs this mapping, which is clearly
many-to one. One can decompose G+(k, k + 4) to positive regions intersecting only along
their common boundary portions. The decomposition of a convex polygon in plane represent
the basic example of this kind of decomposition.

2. Each decomposition defines a sum of contributions to the scattering amplitudes involving
integration of a projectively invariant volume form over the positive region in question. The
form has a logarithmic singularity at the boundaries of the integration region but spurious
singularities cancel so that only the contribution of the genuine boundary of G+(k, k + 4)
remains. There are additional delta function constraints fixing the integral completely in real
case.

3. In complex case one has residue integral. The proposed generalization to the complex case is
by analytic continuation. TGD inspired proposal is that the positivity condition in the real
case is generalized to the condition that the positive coordinates are replaced by complex
coordinates of hyperbolic space representable as upper half plane or equivalently as the unit
disk obtained from upper half plane by exponential mapping w = exp(iz). The measure dα/α
would correspond to dz = dw/w. If taken over boundary circle labelled by discrete phase
factors exp(iφ) given by roots of unity the integral would be numerically a discrete Riemann
sum making no sense p-adically but residue theorem could allow to avoid the discretizaton
and to define the p-adic variant of the integral by analytic continuation. These conditions
would be completely general conditions on various projectively invariant moduli involved.

4. One must extend the bosonic twistors Za of external particles by adding k coordinates.
Somewhat surprisingly, these coordinates are anticommutative super-coordinates expressible
as linear combinations of fermionic parts of super-twistor using coefficients, which are also
Grassmann numbers. Integrating over these one ends up with the standard expression of
the amplitude using canonical integration measure for the regions in the decomposition of
amplituhedron.

What looks to me intriguing is that there is only super-integration involved over the additional
k degrees of freedom. In Witten’s approach k− 1 corresponds to the minimum degree of the
polynomial defining the string world sheet representing tree diagram. In TGD framework
k + 1 (rather than k − 1) could correspond to the minimum degree of partonic 2-surface.
In TGD approximate SUSY would correspond to Grassmann algebra of fermionic oscillator
operators defined by the spinor basis for embedding space spinors. The interpretation could
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be that each fermion whose helicity differs from that allowed by light-likeness in M4 sense
(this requires non-vanishing M4 mass), contributes ∆k = 1 to the degree of corresponding
partonic 2-surface. Since the partonic 2-surface is common for all particles, one must have
d = k + 1 at least. The k-fold super integration would be basically integral over the moduli
characterizing the polynomials of degree k realizing quantum classical correspondence in
fermionic degrees of freedom.

BFCW recursion formula involves also loop amplitudes for which amplituhedron provides also
a very nice representation.

1. The basic operation is the addition of a loop to get (n, k, l) amplitude from (n + 2, k, l − 1)
amplitude. That 2 particles must be removed for each loop is not obvious in N = 4 SUSY
but follows from the condition that positivity of the integration domain is preserved. This
procedure removes from (n+2, k, l−1)-amplitude 2 particles with opposite four-momenta so
that (n, k, l) amplitude is obtained. In the case of L-loops one extends G(k, n) by adding its
”complement” as a Cartesian factor G(n− k, n) and imbeds to G(n− k, n) 2-plane for each
loop. Positivity conditions can be generalized so that they apply to (k+2l)× (k+2l)-minors
associated with matrices having as rows 0 ≤ l ≤ L ordered Dik :s and of C. The general
expressions of the loop contributions are of the same form as for tree contributions: only the
number of integration variables is 4× (k + L).

2. As already explained, in TGD framework the addition of loop would correspond to the for-
mation of a handle to the partonic surface by fusing two points of partonic 2-surface and
thus creating a surface intermediate between topologies with g and g+1 handles. g would
correspond to the genus characterizing fermion family and one would have L ≥ g. In ele-
mentary particle wave functionals loop [K5] contributions would correspond to higher genus
contributions l1 = l−g > 0 with basic contribution coming from genus g. For scattering am-
plitudes loop contributions would involve the change of the genus of the incoming wormhole
throat so that they correspond to singular surfaces at the boundaries of their moduli space
identifiable as loop corrections. l1 = l − g > 0 would represent the number of pinches of the
partonic 2-surface.

4.9.3 What about non-planar amplitudes?

Non-planar Feynman diagrams have remained a challenge for the twistor approach. The problem
is simple: there is no canonical ordering of the extrenal particles and the loop integrand involving
tricky shifts in integrations to get finite outcome is not unique and well-defined so that twistor
Grasmann approach encounters difficulties.

Recently Nima Arkani-Hamed et al have considered also non-planar MHV diagrams [B13] (hav-
ing minimal number of ”wrong” helicities) of N=4 SUSY, and shown that they can be reduced
to non-planar diagrams for different permutations of vertices of planar diagrams ordered natu-
rally. There are several integration regions identified as positive Grassmannians corresponding to
different orderings of the external lines inducing non-planarity. This does not however hold true
generally.

At the QFT limit the crossings of lines emerges purely combinatorially since Feynman diagrams
are purely combinatorial objects with the ordering of vertices determining the topological properties
of the diagram. Non-planar diagrams correspond to diagrams, which do not allow crossing-free
embedding to plane but require higher genus surface to get rid of crossings.

1. The number of the vertices of the diagram and identification of lines connecting them deter-
mines the diagram as a graph. This defines also in TGD framework Feynman diagram like
structure as a graph for the fermion lines and should be behind non-planarity in QFT sense.

2. Could 2-D Feynman graphs exists also at geometric rather than only combinatorial level?
Octonionization at embedding space level requires identification of preferred M2 ⊂M4 defin-
ing a preferred hyper-complex sub-space. Could the projection of the Fermion lines defined
concrete geometric representation of Feynman diagrams?
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3. Despite their purely combinatorial character Feynman diagrams are analogous to knots and
braids. For years ago [K11] I proposed the generalization of the construction of knot invariants
in which one gradually eliminates the crossings of the knot projection to end up with a trivial
knot is highly suggestive as a procedure for constructing the amplitudes associated with the
non-planar diagrams. The outcome should be a collection of planar diagrams calculable
using twistor Grassmannian methods. Scattering amplitudes could be seen as analogs of
knot invariants. The reduction of MHV diagrams to planar diagrams could be an example
of this procedure.

One can imagine also analogs of non-planarity, which are geometric and topological rather than
combinatorial and not visible at the QFT limit of TGD.

1. The fermion lines representing boundaries of string world sheets at the light-like orbits of
partonic 2-surfaces can get braided. The same can happen also for the string boundaries at
space-like 3-surfaces at the ends of the space-time surface. The projections of these braids to
partonic 2-surfaces are analogs of non-planar diagrams. If the fermion lines at single wormhole
throat are regarded effectively as a line representing one member of super-multiplet, this kind
of braiding remains below the resolution used and cannot correspond to the braiding at QFT
limit.

2. 2-knotting and 2-braiding are possible for partonic 2-surfaces and string world sheets as
2-surfaces in 4-D space-time surfaces and have no counterpart at QFT limit.

4.10 Permutations, Braidings, And Amplitudes

In [B9] Nima Arkani-Hamed demonstrates that various twistorially represented on-mass-
shell amplitudes (allowing light-like complex momenta) constructible by taking products of
the 3-particle amplitude and its conjugate can be assigned with unique permutations of the
incoming lines. The article describes the graphical representation of the amplitudes and its
generalization. For 3-particle amplitudes, which correspond to + + − and + − − twistor
amplitudes, the corresponding permutations are cyclic permutations, which are inverses of
each other. One actually introduces double cover for the labels of the particles and speaks of
decorated permutations meaning that permutation is always a right shift in the integer and
in the range [1, 2× n].

4.10.1 Amplitudes as representation of permutations

It is shown that for on mass shell twistor amplitudes the definition using on-mass-shell 3-
vertices as building bricks is highly reducible: there are two moves for squares defining
4-particle sub-amplitudes allowing to reduce the graph to a simpler one. The first ove is
topologically like the s-t duality of the old-fashioned string models and second one corresponds
to the transformation black ↔ white for a square sub-diagram with lines of same color at
the ends of the two diagonals and built from 3-vertices.

One can define the permutation characterizing the general on mass shell amplitude by a
simple rule. Start from an external particle a and go through the graph turning in in white
(black) vertex to left (right). Eventually this leads to a vertex containing an external particle
and identified as the image P (a) of the a in the permutation. If permutations are taken as
right shifts, one ends up with double covering of permutation group with 2 × n! elements -
decorated permutations. In this manner one can assign to any any line of the diagram two
lines. This brings in mind 2-D integrable theories where scattering reduces to braiding and
also topological QFTs where braiding defines the unitary S-matrix. In TGD parton lines
involve braidings of the fermion lines so that an assignment of permutation also to vertex
would be rather nice.

BCFW bridge has an interpretation as a transposition of two neighboring vertices affecting
the lines of the permutation defining the diagram. One can construct all permutations as
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products of transpositions and therefore by building BCFW bridges. BCFW bridge can be
constructed also between disjoint diagrams as done in the BCFW recursion formula.

Can one generalize this picture in TGD framework? There are several questions to be an-
swered.

(a) What should one assume about the states at the light-like boundaries of string world
sheets? What is the precise meaning of the supersymmetry: is it dynamical or gauge
symmetry or both?

(b) What does one mean with particle: partonic 2-surface or boundary line of string world
sheet? How the fundamental vertices are identified: 4 incoming boundaries of string
world sheets or 3 incoming partonic orbits or are both aspects involved?

(c) How the 8-D generalization of twistors bringing in second helicity and doubling the M4

helicity states assignable to fermions does affect the situation?

(d) Does the crucial right-left rule relying heavily on the possibility of only 2 3-particle
vertices generalize? Does M4 massivation imply more than 2 3-particle vertices implying
many-to-one correspondence between on-mass-shell diagrams and permutations? Or
should one generalize the right-left rule in TGD framework?

4.10.2 Fermion lines for fermions massless in 8-D sense

What does one mean with particle line at the level of fermions?

(a) How the addition of CP2 helicity and complete correlation between M4 and CP2 chi-
ralities does affect the rules of N = 4 SUSY? Chiral invariance in 8-D sense guarantees
fermion number conservation for quarks and leptons separately and means conservation
of the product of M4 and CP2 chiralities for 2-fermion vertices. Hence only M4 chiral-
ity need to be considered. M4 massivation allows more 4-fermion vertices than N = 4
SUSY.

