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Abstract

The most important p-adic concepts and ideas are p-adic fractality, 4-D spin glass analogy,
p-adic length scale hypothesis, p-adic realization of the Slaving Principle, p-adic criticality,
and the non-determinism of the p-adic differential equations justifying the interpretation of
the p-adic space-time regions as cognitive representations. These ideas are discussed in this
chapter in a more concrete level than in previous chapters in the hope that this might help
the reader to assimilate the material more easily. Some of the considerations might be a little
bit out of date since the chapter is written much earlier than the preceding chapters.

1. 2-D thermodunamical criticality is accompanied by conformal invariance. The proposed
quantum criticality of quantum TGD motivated the attempt to generalize conformal
invariance to the 4-dimensional context providing a motivation of the p-adic approach.
After almost two decades after the emergence of the idea about extended conformal
invariance the view about conformal invariance is much more detailed and is indeed
associated with quantum criticality, which reflects the non-determinism of Kähler action.

2. In TGD as a generalized number theory approach p-adic space-time regions emerge com-
pletely naturally and have interpretation as cognitive representations of the real physics.
If this occurs already at the level of elementary particles, one can understand p-adic
physics as a model for a cognitive model about physics provided by Nature itself. The
basic motivation for this assumption is the p-adic non-determinism of the p-adic field
equations making them ideal for the simulation purposes. The p-adic–real phase transi-
tions are the second basic concept allowing to understand how intention is transformed
to action and vice versa: the occurrence of this process even at elementary particle level
explains why p-adic length scale hypothesis works. This picture is consistent with the
idea about evolution occurring already at the level of elementary particles and allowing
the survival of the systems with largest cognitive resources.

3. Spin glass analogy, which was the original motivation for p-adicization before the discov-
ery that p-adic regions of space-time emerge automatically from TGD as a generalized
number theory approach, is discussed at WCW level. The basic idea is that the maxi-
mum (several of them are possible) of the exponential of the Kähler function with respect
to the fiber degrees of freedom as function of zero modes is p-adic fractal. This together
with spin glass analogy suggest p-adic ultra-metricity of the reduced WCW CHred, the
TGD counterpart of the energy landscape.

4. Slaving Principle states that there exists a hierarchy of dynamics with increasing char-
acteristic length (time) scales and the dynamical variables of a given length scale obey
dynamics, where the dynamical variables of the longer length (time) scale serve as “mas-
ters” that is effectively as external parameters or integration constants. The dynamics
of the “slave” corresponds to a rapid adaptation to the conditions posed by the “mas-
ter”. p-Adic length scale hypothesis allows a concrete quantification of this principle
predicting a hierarchy of preferred length, time, energy and frequency scales.

5. Critical systems are fractals and the natural guess is that p-adic topology serves also
as an effective topology of real space-time sheets in some length scale range and that
real non-determinism of Kähler action mimics p-adic non-determinism for some value of
prime p. This motivates some qualitative p-adic ideas about criticality.

6. The properties of the CP2 type extremals providing TGD based model for elementary
particles and topological sum contacts, are discussed in detail. CP2 type extremals could
be for TGD what black holes are for General Relativity. Black hole elementary particle
analogy is discussed in detail and the generalization of the Hawking-Bekenstein formula
is shown to lead to a prediction for the radius of the elementary particle horizon and to a
justification for the p-adic length scale hypothesis. A deeper justification for the p-adic
length scale hypothesis comes from the assumption that systems with maximal cognitive
resources are winners in the fight for survival even in elementary particle length scales.

7. Quantum criticality in its simplest variants states that states Kähler coupling strength
αK is analoggous to critical temperature. In principle allows allows the dependence of
the αK on on zero modes. It would be nice if αK were RG invariant in strong sense
but the expression for gravitational coupling constant implies that it increases rapidly
as a function of p-adic length scale in this case. This led to the hypothesis that G is
RG invariant. The hypothesis fixes the p-adic evolution of αK completely and implies
logarithmic dependence of αK on p-adic length scale. It has however turned out that the
RG invariance might after all be possible and is actually strongly favored by different
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physical arguments. The point is that M127 is the largest Mersenne prime for which
p-adic length scale is non-super-astronomical. If gravitational interaction is mediated by
space-time sheets labelled by this Mersenne prime, gravitational constant is effective RG
invariant even if αK is RG invariant in strong sense. This option is also ideal concerning
the p-adicization of the theory.