(b) One can assign to a given partonic orbit several lines as boundaries of string world sheets
connecting the orbit to other partonic orbits. Supersymmetry could be understoond in
two ways.

i. The fermions generating the state of super-multiplet correspond to boundaries of
different string world sheets which need not connect the string world sheet to same
partonic orbit. This SUSY is dynamical and broken. The breaking is mildest
breaking for line groups connected by string world sheets to same partonic orbit.
Right handed neutrinos generated the least broken N = 2 SUSY.

ii. Also single line carrying several fermions would provide realization of generalized
SUSY since the multi-fermion state would be characterized by single 8-momentum
and helicity. One would have N = 4 SUSY for quarks and leptons separately and
N = 8 if both quarks and leptons are allowed. Conserved total for quark and
antiquarks and leptons and antileptons characterize the lines as well.
What would be the propagator associated with many-fermion line? The first guess
is that it is just a tensor power of single fermion propagator applied to the tensor
power of single fermion states at the end of the line. This gives power of 1/p2n to the
denominator, which suggests that residue integral in momentum space gives zero
unless one as just single fermion state unless the vertices give compensating powers
of p. The reduction of fermion number to 0 or 1 would simplify the diagrammatics
enormously and one would have only 0 or 1 fermions per given string boundary line.
Multi-fermion lines would represent gauge degrees of freedom and SUSY would be
realized as gauge invariance. This view about SUSY clearly gives the simplest
picture, which is also consistent with the earlier one, and will be assumed in the
sequel

(c) The multiline containing n fermion oscillator operators can transform by chirality mixing
in 2n ways at 4-fermion vertex so that there is quite a large number of options for
incoming lines with ni fermions.
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(d) In 4-D Dirac equation light-likeness implies a complete correlation between fermion
number and chirality. In 8-D case light-likeness should imply the same: now chirality
correspond to fermion number. Does this mean that one must assume just superposition
of different M4 chiralities at the fermion lines as 8-D Dirac equation requires. Or should
one assume that virtual fermions at the end of the line have wrong chirality so that
massless Dirac operator does not annihilate them?

4.10.3 Fundamental vertices

One can consider two candidates for fundamental vertices depending on whether one identifies
the lines of Feynman diagram as fermion lines or as light-like orbits of partonic 2-surfaces.
The latter vertices reduces microscopically to the fermionic 4-vertices.

(a) If many-fermion lines are identified as fundamental lines, 4-fermion vertex is the fun-
damental vertex assignable to single wormhole contact in the topological vertex defined
by common partonic 2-surface at the ends of incoming light-like 3-surfaces. The discon-
tinuity is what makes the vertex non-trivial.

(b) In the vertices generalization of OZI rule applies for many-fermion lines since there are
no higher vertices at this level and interactions are mediated by classical induced gauge
fields and chirality mixing. Classical induced gauge fields vanish if CP2 projection is
1-dimensional for string world sheets and even gauge potentials vanish if the projection
is to geodesic circle. Hence only the chirality mixing due to the mixing of M4 and
CP2 gamma matrices is possible and changes the fermionic M4 chiralities. This would
dictate what vertices are possible.

(c) The possibility of two helicity states for fermions suggests that the number of amplitudes
is considerably larger than in N = 4 SUSY. One would have 5 independent fermion
amplitudes and at each 4-fermion vertex one should be able to choose between 3 options
if the right-left rule generalizes. Hence the number of amplitudes is larger than the
number of permutations possibly obtained using a generalization of right-left rule to
right-middle-left rule.

(d) Note however that for massless particles in M4 sense the reduction of helicity combina-
tions for the fermion and antifermion making virtual gauge boson happens. The fermion
and antifermion at the opposite wormhole throats have parallel four-momenta in good
approximation. In M4 they would have opposite chiralities and opposite helicities so
that the boson would be M4 scalar. No vector bosons would be obtained in this manner.

In 8-D context it is possible to have also vector bosons since the M4 chiralities can be
same for fermion and anti-fermion. The bosons are however massive, and even photon is
predicted to have small mass given by p-adic thermodynamics [K12]. Massivation brings
in also the M4 helicity 0 state. Only if zero helicity state is absent, the fundamental
four-fermion vertex vanishes for + + ++ and −−−− combinations and one extend the
right-left rule to right-middle-left rule. There is however no good reason for he reduction
in the number of 4-fermion amplitudes to take place.

4.10.4 Partonic surfaces as 3-vertices

At space-time level one could identify vertices as partonic 2-surfaces.

(a) At space-time level the fundamental vertices are 3-particle vertices with particle identi-
fied as wormhole contact carrying many-fermion states at both wormhole throats. Each
line of BCFW diagram would be doubled. This brings in mind the representation of
permutations and leads to ask whether this representation could be re-interpreted in
TGD framework. For this option the generalization of the decomposition of diagram
to 3-particle vertices is very natural. If the states at throats consist of bound states of
fermions as SUSY suggests, one could characterize them by total 8-momentum and he-
licity in good approximation. Both helicities would be however possible also for fermions
by chirality mixing.
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(b) A genuine decomposition to 3-vertices and lines connecting them takes place if two of
the fermions reside at opposite throats of wormhole contact identified as fundamental
gauge boson (physical elementary particles involve two wormhole contacts).

The 3-vertex can be seen as fundamental and 4-fermion vertex becomes its microscopic
representation. Since the 3-vertices are at fermion level 4-vertices their number is greater
than two and there is no hope about the generalization of right-left rule.

4.10.5 OZI rule implies correspondence between permutations and amplitudes

The realization of the permutation in the same manner as for N = 4 amplitudes does not
work in TGD. OZI rule following from the absence of 4-fermion vertices however implies
much simpler and physically quite a concrete manner to define the permutation for external
fermion lines and also generalizes it to include braidings along partonic orbits.

(a) Already N = 4 approach assumes decorated permutations meaning that each external
fermion has effectively two states corresponding to labels k and k + n (permutations
are shifts to the right). For decorated permutations the number of external states is
effectively 2n and the number of decorated permutations is 2 × n!. The number of
different helicity configurations in TGD framework is 2n for incoming fermions at the
vertex defined by the partonic 2-surface. By looking the values of these numbers for
lowest integers one finds 2n ≥ 2n: for n = 2 the equation is saturated. The inequality
log(n!) > nlog(n)/e) + 1 (see http://tinyurl.com/2bjk5h). gives

log(2n!)

log(2n)
≥ log(2) + 1 + nlog(n/e)

nlog(2)
= log(n/e)/log(2) +O(1/n)

so that the desired inequality holds for all interesting values of n.

(b) If OZI rule holds true, the permutation has very natural physical definition. One just
follows the fermion line which must eventually end up to some external fermion since
the only fermion vertex is 2-fermion vertex. The helicity flip would map k → k + n or
vice versa.

(c) The labelling of diagrams by permutations generalizes to the case of diagrams involving
partonic surfaces at the boundaries of causal diamond containing the external fermions
and the partonic 2-surfaces in the interior of CD identified as vertices. Permutations
generalize to braidings since also the braidings along the light-like partonic 2-surfaces are
allowed. A quite concrete generalization of the analogs of braid diagrams in integrable
2-D theories emerges.

(d) BCFW bridge would be completely analogous to the fundamental braiding operation
permuting two neighboring braid strands. The almost reduction to braid theory - apart
from the presence of vertices conforms with the vision about reduction of TGD to almost
topological QFT.

To sum up, the simplest option assumes SUSY as both gauge symmetry and broken dy-
namical symmetry. The gauge symmetry relates string boundaries with different fermion
numbers and only fermion number 0 or 1 gives rise to a non-vanishing outcome in the residue
integration and one obtains the picture used hitherto. If OZI rule applies, the decorated
permutation symmetry generalizes to include braidings at the parton orbits and k → k ± n
corresponds to a helicity flip for a fermion going through the 4-vertex. OZI rules follows
from the absence of non-linearities in Dirac action and means that 4-fermion vertices in the
usual sense making theory non-renormalizable are absent. Theory is essentially free field
theory in fermionic degrees of freedom and interactions in the sense of QFT are transformed
to non-trivial topology of space-time surfaces.

3. If one can approximate space-time sheets by maps from M4 to CP2, one expects General
Relativity and QFT description to be good approximations. GRT space-time is obtained
by replacing space-time sheets with single sheet - a piece of slightly deformed Minkowski
space but without assupmtion about embedding to H. Induced classical gravitational field

http://tinyurl.com/2bjk5h
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and gauge fields are sums of those associated with the sheets. The generalized Feynman
diagrams with lines at various sheets and going also between sheets are projected to single
piece of M4. Many-sheetedness makes 1-homology non-trivial and implies analog of braiding,
which should be however invisible at QFT limit.

A concrete manner to eliminate line crossing in non-planar amplitude to get nearer to non-
planar amplitude could proceed roughly as follows. This is of course a pure guess motivated only
by topological considerations. Professional might kill it in few seconds.

1. If the lines carry no quantum numbers, reconnection allows to eliminate the crossings. Con-
sider the crossing line pair connecting AB in the initial state to CD in final state. The crossing
lines are AD and BC. Reconnection can take place in two ways: AD and BC transform either
to AB and CD or to AC and BD: neither line pair has crossing. The final state of the braid
would be quantum superposition of the resulting more planar braids.

2. The crossed lines however carry different quantum numbers in the generic situation: for
instance, they can be fermionic and bosonic. In this particular case the reconnection does
not make sense since a line carrying fermion number would transform to a line carrying
boson.

In TGD framework all lines are fermion lines at fundamental level but the constraint due to
different quantum numbers still remains and it is easy to see that mere reconnection is not
enough. Fermion number conservation allows only one of the two alternatives to be realized.
Conservation of quantum numbers forces to restrict gives an additional constraint which for
simplest non-planar diagram with two crossed fermion lines forces the quantum numbers of
fermions to be identical.

It seems also more natural to consider pairs of wormhole contacts defining elementary par-
ticles as ”lines” in turn consisting of fermion lines. Yangian symmetry allows to develop a
more detailed view about what this decomposition could mean.

Quantum number conservation demands that reconnection is followed by a formation of an
additional internal line connecting the non-crossing lines obtained by reconnection. The addi-
tional line representing a quantum number exchange between the resulting non-crossing lines
would guarantee the conservation of quantum numbers. This would bring in two additional
vertices and one additional internal line. This would be enough to reduce planarity. The
repeated application of this transformation should produced a sum of non-planar diagrams.

3. What could go wrong with this proposal? In the case of gauge theory the order of diagram
increases by g2 since two new vertices are generated. Should a multiplication by 1/g2 ac-
company this process? Or is this observation enough to kill the hypothesis in gauge theory
framework? In TGD framework the situation is not understood well enough to say anything.
Certainly the critical value of αK implies that one cannot regard it as a free parameter and
cannot treat the contributions from various orders as independent ones.

5 Could The Universe Be Doing Yangian Arithmetics?

One of the old TGD inspired really crazy ideas about scattering amplitudes is that Universe is
doing some sort of arithmetics so that scattering amplitude are representations for computational
sequences of minimum length. The idea is so crazy that I have even given up its original form,
which led to an attempt to assimilate the basic ideas about bi-algebras, quantum groups [K2],
Yangians [K18], and related exotic things. The work with twistor Grassmannian approach inspired
a reconsideration of the original idea seriously with the idea that super-symplectic Yangian could
define the arithmetics. I try to describe the background, motivation, and the ensuing reckless
speculations in the following.

5.1 Do Scattering Amplitudes Represent Quantal Algebraic Manipula-
tions?

I seems that tensor product ⊗ and direct sum ⊕ - very much analogous to product and sum
but defined between Hilbert spaces rather than numbers - are naturally associated with the basic
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vertices of TGD. I have written about this a highly speculative chapter - both mathematically and
physically [K14]. The chapter [K2] is a remnant of earlier similar speculations.

1. In ⊗ vertex 3-surface splits to two 3-surfaces meaning that the 2 ”incoming” 4-surfaces
meet at single common 3-surface and become the outgoing 3-surface: 3 lines of Feynman
diagram meeting at their ends. This has a lower-dimensional shadow realized for partonic 2-
surfaces. This topological 3-particle vertex would be higher-D variant of 3-vertex for Feynman
diagrams.

2. The second vertex is trouser vertex for strings generalized so that it applies to 3-surfaces. It
does not represent particle decay as in string models but the branching of the particle wave
function so that particle can be said to propagate along two different paths simultaneously.
In double slit experiment this would occur for the photon space-time sheets.

3. The idea is that Universe is doing arithmetics of some kind in the sense that particle 3-
vertex in the above topological sense represents either multiplication or its time-reversal
co-multiplication.

The product, call it ◦, can be something very general, say algebraic operation assignable to
some algebraic structure. The algebraic structure could be almost anything: a random list of
structures popping into mind consists of group, Lie-algebra, super-conformal algebra quantum
algebra, Yangian, etc.... The algebraic operation ◦ can be group multiplication, Lie-bracket, its
generalization to super-algebra level, etc...). Tensor product and thus linear (Hilbert) spaces are
involved always, and in product operation tensor product ⊗ is replaced with ◦.

1. The product Ak ⊗ Al → C = Ak ◦ Al is analogous to a particle reaction in which particles
Ak and Al fuse to particle Ak ⊗ Al → C = Ak ◦ Al. One can say that ⊗ between reactants
is transformed to ◦ in the particle reaction: kind of bound state is formed.

2. There are very many pairs Ak, Al giving the same product C just as given integer can be
divided in many ways to a product of two integers if it is not prime. This of course suggests
that elementary particles are primes of the algebra if this notion is defined for it! One can
use some basis for the algebra and in this basis one has C = Ak ◦ Al = fklmAm, fklm are
the structure constants of the algebra and satisfy constraints. For instance, associativity
A(BC) = (AB)C is a constraint making the life of algebraist more tolerable and is almost
routinely assumed.

For instance, in the number theoretic approach to TGD associativity is proposed to serve
as fundamental law of physics and allows to identify space-time surfaces as 4-surfaces with
associative (quaternionic) tangent space or normal space at each point of octonionic embed-
ding space M4 × CP2. Lie algebras are not associative but Jacobi-identities following from
the associativity of Lie group product replace associativity.

3. Co-product can be said to be time reversal of the algebraic operation ◦. Co-product can be
defined as C = Ak →

∑
lm f

lm
k Al⊗Am, where f lmk are the structure constants of the algebra.

The outcome is quantum superposition of final states, which can fuse to C (the ”reaction”
Ak ⊗ Al → C = Ak ◦ Al is possible). One can say that ◦ is replaced with ⊗: bound state
decays to a superposition of all pairs, which can form the bound states by product vertex.

There are motivations for representing scattering amplitudes as sequences of algebraic oper-
ations performed for the incoming set of particles leading to an outgoing set of particles with
particles identified as algebraic objects acting on vacuum state. The outcome would be analogous
to Feynman diagrams but only the diagram with minimal length to which a preferred extremal
can be assigned is needed. Larger ones must be equivalent with it.

The question is whether it could be indeed possible to characterize particle reactions as com-
putations involving transformation of tensor products to products in vertices and co-products to
tensor products in co-vertices (time reversals of the vertices). A couple of examples gives some
idea about what is involved.
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1. The simplest operations would preserve particle number and to just permute the particles: the
permutation generalizes to a braiding and the scattering matrix would be basically unitary
braiding matrix utilized in topological quantum computation.

2. A more complex situation occurs, when the number of particles is preserved but quantum
numbers for the final state are not same as for the initial state so that particles must interact.
This requires both product and co-product vertices. For instance, Ak⊗Al → fmklAm followed
by Am → frsmAr ⊗ As giving Ak → fmkl f

rs
mAr ⊗ As representing 2-particle scattering. State

function reduction in the final state can select any pair Ar ⊗ As in the final state. This
reaction is characterized by the ordinary tree diagram in which two lines fuse to single line
and defuse back to two lines. Note also that there is a non-deterministic element involved.
A given final state can be achieved from a given initial state after large enough number of
trials. The analogy with problem solving and mathematical theorem proving is obvious. If
the interpretation is correct, Universe would be problem solver and theorem prover!

3. More complex reactions affect also the particle number. 3-vertex and its co-vertex are the
simplest examples and generate more complex particle number changing vertices. For in-
stance, on twistor Grassmann approach on can construct all diagrams using two 3-vertices.
This encourages the restriction to 3-vertice (recall that fermions have only 2-vertices)

4. Intuitively it is clear that the final collection of algebraic objects can be reached by a large
- maybe infinite - number of ways. It seems also clear that there is the shortest manner to
end up to the final state from a given initial state. Of course, it can happen that there is no
way to achieve it! For instance, if ◦ corresponds to group multiplication the co-vertex can
lead only to a pair of particles for which the product of final state group elements equals to
the initial state group element.

5. Quantum theorists of course worry about unitarity. How can avoid the situation in which the
product gives zero if the outcome is element of linear space. Somehow the product should be
such that this can be avoided. For instance, if product is Lie-algebra commutator, Cartan
algebra would give zero as outcome.

5.2 Generalized Feynman Diagram As Shortest Possible Algebraic Ma-
nipulation Connecting Initial And Final Algebraic Objects

There is a strong motivation for the interpretation of generalized Feynman diagrams as shortest
possible algebraic operations connecting initial and final states. The reason is that in TGD one
does not have path integral over all possible space-time surfaces connecting the 3-surfaces at the
ends of CD. Rather, one has in the optimal situation a space-time surface unique apart from
conformal gauge degeneracy connecting the 3-surfaces at the ends of CD (they can have disjoint
components).

Path integral is replaced with integral over 3-surfaces. There is therefore only single minimal
generalized Feynman diagram (or twistor diagram, or whatever is the appropriate term). It would
be nice if this diagram had interpretation as the shortest possible computation leading from the
initial state to the final state specified by 3-surfaces and basically fermionic states at them. This
would of course simplify enormously the theory and the connection to the twistor Grassmann
approach is very suggestive. A further motivation comes from the observation that the state basis
created by the fermionic Clifford algebra has an interpretation in terms of Boolean quantum logic
and that in ZEO the fermionic states would have interpretation as analogs of Boolean statements
A→ B.

To see whether and how this idea could be realized in TGD framework, let us try to find
counterparts for the basic operations ⊗ and ◦ and identify the algebra involved. Consider first the
basic geometric objects.

1. Tensor product could correspond geometrically to two disjoint 3-surfaces representing 3-
particles. Partonic 2-surfaces associated with a given 3-surface represent second possibility.
The splitting of a partonic 2-surface to two could be the geometric counterpart for co-product.
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2. Partonic 2-surfaces are however connected to each other and possibly even to themselves
by strings. It seems that partonic 2-surface cannot be the basic unit. Indeed, elementary
particles are identified as pairs of wormhole throats (partonic 2-surfaces) with magnetic
monopole flux flowing from throat to another at first space-time sheet, then through throat
to another sheet, then back along second sheet to the lower throat of the first contact and
then back to the thirst throat. This unit seems to be the natural basic object to consider.
The flux tubes at both sheets are accompanied by fermionic strings. Whether also wormhole
throats contain strings so that one would have single closed string rather than two open ones,
is an open question.

3. The connecting strings give rise to the formation of gravitationally bound states and the
hierarchy of Planck constants is crucially involved. For elementary particle there are just two
wormhole contacts each involving two wormhole throats connected by wormhole contact.
Wormhole throats are connected by one or more strings, which define space-like boundaries
of corresponding string world sheets at the boundaries of CD. These strings are responsible
for the formation of bound states, even macroscopic gravitational bound states.

5.3 Does Super-Symplectic Yangian Define The Arithmetics?

Super-symplectic Yangian would be a reasonable guess for the algebra involved.

1. The 2-local generators of Yangian would be of form TA1 = fABCT
B ⊗ TC , where fABC are the

structure constants of the super-symplectic algebra. n-local generators would be obtained
by iterating this rule. Note that the generator TA1 creates an entangled state of TB and TC

with fABC the entanglement coefficients. TAn is entangled state of TB and TCn−1 with the same
coefficients. A kind replication of TAn−1 is clearly involved, and the fundamental replication
is that of TA. Note that one can start from any irreducible representation with well defined
symplectic quantum numbers and form similar hierarchy by using TA and the representation
as a starting point.

That the hierarchy TAn and hierarchies irreducible representations would define a hierarchy of
states associated with the partonic 2-surface is a highly non-trivial and powerful hypothesis
about the formation of many-fermion bound states inside partonic 2-surfaces.

2. The charges TA correspond to fermionic and bosonic super-symplectic generators. The geo-
metric counterpart for the replication at the lowest level could correspond to a fermionic/bosonic
string carrying super-symplectic generator splitting to fermionic/bosonic string and a string
carrying bosonic symplectic generator TA. This splitting of string brings in mind the basic
gauge boson-gauge boson or gauge boson-fermion vertex.

The vision about emission of virtual particle suggests that the entire wormhole contact pair
replicates. Second wormhole throat would carry the string corresponding to TA assignable
to gauge boson naturally. TA should involve pairs of fermionic creation and annihilation op-
erators as well as fermionic and anti-fermionic creation operator (and annihilation operators)
as in quantum field theory.

3. Bosonic emergence suggests that bosonic generators are constructed from fermion pairs with
fermion and anti-fermion at opposite wormhole throats: this would allow to avoid the prob-
lems with the singular character of purely local fermion current. Fermionic and anti-fermionic
string would reside at opposite space-time sheets and the whole structure would correspond to
a closed magnetic tube carrying monopole flux. Fermions would correspond to superpositions
of states in which string is located at either half of the closed flux tube.

4. The basic arithmetic operation in co-vertex would be co-multiplication transforming TAn
to TAn+1 = fABCT

B
n ⊗ TC . In vertex the transformation of TAn+1 to TAn would take place.

The interpretations would be as emission/absorption of gauge boson. One must include
also emission of fermion and this means replacement of TA with corresponding fermionic
generators FA, so that the fermion number of the second part of the state is reduced by one
unit. Particle reactions would be more than mere braidings and re-grouping of fermions and
anti-fermions inside partonic 2-surfaces, which can split.
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5. Inside the light-like orbits of the partonic 2-surfaces there is also a braiding affecting the
M-matrix. The arithmetics involved would be therefore essentially that of measuring and
”co-measuring” symplectic charges.

Generalized Feynman diagrams (preferred extremals) connecting given 3-surfaces and many-
fermion states (bosons are counted as fermion-anti-fermion states) would have a minimum
number of vertices and co-vertices. The splitting of string lines implies creation of pairs of
fermion lines. Whether regroupings are part of the story is not quite clear. In any case,
without the replication of 3-surfaces it would not be possible to understand processes like e-e
scattering by photon exchange in the proposed picture.

It is easy to hear the comments of the skeptic listener in the back row.

1. The attribute ”minimal” - , which could translate to minimal value of Kähler function - is
dangerous. It might be very difficult to determine what the minimal diagram is - consider
only travelling salesman problem or the task of finding the shortest proof of theorem. It
would be much nicer to have simple calculational rules.