1 Introduction

p-Adic topologies form an infinite hierarchy and p-adic physics leads to a vision about many-sheeted
space-time as a hierarchical structure consisting of p-adic and real space-time sheets of increasing
size and increasing value of prime p. These surfaces are glued together using topological sum
or join along boundaries bonds. Contrary to the original expectations, p-adic space-time regions
represent “mind-stuff” rather than “matter” which is also present and represented by real and
infinite-p p-adic regions. Thus p-adic provide “cognitive representations” for matter like regions
and this is why their physics provides a way to understand real physics. If p-adic-to-real phase
transitions are possible, one can understand why it is possible to assign p-adic prime even to real
regions. In fact, the hypothesis that p-adic regions provide a cognitive model for real physics, poses
very strong constraints on real physics.

There is a “holy trinity” of non-determinisms in TGD in the sense that there is the non-
determinism associated with the quantum jumps, the classical non-determinism of the Kähler
action and p-adic non-determinism. The non-determinism of quantum jumps can involve also a
selection between various multi-furcations for various absolute minima of the Kähler action in
which case it represents a genuine volitional act. p-Adic non-determinism in turn corresponds
to the non-determinism of pure imagination with no material consequences. Also real space-time
sheets with finite time duration are also possible and they might represent what might be called
“sensory space-time sheets” as opposed to cognitive space-time sheets. Cognitive space-time sheets
can be transformed to real ones in quantum jumps inducing change of control parameters of the
polynomial defining space-time surface: if the change is such that the p-adic root is replaced with
a real root, one can say that thought is transformed into action. The reverse of this process is the
transformation of sensory input into cognition.

“Holy trinity” implies that it should be possible to determine the p-adic prime characterizing
a given space-time region (or space-time sheet) by observing a large number of quantum time
developments of this system. The characteristic p-adic fractality, that is the presence of time
scales T (p, k) = pkTp, should become manifest in the statistical properties of the cognitive time
developments which in should turn reflect the properties of the real physics since cognitive rep-
resentations are in question. For instance, quantum jumps with especially large amplitude would
tend to occur at time scales T (p, k) = pkTp. T (p, k) could also provide series of characteristic cor-
relation times. Needless to say, this prediction means definite departure from the non-determinism
of ordinary quantum mechanics and only at the limit of infinite p the predictions should be iden-
tical. An interesting possibility is that 1/f noise [D1] is a direct manifestation of the classical
non-determinism: if this is the case, it should be possible to associate a definite value of p to 1/f
noise. Also transformations of the p-adic cognitive space-time sheets to real space-time sheets of a
finite time duration and vice versa might be involved with the 1/f noise so that 1/f noise would
be a direct signature of cognitive consciousness.

The “physical” building blocks of p-adic TGD, as opposed to the philosophical mathemati-
cal ones briefly summarized above, and in more detail in previous chapters, are spin glass analogy
leading to the general picture about how finite-p p-adicity emerges from quantum TGD, the identi-
fication of elementary particles as CP2 type extremals, and elementary particle black hole analogy.
These building blocks have been present as stable pieces of theory from beginning whereas philo-
sophical ideas and interpretations have undergone rather wild fluctuations during an almost last
decade of p-adic TGD.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L2].

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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2 P-Adic Numbers And Spin Glass Analogy

Spin glass phase decomposes into regions in which the direction of the magnetization varies ran-
domly with respect to spatial coordinates but remains constant in time. What makes spin glass
special is that the boundary regions between regions of different magnetization do not give rise to
large surface energies. Spin glass structure emerges in two ways in TGD framework.