The original proposal might help here. The generalization of string model duality was in
question. It stated that it is possible to move the positions of the vertices of the diagrams just
as one does to transform s-channel resonances to t-channel exchange. All loops of generalized
diagrams could be be eliminated by transforming the to tadpoles and snipped away so that
only tree diagrams would be left. The variants of the diagram were identified as different
continuation paths between different paths connecting sectors of WCW corresponding to
different 3-topologies. Each step in the continuation procedure would involve product or
co-product defining what continuation between two sectors means for WCW spinors. The
continuations between two states require some minimal number of steps. If this is true, all
computations connecting identical states are also physically equivalent. The value of the
vacuum functional be same for all of them. This looks very natural.

That the Kähler action should be same for all computational sequences connecting the same
initial and final states looks strange but might be understood in terms of the vacuum degen-
eracy of Kähler action.

2. QFT perturbation theory requires that should have superposition of computations/continuations.
What could the superposition of QFT diagrams correspond to in TGD framework?

Could it correspond to a superposition of generators of the Yangian creating the physical
state? After all, already quantum computer perform superpositions of computations. The
fermionic state would not be the simplest one that one can imagine. Could AdS/CFT
analogy allow to identify the vacuum state as a superposition of multi-string states so that
single super-symplectic generator would be replaced with a superposition of its Yangian
counterparts with same total quantum numbers but with a varying number of strings? The
weight of a given superposition would be given by the total effective string world sheet area.
The sum of diagrams would emerge from this superposition and would basically correspond
to functional integration in WCW using exponent of Kähler action as weight. The stringy
functional integral (“functional” if also wormhole contacts contain string portion, otherwise
path integral) would give the perturbation theory around given string world sheet. One
would have effective reduction of string theory.

5.4 How Does This Relate To The Ordinary Perturbation Theory?

One can of course worry about how to understand the basic results of the usual perturbation theory
in this picture. How does one obtain a perturbation theory in powers of coupling constant, what
does running coupling constant mean, etc...? I have already discussed how the superposition of
diagrams could be understood in the new picture.

1. The QFT picture with running coupling constant is expected at QFT limit, when many-
sheeted space-time is replaced with a slightly curved region of M4 and gravitational field
and gauge potentials are identified as sums of the deviations of induced metric from M4

metric and classical induced gauge potentials associated with the sheets of the many-sheeted
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space-time. The running coupling constant would be due to the dependence of the size scale
of CD, and p-adic coupling constant evolution would be behind the continuous one.

2. The notion of running coupling constant is very physical concept and should have a descrip-
tion also at the fundamental level and be due to a finite computational resolution, which
indeed has very concrete description in terms of Noether charges of super-symplectic Yan-
gian creating the states at the ends of space-time surface at the boundaries of CD. The
space-time surface and the diagram associated with a given pair of 3-surfaces and stringy
Noether charges associated with them can be characterized by a complexity measured in
terms of the number of vertices (3-surface at which three 3-surfaces meet).

For instance, 3-particle scattering can be possible only by using the simplest 3-vertex defined
by product or co-product for pairs of 3-surfaces. In the generic case one has more complex
diagram and what looks first 3-particle vertex has complex substructure rather than being
simple product or co-product.

3. Complexity seems to have two separate aspects: the complexities of the positive and negative
parts of zero energy state as many-fermion states and the complexity of associated 3-surfaces.
The generalization of AdS/CFT however suggests that once the string world sheets and
partonic 2-surfaces appearing in the diagram have been fixed, the space-time surface itself is
fixed. The principle also suggests that the fixing partonic 2-surface and the strings connecting
them at the boundaries of CD fixes the 3-surface apart from the action of sub-algebra of
Yangian acting as gauge algebra (vanishing classical Noether charges). If one can determine
the minimal sequence of allowed algebraic operation of Yangian connecting initial and final
fermion states, one knows the minimum number of vertices and therefore the topological
structure of the connecting minimal space-time surface.

4. In QFT spirit one could describe the finite measurement resolution by introducing effective
3-point vertex, which is need not be product/co-produce anymore. 3-point scattering am-
plitudes in general involve microscopic algebraic structure involving several vertices. One
can however give up the nice algebraic interpretation and just talk about effective 3-vertex
for practical purposes. Just as the QFT vertex described by running coupling constant de-
composes to sum of diagrams, product/co-product in TGD could be replaced with effective
product/co-product expressible as a longer computation. This would imply coupling constant
evolution.

Fermion lines could however remain as such since they are massless in 8-D sense and mass
renormalization does not make sense.

Similar practical simplification could be done the initial and final states to get rid of su-
perposition of the Yangian generators with different numbers of strings (“cloud of virtual
particles”). This would correspond to wave function renormalization.

5. The number of vertices and wormhole contact orbits serves as a measure for the complexity
of the diagram. Since fermion lines are associated with wormhole throats assignable with
wormhole contacts identifiable as deformations CP2 type vacuum extremals, one expects that
the exponent of the Kähler function defining vacuum functional is in the first approximation
the total CP2 volume of wormhole contacts giving a measure for the importance of the
contribution in functional integral. If it converges very rapidly only Gaussian approximation
around maximum is needed.

6. Convergence depends on how large the fraction of volume of CP2 is associated with a given
wormhole contact. The volume is proportional to the length of the wormhole contact orbit.
One expects exponential convergence with the number of fermion lines and their lengths
for long lines. For short distances the exponential damping is small so that diagrams with
microscopic structure of diagrams are needed and are possible. This looks like adding small
scale details to the algebraic manipulations.

7. One must be of course be very cautious in making conclusions. The presence of 1/αK ∝ heff
in the exponent of Kähler function would suggest that for large values of heff only the 3-
surfaces with smallest possible number of wormhole contact orbits contribute. On the other
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hand, the generalization of AdS/CFT duality suggests that Kähler action reducible to area of
string world sheet in the effective metric defined by canonical momentum currents of Kähler
action behaves as α2

K ∝ 1/h2eff . What does this mean?

To sum up, the identification of vertex as a product or co-product in Yangian looks highly
promising approach. The Nother charges of the super-symplectic Yangian are associated with
strings and are either linear or bilinear in the fermion field. The fermion fields associated with
the partonic 2-surface defining the vertex are contracted with fermion fields associated with other
partonic 2-surfaces using the same rule as in Wick expansion in quantum field theories. The
contraction gives fermion propagator for each leg pair associated with two vertices. Vertex factor
is proportional to the contraction of spinor modes with the operators defining the Noether charge
or super charge and essentially Kähler-Dirac gamma matrix and the representation of the action of
the symplectic generator on fermion realizable in terms of sigma matrices. This is very much like
the corresponding expression in gauge theories but with gauge algebra replaced with symplectic
algebra. The possibility of contractions of creation and annihilation operator for fermion lines
associated with opposite wormhole throats at the same partonic 2-surface (for Noether charge
bilinear in fermion field) gives bosonic exchanges as lines in which the fermion lines turns in time
direction: otherwise only regroupings of fermions would take place.

5.5 This Was Not The Whole Story Yet

The proposed amplitude represents only the value of WCW spinor field for single pair of 3-surfaces
at the opposite boundaries of given CD. Hence Yangian construction does not tell the whole story.

1. Yangian algebra would give only the vertices of the scattering amplitudes. On basis of
previous considerations, one expects that each fermion line carries propagator defined by
8-momentum. The structure would resemble that of super-symmetric YM theory. Fermionic
propagators should emerge from summing over intermediate fermion states in various vertices
and one would have integrations over virtual momenta which are carried as residue integra-
tions in twistor Grassmann approach. 8-D counterpart of twistorialization would apply.

2. Super-symplectic Yangian would give the scattering amplitudes for single space-time surface
and the purely group theoretical form of these amplitudes gives hopes about the independence
of the scattering amplitude on the pair of 3-surfaces at the ends of CD near the maximum
of Kähler function. This is perhaps too much to hope except approximately but if true, the
integration over WCW would give only exponent of Kähler action since metric and poorly
defined Gaussian and determinants would cancel by the basic properties of Kähler metric.
Exponent would give a non-analytic dependence on αK .

The Yangian supercharges are proportional to 1/αK since covariant Kähler-Dirac gamma
matrices are proportional to canonical momentum currents of Kähler action and thus to
1/αK . Perturbation theory in powers of αK = g2K/4π~eff is possible after factorizing out
the exponent of vacuum functional at the maximum of Kähler function and the factors 1/αK
multiplying super-symplectic charges.

The additional complication is that the characteristics of preferred extremals contributing
significantly to the scattering amplitudes are expected to depend on the value of αK by quan-
tum interference effects. Kähler action is proportional to 1/αK . The analogy of AdS/CFT
correspondence states the expressibility of Kähler function in terms of string area in the
effective metric defined by the anti-commutators of K-D matrices. Interference effects elimi-
nate string length for which the area action has a value considerably larger than one so that
the string length and thus also the minimal size of CD containing it scales as heff . Quan-
tum interference effects therefore give an additional dependence of Yangian super-charges on
heff leading to a perturbative expansion in powers of αK although the basic expression for
scattering amplitude would not suggest this.

3. Non-planar diagrams of quantum field theories should have natural counterpart and linking
and knotting for braids defines it naturally. This suggests that the amplitudes can be inter-
preted as generalizations of braid diagrams defining braid invariants: braid strands would
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appear as legs of 3-vertices representing product and co-product. Amplitudes could be con-
structed as generalized braid invariants transforming recursively braided tree diagram to
an un-braided diagram using same operations as for braids. In [?] I considered a possible
breaking of associativity occurring in weak sense for conformal field theories and was led
to the vision that there is a fractal hierarchy of braids such that braid strands themselves
correspond to braids. This hierarchy would define an operad with subgroups of permutation
group in key role. Hence it seems that various approaches to the construction of amplitudes
converge.

6 Appendix: Some Mathematical Details About Grasman-
nian Formalism

In the following I try to summarize my amateurish understanding about the mathematical structure
behind the Grassmann integral approach. The representation summarizes what I have gathered
from the articles of Arkani-Hamed and collaborators [B10, B11]. These articles are rather sketchy
and the article of Bullimore provides additional details [B14] related to soft factors. The article of
Mason and Skinner provides excellent introduction to super-twistors [B7] and dual super-conformal
invariance. I apologize for unavoidable errors.

Before continuing a brief summary about the history leading to the articles of Arkani-Hamed
and others is in order. This summary covers only those aspects which I am at least somewhat
familiar with and leaves out many topics about existence which I am only half-conscious.

1. It is convenient to start by summarizing the basic facts about bi-spinors and their conjugates
allowing to express massless momenta as paa

′
= λaλ̃a

′
with λ̃ defined as complex conjugate of

λ and having opposite chirality. When λ is scaled by a complex number λ̃ suffers an opposite
scaling. The bi-spinors allow the definition of various inner products

〈λ, µ〉 = εabλ
aµb ,[

λ̃, µ̃
]

= εa′b′λ
a′µb

′
,

p · q = 〈λ, µ〉
[
λ̃, µ̃

]
, (qaa′ = µaµ̃a′) . (6.1)

If the particle has spin one can assign it a positive or negative helicity h = ±1. Positive
helicity can be represented by introducing artitrary negative (positive) helicity bispinor µa
(µa′) not parallel to λa (µa′) so that one can write for the polarization vector

εaa′ =
µaλ̃a′

〈µ, λ〉
, positive helicity ,

εaa′ =
λaµ̃a′[
µ̃, λ̃

] , negative helicity . (6.2)

In the case of momentum twistors the µ part is determined by different criterion to be
discussed later.

2. Tree amplitudes are considered and it is convenient to drop the group theory factor Tr(T1T2 · · ·Tn).
The starting point is the observation that tree amplitude for which more than n− 2 gluons
have the same helicity vanish. MHV amplitudes have exactly n− 2 gluons of same helicity-
taken by a convention to be negative- have extremely simple form in terms of the spinors
and reads as

An =
〈λx, λy〉4∏n
i=1〈λi, λi+1〉

(6.3)

When the sign of the helicities is changed 〈..〉 is replaced with [..].



6. Appendix: Some Mathematical Details About Grasmannian Formalism 46

3. The article of Witten [B8] proposed that twistor approach could be formulated as a twistor
string theory with string world sheets “living” in 6-dimensional CP3 possessing Calabi-Yau
structure and defining twistor space. In this article Witten introduced what is known as
half Fourier transform allowing to transform momentum integrals over light-cone to twistor
integrals. This operation makes sense only in space-time signature (2, 2). Witten also demon-
strated that maximal helicity violating (MHV) twistor amplitudes (two gluons with negative
helicity) with n particles with k + 2 negative helicities and l loops correspond in this ap-
proach to holomorphic 2-surfaces defined by polynomials defined by polynomials of degree
D = k − 1 + l, where the genus of the surface satisfies g ≤ l. AdS/CFT duality provides a
second stringy approach to N = 4 theory allowing to understand the scattering amplitudes
in terms of Wilson loops with light-like edges: about this I have nothing to say. In any case,
the generalization of twistor string theory to TGD context is highly attractive idea and will
be considered later.

4. In the article [B5] Cachazo, Svrcek, and Witten propose the analog of Feynman diagrammat-
ics in which MHV amplitudes can be used as analogs of vertices and ordinary 1/P 2 propagator
as propagator to construct tree diagrams with arbitrary number of negative helicity gluons.
This approach is not symmetric with respect to the change of the sign of helicities since the
amplitudes with two positive helicities are constructed as tree diagrams. The construction
is non-trivial because one must analytically continue the on mass shell tree amplitudes to
off mass shell momenta. The problem is how to assign a twistor to these momenta. This
is achieved by introducing an arbitrary twistor ηa

′
and defining λa as λa = paa′η

a′ . This
works for both massless and massive case. It however leads to a loss of the manifest Lorentz
invariance. The paper however argues and the later paper [B4, B4] shows rigorously that
the loss is only apparent. In this paper also BCFW recursion formula is introduced allowing
to construct tree amplitudes recursively by starting from vertices with 2 negative helicity
gluons. Also the notion which has become known as BCFW bridge representing the massless
exchange in these diagrams is introduced. The tree amplitudes are not tree amplitudes in
gauge theory sense where correspond to leading singularities for which 4 or more lines of
the loop are massless and therefore collinear. What is important that the very simple MHV
amplitudes become the building blocks of more complex amplitudes.

5. The nex step in the progress was the attempt to understand how the loop corrections could be
taken into account in the construction BCFW formula. The calculation of loop contributions
to the tree amplitudes revealed the existence of dual super-conformal symmetry which was
found to be possessed also by BCFW tree amplitudes besides conformal symmetry. Together
these symmetries generate infinite-dimensional Yangian symmetry [B7].

6. The basic vision of Arkani-Hamed and collaborators is that the scattering amplitudes of
N = 4 SYM are constructible in terms of leading order singularities of loop diagrams. These
singularities are obtained by putting maximum number of momenta propagating in the lines
of the loop on mass shell. The non-leading singularities would be induced by the leading
singularities by putting smaller number of momenta on mass shell are dictated by these
terms. A related idea serving as a starting point in [B10] is that one can define loop integrals
as residue integrals in momentum space. If I have understood correctly, this means that
one an imagine the possibility that the loop integral reduces to a lower dimensional integral
for on mass shell particles in the loops: this would resemble the approach to loop integrals
based on unitarity and analyticity. In twistor approach these momentum integrals defined
as residue integrals transform to residue integrals in twistor space with twistors representing
massless particles. The basic discovery is that one can construct leading order singularities
for n particle scattering amplitude with k+2 negative helicities as Yangian invariants Yn,k for
momentum twistors and invariants constructed from them by canonical operations changing
n and k. The correspondence k = l does not hold true for the more general amplitudes
anymore.
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6.1 Yangian Algebra And Its Super Counterpart

The article of Witten [B6] gives a nice discussion of the Yangian algebra and its super counterpart.
Here only basic formulas can be listed and the formulas relevant to the super-conformal case are
given.

6.1.1 Yangian algebra

Yangian algebra Y (G) is associative Hopf algebra. The elements of Yangian algebra are labelled by
non-negative integers so that there is a close analogy with the algebra spanned by the generators
of Virasoro algebra with non-negative conformal weight. The Yangian symmetry algebra is defined
by the following relations for the generators labeled by integers n = 0 and n = 1. The first half of
these relations discussed in very clear manner in [B6] follows uniquely from the fact that adjoint
representation of the Lie algebra is in question

[
JA, JB

]
= fABC JC ,

[
JA, J (1)B

]
= fABC J (1)C . (6.4)

Besides this Serre relations are satisfied. These have more complex and read as

[
J (1)A,

[
J (1)B , JC

]]
+
[
J (1)B ,

[
J (1)C , JA

]]
+
[
J (1)C ,

[
J (1)A, JB

]]
=

1

24
fADKfBELfCFMfKLM{JD, JE , JF } ,[[

J (1)A, J (1)B
]
,
[
JC , J (1)D

]]
+
[[
J (1)C , J (1)D

]
,
[
JA, J (1)B

]]
=

1

24
(fAGLfBEMfCDK

+fCGLfDEMfABK )fKFNfLMN{JG, JE , JF } .

(6.5)

The indices of the Lie algebra generators are raised by invariant, non-degenerate metric tensor gAB
or gAB . {A,B,C} denotes the symmetrized product of three generators.

Repeated commutators allow to generate the entire algebra whose elements are labeled by
non-negative integer n. The generators obtain in this manner are n-local operators arising in
(n− 1)-commutator of J (1): s. For SU(2) the Serre relations are trivial. For other cases the first
Serre relation implies the second one so the relations are redundant. Why Witten includes it is
for the purposed of demonstrating the conditions for the existence of Yangians associated with
discrete one-dimensional lattices (Yangians exists also for continuum one-dimensional index).

Discrete one-dimensional lattice provides under certain consistency conditions a representation
for the Yangian algebra. One assumes that each lattice point allows a representation R of JA so
that one has JA =

∑
i J

A
i acting on the infinite tensor power of the representation considered.

The expressions for the generators J1A are given as

J (1)A = fABC
∑
i<j

JBi J
C
j . (6.6)

This formula gives the generators in the case of conformal algebra. This representation exists if
the adjoint representation of G appears only one in the decomposition of R ⊗R. This is the case
for SU(N) if R is the fundamental representation or is the representation of by kth rank completely
antisymmetric tensors.

This discussion does not apply as such to N = 4 case the number of lattice points is finite
and corresponds to the number of external particles so that cyclic boundary conditions are needed
guarantee that the number of lattice points reduces effectively to a finite number. Note that the
Yangian in color degrees of freedom does not exist for SU(N) SYM.

As noticed, Yangian algebra is a Hopf algebra and therefore allows co-product. The co-product
∆ is given by
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∆(JA) = JA ⊗ 1 + 1⊗ JA ,

∆(J (1)A) = J (1)A ⊗ 1 + 1⊗ J (1)A + fABCJ
B ⊗ JC

(6.7)

∆ allows to imbed Lie algebra to the tensor product in non-trivial manner and the non-triviality
comes from the addition of the dual generator to the trivial co-product. In the case that the single
spin representation of J (1)A is trivial, the co-product gives just the expression of the dual generator
using the ordinary generators as a non-local generator. This is assumed in the recent case and also
for the generators of the conformal Yangian.

6.1.2 Super-Yangian

Also the Yangian extensions of Lie super-algebras make sense. From the point of physics especially
interesting Lie super-algebras are SU(m|m) and U(m|m). The reason is that PSU(2, 2|4) (P
refers to “projective” ) acting as super-conformal symmetries of N = 4 SYM and this super group
is a real form of PSU(4|4). The main point of interest is whether this algebra allows Yangian
representation and Witten demonstrated that this is indeed the case [B6].

These algebras are Z2 graded and decompose to bosonic and fermionic parts which in general
correspond to n- and m-dimensional representations of U(n). The representation associated with
the fermionic part dictates the commutation relations between bosonic and fermionic generators.
The anti-commutator of fermionic generators can contain besides identity also bosonic generators
if the symmetrized tensor product in question contains adjoint representation. This is the case
if fermions are in the fundamental representation and its conjugate. For SU(3) the symmetrize
tensor product of adjoint representations contains adjoint (the completely symmetric structure
constants dabc) and this might have some relevance for the super SU(3) symmetry.

The elements of these algebras in the matrix representation (no Grassmann parameters in-
volved) can be written in the form

x =

(
a b
c d

)
.

a and d representing the bosonic part of the algebra are n × n matrices and m × m matrices
corresponding to the dimensions of bosonic and fermionic representations. b and c are fermionic
matrices are n×m and m×n matrices, whose anti-commutator is the direct sum of n×n and n×n
matrices. For n = m bosonic generators transform like Lie algebra generators of SU(n) × SU(n)
whereas fermionic generators transform like n ⊗ n ⊕ n ⊗ n under SU(n) × SU(n). Supertrace is
defined as Str(x) = Tr(a) − Tr(b). The vanishing of Str defines SU(n|m). For n 6= m the super
trace condition removes identity matrix and PU(n|m) and SU(n|m) are same. That this does not
happen for n = m is an important delicacy since this case corresponds to N = 4 SYM. If any two
matrices differing by an additive scalar are identified (projective scaling as now physical effect) one
obtains PSU(n|n) and this is what one is interested in.

Witten shows that the condition that adjoint is contained only once in the tensor product R⊗R
holds true for the physically interesting representations of PSU(2, 2|4) so that the generalization of
the bilinear formula can be used to define the generators of J (1)A of super Yangian of PU(2, 2|4).
The defining formula for the generators of the Super Yangian reads as

J
(1)
C = gCC′J (1)C′

= gCC′fC
′

AB

∑
i<j

JAi J
B
j

= gCC′fC
′

ABg
AA′

gBB
′ ∑
i<j

J iA′J
j
B′ .