1. Spin glass behavior at the level of real physics is encountered in TGD framework because
of the classical non-determinism of the Kähler action. The classical non-determinism of
CP2 type extremals represents the manifestation of the spin glass analogy at the level of
elementary particle physics. In macroscopic length scales real physics spin glass analogy
makes possible “real world engineering”.

2. Spin glass behavior at the level of cognition is encountered because of the p-adic non-
determinism and makes possible what might be called imagination or “cognitive engineering”.
The point is that any piecewise constant function has a vanishing p-adic derivative. There-
fore any function of the spatial coordinates depending on a finite number of the pinary digits
is a pseudo constant. The discontinuities of this kind in the field variables do not lead to
infinite surface energies in the p-adic context as they would in the real context.

Spin glass energy landscape is characterized by an ultra-metric distance function. The reduced
WCW CHred consisting of the maxima of the Kähler function with respect to quantum fluctuating
degrees of freedom and zero modes defines the TGD counterpart of the spin glass energy landscape.
This notion makes sense only in real context since p-adic space-time regions do not contribute to
the Kähler function and all p-adic configurations are equally probable. The original vision was
that if the ultra-metric distance function in CHred is induced from a p-adic norm, a connection
between p-adic physics and real physics also at the level of space-time might emerge somehow.
It seems however that the ultra-metricity of CHred need not directly relate to the p-adicity at
the space-time level which can be understood if p-adic space-time regions give rise to cognitive
representations of the real regions.

Of course, it might be that the p-adic prime characterizing cognitive representation of a real
region characterizes also the reduced WCW associated with the region in question (one must of
course assume that the reduced WCW approximately decomposes into a Cartesian product of the
reduced WCW s associated with real regions).

2.1 General View About How P-Adicity Emerges

In TGD classical theory is exact part of the quantum theory and in a well defined sense appears
already at the level of the configuration space geometry: the definition of WCW Kähler metric
[K9] associates a unique space-time surface to a given 3-surface. The vacuum functional of the
theory (exponent of the Kähler function) is analogous to the exponent exp(H/Tc) appearing in the
definition of the partition function of a critical system so that the Universe described by TGD is
quantum critical system. Critical system is characterized by the presence of two phases, which can
be present in arbitrary large volumes. The TGD counterpart of this seems to be the presence of
two kinds of 3-surfaces for which either Kähler electric or Kähler magnetic field energy dominates.
These 3-surfaces have outer boundaries for purely topological reasons and these boundaries can
be of a macroscopic size. Therefore it seems that 3-space should be regarded as what could be
called topological condensate with a hierarchical, fractal like structure: there are 3-surfaces (with
boundaries) condensed on 3-surfaces condensed on...... .

This leads to a radically new manner to see the world around us. The outer surfaces of the
macroscopic bodies correspond to the boundaries of 3-surfaces in the condensate so that one can
see the 3-topology in all its complexity just by opening one’s eyes! A rather compelling evidence
for the basic ideas of TGD if one is willing to give up the nebulous concept of “material object in
topologically trivial 3-space” and to allow nontrivial 3-topology in macroscopic length scales. A
second rather radical departure from the conventional picture of the 3-space is that 3-space is not
connected in TGD Universe but contains arbitrary many disjoint components. In fact the actual
Universe should consist of infinitely many 3-surfaces condensed on each other.
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In two-dimensional critical systems conformal transformations act as symmetries and conformal
invariance implies the Universality of critical systems. This suggests that one should try to find
the generalization of the conformal invariance to higher dimensional, in particular, 4-dimensional
case. If finally turned out that quaternion-conformal invariance realizes quantum criticality four
4-surfaces imbedded to 8-dimensional space. As a by product an explanation for space-time and
embedding space dimensions results.