(6.8)

Here gAB = Str(JAJB) is the metric defined by super trace and distinguishes between PSU(4|4)
and PSU(2, 2|4). In this formula both generators and super generators appear.
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6.1.3 Generators of super-conformal Yangian symmetries

The explicit formula for the generators of super-conformal Yangian symmetries in terms of ordinary
twistors is given by

jAB =

n∑
i=1

ZAi ∂ZB
i
,

j
(1)A
B =

∑
i<j

(−1)C
[
ZAi ∂ZC

j
ZCj ∂ZB

j

]
. (6.9)

This formula follows from completely general formulas for the Yangian algebra discussed above

and allowing to express the dual generators j
(1)
N as quadratic expression of jN involving structures

constants. In this rather sketchy formula twistors are ordinary twistors. Note however that in the
recent case the lattice is replaced with its finite cutoff corresponding to the external particles of the
scattering amplitude. This probably corresponds to the assumption that for the representations
considered only finite number of lattice points correspond to non-trivial quantum numbers or to
cyclic symmetry of the representations.

In the expression for the amplitudes the action of transformations is on the delta functions and
by partial integration one finds that a total divergence results. This is easy to see for the linear
generators but not so for the quadratic generators of the dual super-conformal symmetries. A

similar formula but with jAB and j
(1)A
B interchanged applies in the representation of the amplitudes

as Grassmann integrals using ordinary twistors. The verification of the generalization of Serre
formula is also straightforward.

6.2 Twistors And Momentum Twistors And Super-Symmetrization

In [B7] the basics of twistor geometry are summarized. Despite this it is perhaps good to collect
the basic formulas here.

6.2.1 Conformally compactified Minkowski space

Conformally compactified Minkowski space can be described as SO(2, 4) invariant (Klein) quadric

T 2 + V 2 −W 2 −X2 − Y 2 − Z2 = 0 . (6.10)

The coordinates (T, V,W,X, Y, Z) define homogenous coordinates for the real projective space
RP 5. One can introduce the projective coordinates Xαβ = −Xβα through the formulas

X01 = W − V , X02 = Y + iX , X03 = i√
2
T − Z ,

X12 = − i√
2
(T + Z) , X13 = Y − iX , X23 = 1

2 (V +W ) .
(6.11)

The motivation is that the equations for the quadric defining the conformally compactified Minkowski
space can be written in a form which is manifestly conformally invariant:

εαβγδXαβXγδ = 0 per. (6.12)

The points of the conformally compactified Minkowski space are null separated if and only if
the condition

εαβγδXαβYγδ = 0 (6.13)

holds true.
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6.2.2 Correspondence with twistors and infinity twistor

One ends up with the correspondence with twistors by noticing that the condition is equivalent
with the possibility to expression Xαβ as

Xαβ = A[αBβ] , (6.14)

where brackets refer to antisymmetrization. The complex vectors A and B define a point in
twistor space and are defined only modulo scaling and therefore define a point of twistor space
CP3 defining a covering of 6-D Minkowski space with metric signature (2, 4). This corresponds
to the fact that the Lie algebras of SO(2, 4) and SU(2, 2) are identical. Therefore the points of
conformally compactified Minkowski space correspond to lines of the twistor space defining spheres
CP1 in CP3.

One can introduce a preferred scale for the projective coordinates by introducing what is called
infinity twistor (actually a pair of twistors is in question) defined by

Iαβ =

(
εA

′B′
0

0 0

)
. (6.15)

Infinity twistor represents the projective line for which only the coordinate X01 is non-vanishing
and chosen to have value X01 = 1.

One can define the contravariant form of the infinite twistor as

Iαβ = εαβγδIγδ =

(
0 0
0 εAB

)
. (6.16)

Infinity twistor defines a representative for the conformal equivalence class of metrics at the Klein
quadric and one can express Minkowski distance as

(x− y)2 =
XαβYαβ

IαβXαβIµνY µν
. (6.17)

Note that the metric is necessary only in the denominator. In twistor notation the distance can
be expressed as

(x− y)2 =
ε(A,B,C,D)

〈AB〉〈CD〉
. (6.18)

Infinite twistor Iαβ and its contravariant counterpart project the twistor to its primed and unprimed

parts usually denoted by µA
′

and λA and defined spinors with opposite chiralities.

6.2.3 Relationship between points of M4 and twistors

In the coordinates obtained by putting X01 = 1 the relationship between space-time coordinates
xAA

′
and Xαβ is

Xαβ =

(
− 1

2ε
A′B′

x2 −ixA′

B

ix B′

A εA,B

)
, Xαβ =

(
εA′B ′x2 −ix B

A′

ixAB′ − 1
2ε
ABx2

)
, (6.19)

If the point of Minkowski space represents a line defined by twistors (µU , λU ) and (µV , λV ),
one has

xAC
′

= i
(µV λU − µUλV )AC

′

〈UV 〉
(6.20)

The twistor µ for a given point of Minkowski space in turn is obtained from λ by the twistor
formula by

µA
′

= −ixAA
′
λA . (6.21)
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6.2.4 Generalization to the super-symmetric case

This formalism has a straightforward generalization to the super-symmetric case. CP3 is replaced
with CP3|4 so that Grassmann parameters have four components. At the level of coordinates this
means the replacement [WI ] = [Wα, χα]. Twistor formula generalizes to

µA
′

= −ixAA′
λA , χα = θAαλA . (6.22)

The relationship between the coordinates of chiral super-space and super-twistors generalizes to

(x, θ) =

(
i
(µV λU − µUλV )

〈UV 〉
,

(χV λU − χUλV )

〈UV 〉

)
(6.23)

The above formulas can be applied to super-symmetric variants of momentum twistors to deduce
the relationship between region momenta x assigned with edges of polygons and twistors assigned
with the ends of the light-like edges. The explicit formulas are represented in [B7]. The geometric
picture is following. The twistors at the ends of the edge define the twistor pair representing
the region momentum as a line in twistor space and the intersection of the twistor lines assigned
with the region momenta define twistor representing the external momenta of the graph in the
intersection of the edges.

6.2.5 Basic kinematics for momentum twistors

The super-symmetrization involves replacement of multiplets with super-multiplets

Φ(λ, λ̃, η) = G+(λ, λ̃) + ηiΓ
aλ, λ̃) + · · ·+ εabcdη

aηbηcηdG−(λ, λ̃) . (6.24)

Momentum twistors are dual to ordinary twistors and were introduced by Hodges. The light-like
momentum of external particle a is expressed in terms of the vertices of the closed polygon defining
the twistor diagram as

pµi = xµi − x
µ
i+1 = λiλ̃i , θi − θi+1 = λiηi . (6.25)

One can say that massless momenta have a conserved super-part given by λiηi. The dual of the
super-conformal group acts on the region momenta exactly as the ordinary conformal group acts
on space-time and one can construct twistor space for dua region momenta.

Super-momentum conservation gives the constraints

∑
pi = 0 ,

∑
λiηi = 0 . (6.26)

The twistor diagrams correspond to polygons with edges with lines carrying region momenta and
external massless momenta emitted at the vertices.

This formula is invariant under overall shift of the region momenta xµa . A natural interpretation
for xµa is as the momentum entering to the vertex where pa is emitted. Overall shift would have
interpretation as a shift in the loop momentum. xµa in the dual coordinate space is associated with
the line Za−1Za in the momentum twistor space. The lines Za−1Za and ZaZa+1 intersect at Za
representing a light-like momentum vector pµa .

The brackets 〈abcd〉 ≡ εIJKLZ
I
aZ

J
b Z

K
c Z

L
d define fundamental bosonic conformal invariants

appearing in the tree amplitudes as basic building blocks. Note that Za define points of 4-D complex
twistor space to be distinguished from the projective twistor space CP3. Za define projective
coordinates for CP3 and one of the four complex components of Za is redundant and one can take
Z0
a = 1 without a loss of generality.

6.3 Brief Summary Of The Work Of Arkani-Hamed And Collaborators

The following comments are an attempt to summarize my far from complete understanding about
what is involved with the representation as contour integrals. After that I shall describe in more
detail my impressions about what has been done.
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6.3.1 Limitations of the approach

Consider first the limitations of the approach.

1. The basis idea is that the representation for tree amplitudes generalizes to loop amplitudes.
On other words, the amplitude defined as a sum of Yangian invariants expressed in terms
of Grassmann integrals represents the sum of loops up to some maximum loop number.
The problem is here that shifts of the loop momenta are essential in the UV regularization
procedure. Fixing the coordinates x1, · · · , xn having interpretation as momenta associated
with lines in the dual coordinate space allows to eliminate the non-uniqueness due to the
common shift of these coordinates.

2. It is not however not possible to identify loop momentum as a loop momentum common
to different loop integrals unless one restricts to planar loops. Non-planar diagrams are
obtained from a planar diagram by permuting the coordinates xi but this means that the
unique coordinate assignment is lost. Therefore the representation of loop integrands as
Grassmann integrals makes sense only for planar diagrams. From TGD point of view one
could argue that this is one good reason for restricting the loops so that they are for on mass
shell particles with non-parallel on mass shell four-momenta and possibly different sign of
energies for given wormhole contact representing virtual particle.

3. IR regularization is needed even in N = 4 for SYM given by “moving out on the Coulomb
branch theory” so that IR singularities remain the problem of the theory.

6.3.2 What has been done?

The article proposes a generalization of the BCFW recursion relation for tree diagrams of N = 4
for SYM so that it applies to planar diagrams with a summation over an arbitrary number of loops.

1. The basic goal of the article is to generalize the recursion relations of tree amplitudes so that
they would apply to loop amplitudes. The key idea is following. One can formally represent
loop integrand as a contour integral in complex plane whose coordinate parameterizes the
deformations Zn → Zn + εZn−1 and re-interpret the integral as a contour integral with
oppositely oriented contour surrounding the rest of the complex plane which can be imagined
also as being mapped to Riemann sphere. What happens only the poles which correspond to
lower number of loops contribute this integral. One obtains a recursion relation with respect
to loop number. This recursion seems to be the counterpart for the recursive construction of
the loops corrections in terms of absorptive parts of amplitudes with smaller number of loop
using unitarity and analyticity.

2. The basic challenge is to deduce the Grassmann integrands as Yangian invariants. From these
one can deduce loop integrals by integration over the four momenta associated with the lines
of the polygonal graph identifiable as the dual coordinate variables xa. The integration over
loop momenta can induce infrared divergences breaking Yangian symmetry. The big idea
here is that the operations described above allow to construct loop amplitudes from the
Yangian invariants defining tree amplitudes for a larger number of particles by removing
external particles by fusing them to form propagator lines and by using the BCFW bridge to
fuse lower-dimensional invariants. Hence the usual iterative procedure (bottom-up) used to
construct scattering amplitudes is replaced with a recursive procedure (top-down). Of course,
once lower amplitudes has been constructed they can be used to construct amplitudes with
higher particle number.

3. The first guess is that the recursion formula involves the same lower order contributions as
in the case of tree amplitudes. These contributions have interpretation as factorization of
channels involving single particle intermediate states. This would however allow to reduce
loop amplitudes to 3-particle loop amplitudes which vanish inN = 4 SYM by the vanishing of
coupling constant renormalization. The additional contribution is necessary and corresponds
to a source term identifiable as a “forward limit” of lower loop integrand. These terms are
obtained by taking an amplitude with two additional particles with opposite four-momenta
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and forming a state in which these particles are entangled with respect to momentum and
other quantum numbers. Entanglement means integral over the massless momenta on one
hand. The insertion brings in two momenta xa and xb and one can imagine that the loop is
represented by a branching of propagator line. The line representing the entanglement of the
massless states with massless momentum define the second branch of the loop. One can of
course ask whether only massless momentum in the second branch. A possible interpretation
is that this state is expressible by unitarity in terms of the integral over light-like momentum.

4. The recursion formula for the loop amplitude Mn,k,l involves two terms when one neglects
the possibility that particles can also suffer trivial scattering (cluster decomposition). This
term basically corresponds to the Yangian invariance of n arguments identified as Yangian
invariant of n− 1 arguments with the same value of k.

(a) The first term corresponds to single particle exchange between particle groups obtained
by splitting the polygon at two vertices and corresponds to the so called BCFW bridge
for tree diagrams. There is a summation over different splittings as well as a sum over
loop numbers and dimensions k for the Grassmann planes. The helicities in the two
groups are opposite.

(b) Second term is obtained from an amplitude obtained by adding of two massless particles
with opposite momenta and corresponds to n+ 2, k + 1, l− 1. The integration over the
light-like momentum together with other operations implies the reduction n + 2 → n.
Note that the recursion indeed converges. Certainly the allowance of added zero energy
states with a finite number of particles is necessary for the convergence of the procedure.

6.4 The General Form Of Grassmannian Integrals

If the recursion formula proposed in [B11] is correct, the calculations reduce to the construction
of NkMHV (super) amplitudes. MHV refers to maximal helicity violating amplitudes with 2
negative helicity gluons. For NkMHV amplitude the number of negative helicities is by definition
k + 2 [B10]. Note that the total right handed R-charge assignable to 4 super-coordinates ηi of
negative helicity gluons can be identified as R = 4k. BCFW recursion formula [B4, B4] allows to
construct from MHV amplitudes with arbitrary number of negative helicities.

The basic object of study are the leading singularities of color-stripped n-particle NkMHV
amplitudes. The discovery is that these singularities are expressible in terms Yangian invariants
Yn,k(Z1, · · · , Zn), where Zi are momentum super-twistors. These invariants are defined by residue
integrals over the compact nk − 1-dimensional complex space G(n, k) = U(n)/U(k) × U(n − k)
of k-planes of complex n-dimensional space. n is the number of external massless particles, k is
the number negative helicity gluons in the case of NkMHV amplitudes, and Za, i = 1, · · · , n
denotes the projective 4-coordinate of the super-variant CP 3|4 of the momentum twistor space
CP3 assigned to the massless external particles is following. Gl(n) acts as linear transformations
in the n-fold Cartesian power of twistor space. Yangian invariant Yn,k is a function of twistor
variables Za having values in super-variant CP3|3 of momentum twistor space CP3 assigned to the
massless external particles being simple algebraic functions of the external momenta.

It is also possible to defineNkMHV amplitudes in terms of Yangian invariants Ln,k+2(W1, · · · ,Wn)
by using ordinary twistors Wa and identical defining formula. The two invariants are related by
the formula Ln,k+2(W1, · · · ,Wn) = M tree

MHV × Yn,k(Z1, · · · , Zn). Here M tree
MHV is the tree contri-

bution to the maximally helicity violating amplitude for the scattering of n particles: recall that
these amplitudes contain two negative helicity gluons whereas the amplitudes containing a smaller
number of them vanish [B5]. One can speak of a factorization to a product of n-particle ampli-
tudes with k − 2 and 2 negative helicities as the origin of the duality. The equivalence between
the descriptions based on ordinary and momentum twistors states the dual conformal invariance of
the amplitudes implying Yangian symmetry. It has been conjectured that Grassmannian integrals
generate all Yangian invariants.

The formulas for the Grassmann integrals for twistors and momentum twistors appearing in
the expressions of NkMHV amplitudes are given by following expressions.

1. The integrals Ln,k(W1, · · · ,Wn) associated with Nk−2MHV amplitudes in the description
based on ordinary twistors correspond to k negative helicities and are given by
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Ln,k(W1, · · · ,Wn) =
1

V ol(GL(2))

∫
dk×nCαa

(1 · · · k)(2 · · · k + 1) · · · (n1 · · · k − 1)
×

×
k∏

α=1

d4|4Yα

n∏
i=1

δ4|4(Wi − CαiYα) .

(6.27)

Here Cαa denote the n× k coordinates used to parametrize the points of Gk,n.

2. The integrals Yn,k(W1, · · · ,Wn) associated with NkMHV amplitudes in the description
based on momentum twistors are defined as

Yn,k(Z1, · · · , Zn) =
1

V ol(GL(k))
×
∫

dk×nCαa
(1 · · · k)(2 · · · k + 1) · · · (n1 · · · k − 1)

×
k∏

α=1

δ4|4(CαaZa) .

(6.28)

The possibility to select Z0
a = 1 implies

∑
k Cαk = 0 allowing to eliminate Cαn so that

the actual number of coordinates Grassman coordinates is nk − 1. As already noticed,
Ln,k+2(W1, · · · ,Wn) = M tree

MHV × Yn,k(Z1, · · · , Zn). Momentum twistors are obviously cal-
culationally easier since the value of k is smaller by two units.

The 4k delta functions reduce the number of integration variables of contour integrals from
nk to (n− 4)k in the bosonic sector (the definition of delta functions involves some delicacies not
discussed here). The n quantities (m, · · ·m + k) are k × k-determinants defined by subsequent
columns from m to m+ k − 1 of the k × n matrix defined by the coordinates Cαa and correspond
geometrically to the k-volumes of the k-dimensional parallel-pipeds defined by these column vectors.
The fact that the scalings of twistor space coordinates Za can be compensated by scalings of Cαa
deforming integration contour but leaving the residue integral invariant so that the integral depends
on projective twistor coordinates only.

Since the integrand is a rational function, a multi-dimensional residue calculus allows to deduce
the values of these integrals as residues associated with the poles of the integrand in a recursive
manner. The poles correspond to the zeros of the k × k determinants appearing in the integrand
or equivalently to singular lower-dimensional parallel-pipeds. It can be shown that local residues
are determined by (k − 2)(n − k − 2) conditions on the determinants in both cases. The value of
the integral depends on the explicit choice of the integration contour for each variable Cαa left
when delta functions are taken into account. The condition that a correct form of tree amplitudes
is obtained fixes the choice of the integration contours.

For the ordinary twistors W the residues correspond to projective configurations in CPk−1, or
more precisely in the space CPnk−1/Gl(k), which is (k − 1)n − k2-dimensional space defining the
support for the residues integral. Gl(k) relates to each other different complex coordinate frames
for k-plane and since the choice of frame does not affect the plane itself, one has Gl(k) gauge
symmetry as well as the dual Gl(n− k) gauge symmetry.

CPk−1 comes from the fact that Cαk
are projective coordinates: the amplitudes are indeed

invariant under the scalings Wi → tiWi, Cαi → tCαi. The coset space structure comes from
the fact that Gl(k) is a symmetry of the integrand acting as Cαi → Λ β

α Cβi
. This analog of

gauge symmetry allows to fix k arbitarily chosen frame vectors Cαi to orthogonal unit vectors.
For instance, one can have Cαi = δαi for α = i ∈ 1, · · · , k. This choice is discussed in detail
in [B10]. The reduction to CPk−1 implies the reduction of the support of the integral to line in
the case of MHV amplitudes and to plane in the case of NMHV as one sees from the expression
dµ =

∏
α d

4|4Yα
∏n
i=1 δ

4|4(Wi − CαiYα). For (i1, · · · , ik) = 0 the vectors i1, ..ik belong to k − 2-
dimensional plane of CPk−1. In the case of NMHV (N2MHV ) amplitudes this translates at
the level of twistors to the condition that the corresponding twistors {i1, i2, i3} ({i1, i2, i3, i4}) are
collinear (in the same plane) in twistor space. This can be understood from the fact that the delta
functions in dµ allow to express Wi in terms of k − 1 Yα: s in this case.
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The action of conformal transformations in twistor space reduces to the linear action of SU(2, 2)
leaving invariant Hermitian sesquilinear form of signature (2, 2). Therefore the conformal invari-
ance of the Grassmannian integral and its dual variant follows from the possibility to perform
a compensating coordinate change for Cαa and from the fact that residue integral is invariant
under small deformations of the integration contour. The above described relationship between
representations based on twistors and momentum twistors implies the full Yangian invariance.

6.5 Canonical Operations For Yangian Invariants

General l-loop amplitudes can be constructed from the basic Yangian invariants defined byNkMHV
amplitudes by various operations respecting Yangian invariance apart from possible IR anomalies.
There are several operations that one can perform for Yangian invariants Yn,k and all these op-
erations appear in the recursion formula for planar all loop amplitudes. These operations are
described in [B11] much better than I could do it so that I will not go to any details. It is possible
to add and remove particles, to fuse two Yangian invariants, to merge particles, and to construct
from two Yangian invariants a higher invariant containing so called BCFW bridge representing
single particle exchange using only twistorial methods.

6.5.1 Inverse soft factors

Inverse soft factors add to the diagram a massless collinear particles between particles a and b and
by definition one has

On+1(a, c, b, · · · ) =
〈ab〉
〈ac〉〈cb〉

On(a′b′) . (6.29)

At the limit when the momentum of the added particle vanishes both sides approach the original
amplitude. The right-handed spinors and Grassmann parameters are shifted

λ̃′a = λ̃a + 〈cb〉
〈ab〉 λ̃c , λ̃′b = λ̃b + 〈ca〉

〈ba〉 λ̃c ,

η′a = ηa + 〈cb〉
〈ab〉ηc , η′b = ηb + 〈ca〉

〈ba〉ηc .
(6.30)

There are two kinds of inverse soft factors.

1. The addition of particle leaving the value k of negative helicity gluons unchanged means just
the re-interpretation

Y ′n,k(Z1, · · · , Zn−1, Zn) = Yn−1,k(Z1, · · · , Zn−1) (6.31)

without actual dependence on Zn. There is however a dependence on the momentum of the
added particle since the relationship between momenta and momentum twistors is modified
by the addition obtained by applying the basic rules relating region super momenta and
momentum twistors (light-like momentum determines λi and twistor equations for xi and
λi, ηi determine (µi, χi)) is expressible assigned to the external particles [B14]. Modifications
are needed only for the new vertex and its neighbors.

2. The addition of a particle increasing k with single unit is a more complex operation which can
be understood in terms of a residue of Yn,k proportional to Yn−1,k−1 and Yangian invariant
[z1 · · · z5] with five arguments constructed from basic Yangian invariants with four arguments.
The relationship between the amplitudes is now

Y ′n,k(.., Zn−1Zn, Z1 · · · ) = [n− 2 n− 1 n 1 2]× Yn−1,k−1(· · · Ẑn−1, Ẑ1, · · · ) . (6.32)

Here
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[abcde] =
δ0|4(ηa〈bcde〉+ cyclic)

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉
. (6.33)

denoted also by R(a, b, c, d, e) is the fundamental R-invariant appearing in one loop correc-
tions of MHV amplitudes and will appears also in the recursion formulas. 〈abcd〉 is the
fundamental super-conformal invariant associated with four super twistors defined in terms
of the permutation symbol.