In this approach the p-adic regions of the space-time surface result dynamically. Space-time
surface is defined by the vanishing condition of a polynomial of two quaternion-valued variables
q and p. This condition gives p as a function of q. It can however occur that some components
of p become complex numbers. They must be however real so that the solution fails to exist in
the real sense. It might be however possible to perform the completion of the rational space-time
surface to a p-adic space-time surface and for some values of the p-adic prime the series defining
the power series representing p = f(q) might converge to a number in some algebraic extension
of the ordinary p-adic numbers. Even more general rational-adic topologies in which norm is
power of a rational number are possible. p-Adic numbers would thus be very closely related with
quaternion-conformal invariance and criticality.

p-Adic topologies form an infinite hierarchy and p-adic physics leads to a vision about many-
sheeted space-time as a hierarchical structure consisting of p-adic 4-surfaces of increasing size and
increasing value of prime p. These surfaces are glued together using topological sum operation.
Contrary to the original expectations, this hierarchy is the hierarchy for the regions of space-time
representing “mind-stuff” rather than “matter” which is also present and represented by real and
infinite-p p-adic regions. p-Adic provide “cognitive representations” for matter-like regions and
this is why their physics provides a way to understand real physics.

2.2 P-Adic Numbers And The Analogy Of TGD With Spin-Glass

The vacuum degeneracy of the Kähler action leads to precise spin glass analogy at the level of the
WCW geometry and the generalization of the energy landscape concept to TGD context leads to
the hypothesis about how p-adicity is realized at the level of the WCW . Also the concept of p-adic
space-time surface emerges rather naturally.

2.2.1 Spin glass briefly

The basic characteristic of the spin glass phase [B1] is that the direction of the magnetization
varies spatially, being constant inside a given spatial region, but does not depend on time. In the
real context this usually leads to large surface energies on the surfaces at which the magnetization
direction changes. Regions with different direction of magnetization clearly correspond non-vacuum
regions separated by almost vacuum regions. Amusingly, if 3-space is effectively p-adic and if
magnetization direction is p-adic pseudo constant, no surface energies are generated so that p-
adics might be useful even in the context of the ordinary spin glasses.

Spin glass phase allows a great number of different ground states minimizing the free energy.
For the ordinary spin glass, the partition function is the average over a probability distribution
of the coupling constants for the partition function with Hamiltonian depending on the coupling
constants. Free energy as a function of the coupling constants defines “energy landscape” and the
set of free energy minima can be endowed with an ultra-metric distance function using a standard
construction [A9].

2.2.2 Vacuum degeneracy of Kähler action

The Kähler action defining WCW geometry allows enormous vacuum degeneracy: any four-surface
for which the induced Kähler form vanishes, is an extremal of the Kähler action. Induced Kähler
form vanishes if the CP2 projection of the space-time surface is Lagrange manifold of CP2: these
manifolds are at most two-dimensional and any canonical transformation of CP2 creates a new
Lagrange manifold. An explicit representation for Lagrange manifolds is obtained using some
canonical coordinates Pi, Qi for CP2: by assuming

Pi = ∂if(Q1, Q2) ,
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where f arbitrary function of its arguments. One obtains a 2-dimensional sub-manifold of CP2 for
which the induced Kähler form proportional to dPi ∧ dQi vanishes. The roles of Pi and Qi can
obviously be interchanged. A familiar example of Lagrange manifolds are pi = constant surfaces
of the ordinary (pi, qi) phase space.

Since vacuum degeneracy is removed only by classical gravitational interaction there are good
reasons to expect large ground state degeneracy, when system corresponds to a small deformation
of a vacuum extremal. This degeneracy is very much analogous to the ground state degeneracy of
spin glass.

2.2.3 Vacuum degeneracy of the Kähler action and physical spin glass analogy

Quite generally, the dynamical reason for the physical spin glass degeneracy is the fact that Kähler
action has a huge vacuum degeneracy. Any 4-surface with CP2 projection, which is a Legendre
sub-manifold (generically two-dimensional), is vacuum extremal. This implies that space-time
decomposes into non-vacuum regions characterized by non-vanishing Kähler magnetic and elec-
tric fields such that the (presumably thin) regions between the non-vacuum regions are vacuum
extremals. Therefore no surface energies are generated. Also the fact that various charges and
momentum and energy can flow to larger space-time sheets via wormholes is an important factor
making possible strong field gradients without introducing large surfaces energies. From a preferred
extremal of Kähler action one obtains a new one by adding arbitrary space-time surface which is
vacuum extremal. Uniqueness of the absolute minima in the sense that real regions of space-time
X4(X3) are unique could be achieved by requiring that vacuum regions are p-adic and represent
thus cognitive regions whereas real regions carry non-vanishing induced Kähler field.