Ẑn−1, Ẑ1 are deformed momentum twistor variables. The deformation is determined from the
relationship between external momenta, region momenta and momentum twistor variables.
Ẑ1 is the intersection Ẑ1 = (n−2 n−1 2)∩(12) of the line (12) with the plane (n−2 n−1 2)
and Ẑn−1 the intersection Ẑ1 = (12n)∩ (n− 2 n− 1) of the line (n− 2 n− 1) with the plane
(12n). The interpretation for the intersections at the level of ordinary Feynman diagrams is
in terms of the collinearity of the four-momenta involved with the underlying box diagram
with parallel on mass shell particles. These result from unitarity conditions obtained by
putting maximal number of loop momenta on mass shell to give the leading singularities.

The explicit expressions for the momenta are

Ẑ1 ≡ (n− 2 n− 1 2) ∩ (12)Z1 = 〈2 n− 2 n− 1 n〉+ Z2〈n− 2 n− 1 n 1〉 ,
Ẑn−1 ≡ (12n) ∩ (n− 2 n− 1) = Zn−2〈n− 2 n− 1 n 2〉+ Zn−1〈n 1 2 n− 2〉 .

(6.34)

These intersections also appear in the expressions defining the recursion formula.

6.5.2 Removal of particles and merge operation

Particles can be also removed. The first manner to remove particle is by integrating over the twistor
variable characterizing the particle. This reduces k by one unit. Merge operation preserves the
number of loops but removes a particle particle by identifying the twistor variables of neighboring
particles. This operation corresponds to an integral over on mass shell loop momentum at the level
of tree diagrams and by Witten’s half Fourier transform can be transformed to twistor integral.

The product

Y ′(Z1, · · ·Zn) = Y1(Z1, · · ·Zm)× Y2(Zm+1, · · ·Zn) (6.35)

of two Yangian invariants is again a Yangian invariant. This is not quite trivial since the depen-
dence of region momenta and momentum twistors on the momenta of external particles makes the
operation non-trivial.

Merge operation allows to construct more interesting invariants from the products of Yangian
invariants. One begins from a product of Yangian invariants (Yangian invariant trivially) repre-
sented cyclically as points of circle and identifies the last twistor argument of given invariant with
the first twistor argument of the next invariant and performs integrals over the momentum twistor
variables appearing twice. The soft k-increasing and preserving operations can be described also
in terms of this operation for Yangian invariants such that the second invariant corresponds to
3-vertex. The cyclic merge operation applied to four MHV amplitudes gives NMHV amplitudes
associated with on mass shell momenta in box diagrams. By applying similar operation to NMHV
amplitudes and MHV amplitudes one obtains 2-loop amplitudes. In [B11] examples about these
operations are described.

6.5.3 BCFW bridge

BCFW bridge allows to build general tree diagrams from MHV tree diagrams [B4, B4] and recursion
formula of [B11] generalizes this to arbitrary diagrams. At the level of Feynman diagrams it
corresponds to a box diagram containing general diagrams labeled by L and R and MHV and



6.5 Canonical Operations For Yangian Invariants 57

MHV 3-vertices (MHV 3-vertex allows expression in terms of MHV diagrams) with the lines of
the box on mass shell so that the three momenta emanating from the vertices are parallel and give
rise to a one-loop leading singularity.

At the level of Feynman diagrams BCFW bridge corresponds to so called “two-mass hard”
leading singularities associated with box diagrams with light-like momenta at the four lines of the
diagram [B10]. The motivation for the study of these diagrams comes from the hypothesis the
leading order singularities obtained by putting as many particles as possible on mass shell contain
the data needed to construct scattering amplitudes of N = 4 SYM completely. This representation
of the leading singularities generalizes to arbitrary loops. The recent article is a continuation of
this program to planar amplitudes.

Also BCFW bridge allows an interpretation as a particular kind fusion for Yang invariants
and involves all the basic operations. One starts from the amplitudes Y LnL,kL

and Y RnR,kR
and

constructs an amplitude Y ′nL+nR,kL+kR+1 representing the amplitude which would correspond to a
generalization of the MHV diagrams with the two tree diagrams connected by the MHV propagator
(BCFW bridge) replaced with arbitrary loop diagrams. Particle “1” resp. “j+1” is added by the
soft k-increasing factor to YnL+1,kL+1 resp. YnR+1,kR+1 giving amplitude with n+ 2 particles and
with k-charge equal to kL + kR + 2. The subsequent operations must reduce k-charge by one unit.
First repeated “1” and “j+1” are identified with their copies by k conserving merge operation,
and after that one performs an integral over the twistor variable ZI associated with the internal
line obtained and reducing k by one unit. The soft k-increasing factors bring in the invariants
[n− 1 n 1 I j + 2] associated with YL and [1 I j + 1 j j − 1] associated with YR. The integration
contour is chosen so that it selects the pole defined by ∠n − 1 n 1 I〉 in the denominator of
[n− 1 n 1 I j + 2] and the pole defined by 〈1 I j + 1 j〉 in the denominator of [1 I j + 1 j j − 1].

The explicit expression for the BCFW bridge is very simple:

(YL ⊗BCFW YR)(1, · · · , n) = [n− 1 n 1 j j + 1]× YR(1, · · · , j, I)YL(I, j + 1, · · · , n− 1, n̂) ,

n̂ = (n− 1 n) ∩ (j j + 1 1) , I = (j j + 1) ∩ (n− 1 n 1) . (6.36)

6.5.4 Single cuts and forward limit

Forward limit operation is used to increase the number of loops by one unit. The physical picture
is that one starts from say 1-loop amplitude and cuts one line by assigning to the pieces of the
line opposite light-like momenta having interpretation as incoming and outgoing particles. The
resulting amplitude is called forward limit. The only reasonable interpretation seems to be that
the loop integration is expressed by unitarity as forward limit meaning cutting of the line carrying
the loop momentum. This operation can be expressed in a manifestly Yangian invariant way as
entangled removal of two particles with the merge operation meaning the replacement Zn → Zn−1.
Particle n+ 1 is added adjacent to A,B as a k-increasing inverse soft factor and then A and B are
removed by entangled integration, and after this merge operation identifies n+ 1 and 1.

Forward limit is crucial for the existence of loops and for Yangian invariants it corresponds
to the poles arising from 〈(AB)qZn(z)Z1)〉 the integration contour Zn + zZn−1 around Zb in the
basic formula M =

∮
(dz/z)Mn leading to the recursion formula. A and B denote the momentum

twistors associated with opposite light-like momenta. In the generalized unitarity conditions the
singularity corresponds to the cutting of line between particles n and 1 with momenta q and −q,
summing over the multiplet of stats running around the loop. Between particles n2 and 1 one has
particles n−1, n with momenta q,−q. q = x1−xn = −xn+xn−1 giving x1 = xn−1. Light-likeness
of q means that the lines (71) = (76) and (15) intersect. At the forward limit giving rise to the pole
Z6 and Z7 approach to the intersection point (76) ∩ (15). In a generic gauge theories the forward
limits are ill-defined but in super-symmetric gauge theories situation changes.

The corresponding Yangian operation removes two external particles with opposite four-momenta
and involves integration over two twistor variables Za and Zb and gives rise to the following ex-
pression

∫
GL(2)

Y (· · · , Zn, ZA, ZB , Z1, · · · ) . (6.37)



6.6 Explicit Formula For The Recursion Relation 58

The integration over GL(2) corresponds to integration over twistor variables associated ZA and
ZB . This operation allows addition of a loop to a given amplitude. The line ZaZb represents loop
momentum on one hand and the dual x-coordinate identified as momentum propagating along the
line on the other hand.

The integration over these variables is equivalent to an integration over loop momentum as
the explicit calculation of [B11] (see pages 12-13) demonstrates. If the integration contours are
products in the product of twistor spaces associated with a and b the and gives lower order Yangian
invariant as answer. It is however also possible to choose the integration contour to be entangled in
the sense that it cannot be reduced to a product of integration contours in the Cartesian product
of twistor spaces. In this case the integration gives a loop integral. In the removal operation
Yangian invariance can be broken by IR singularities associated with the integration contour and
the procedure does not produce genuine Yangian invariant always.

What is highly interesting from TGD point of view is that this integral can be expressed as
a contour integral over CP1 × CP1 combined with integral over loop momentum. If TGD vision
about generalized Feynman graps in zero energy ontology is correct, the loop momentum integral
is discretized to an an integral over discrete mass shells and perhaps also to a sum over discretized
momenta and one can therefore avoid IR singularities.

6.6 Explicit Formula For The Recursion Relation

Recall that the recursion formula is obtained by considering super-symmetric momentum-twistor
deformation Zn → Zn + zZn−1 and by integrating over z to get the identity

Mn,k,l =

∮
dz

z
M̂n,k,l(z) . (6.38)

This integral equals to integral with reversed integration contour enclosing the exterior of the
contour. The challenge is to deduce the residues contributing to the residue integral and the claim
of [B11] is that these residues reduce to simple basic types.

1. The first residue corresponds to a pole at infinity and reduces the particle number by one
giving a contribution Mn−1,k,l(1, · · · , n − 1) to Mn,k,l(1, · · · , n − 1, n). This is not totally
trivial since the twistor variables are related to momenta in different manner for the two
amplitudes. This gives the first contribution to the right hand side of the formula below.

2. Second pole corresponds to the vanishing of 〈Zn(z)Z1ZjZj+1〉 and corresponds to the factor-
ization of channels. This gives the second BCFW contribution to the right hand side of the
formula below. These terms are however not enough since the recursion formula would imply
the reduction to expressions involving only loop corrections to 3-loop vertex which vanish in
N = 4 SYM.

3. The third kind of pole results when 〈(AB)qZn(z)Z1〉 vanishes in momentum twistor space.
(AB)q denotes the line in momentum twistor space associated with q: th loop variable.

The explicit formula for the recursion relation yielding planar all loop amplitudes is obtained
by putting all these pieces together and reads as

Mn,k,l(1, · · · , n) = Mn−1,k,l(1, · · · , n− 1)

+
∑

nL,kL,lL;j

[j j + 1 n− 1 n 1]MR
nR,kR,lR(1, · · · , j, Ij)×ML

nL,kL,lL(Ij , j + 1, · · · , n̂j)

+

∫
GL(2)

[AB n− 1 n 1]Mn+2,k+1,n,k−1(1, · · · , n̂AB , Â, B) ,

nL + nR = n+ 2 , kL + kR = k − 1 , lR + lL = l .

(6.39)

The momentum super-twistors are given by
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n̂j = (n− 1 n) ∩ (j j + 1 1) , Ij = (j j + 1 1) ∩ (n− 1 n 1) ,

n̂AB = (n− 1 n) ∩ (AB 1) , Â = (AB) ∩ (n− 1 n 1) .
(6.40)

The index l labels loops in n+ 2-particle amplitude and the expression is fully symmetrized with
equal weight for all loop integration variables (AB)l. A and B are removed by entangled integration
meaning that GL(2) contour is chosen to encircle points where both points A,B on the line (AB)
are located at the intersection of the line (AB) with the plane (n− 1 n 1). GL(2) integral can be
done purely algebraically in terms of residues.

In [B11] and [B14] explicit calculations for NkMHV amplitudes are carried out to make the
formulas more concrete. For N1MHV amplitudes second line of the formula vanishes and the
integrals are rather simple since the determinants are 1× 1 determinants.
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