The symplectic invariance of the Kähler action for vacuum extremals allows a further under-
standing of the vacuum degeneracy. The presence of the classical gravitational interaction spoils
the canonical group Can(CP2) as gauge symmetries of the action and transforms it to the isometry
group of CH. As a consequence, the U(1) gauge degeneracy is transformed to a spin glass type
degeneracy and several, perhaps even infinite number of maxima of Kähler function for given values
of the zero modes, become possible. Thus locally, the space maxima of Kähler function should
look like a union of copies of the space of zero modes. Given sheet has naturally as its boundary
the 3-surfaces for which two maxima of the Kähler function coalesce or are created from single
maximum by a cusp catastrophe. In catastrophe regions there are several sheets and the value
of the maximum Kähler function determines which give a measure for the importance of various
sheets. The quantum jumps selecting one of these sheets can be regarded as phase transitions.

In TGD framework classical non-determinism forces to generalize the notion of the 3-surface
by replacing it with a sequence of space like 3-surfaces having time like separations such that the
sequence characterizes uniquely one branch of multi-furcation. This characterization works when
non-determinism has discrete nature. For CP2 type extremals which are bosonic vacua, basic
objects are essentially four-dimensional since M4

+ projection of CP2 type extremal is random light
like curve. This effective four-dimensionality of the basic objects makes it possible to topologize
Feynman diagrammatics of quantum field theories by replacing the lines of Feynman diagrams
with CP2 type extremals.

In TGD framework spin glass analogy holds true also in the time direction, which reflects the
fact that the vacuum extremals are non-deterministic. For instance, by gluing vacuum extremals
with a finite space-time extension (also in time direction!) to a non-vacuum extremal and deforming
slightly, one obtains good candidates for the degenerate absolute minima. This non-determinism
is expected to make the absolute minima of the Kähler action highly degenerate. The construction
of S-matrix at the high energy limit suggests that since a localization selecting one degenerate
maximum occurs, one must accept as a fact that each choice of the parameters corresponds to a
particular S-matrix and one must average over these choices to get scattering rates. This averaging
for scattering rates corresponds to the averaging over the thermodynamical partition functions for
spin glass. A more general is that one allows final state wave functions to depend on the zero
modes which affect S-matrix elements: in the limit that wave functions are completely localized,
one ends up with the simpler scenario.

The real effective action is expected to be Einstein-Yang-Mills action for the induced gauge
fields. This action does not possess any vacuum degeneracy. The space-time surfaces are certainly
absolute minima of the Kähler action and EYM-action could take a dynamical role only in the
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sense that extremality with respect to classical part of EYM action selects one of the degenerate
absolute minima of the Kähler action. On the other hand, the construction of S-matrix suggests
that the choice of particular parameter values characterizing zero modes affects only the coupling
constants and propagators of the effective Einstein-Yang-Mills theory, and that one must perform
averaging over the predictions of these theories. Thus EYM action could at most fix a gauge.

2.2.4 p-Adic non-determinism and spin glass analogy

One must carefully distinguish between cognitive and physical spin-glass analogy. Cognitive spin-
glass analogy is due to the p-adic non-determinism. p-Adic pseudo constants induce a non-
determinism which essentially means that p-adic extrema depend on the p-adic pseudo constants
which depend on a finite number of positive pinary digits of their arguments only. Thus p-adic
extremals are glued from pieces for which the values of the integration constants are genuine con-
stants. Obviously, an optimal cognitive representation is achieved if pseudo constants reduce to
ordinary constants.

More precisely, any function

f(x) = f(xN ) ,

xN =
∑
k≤N

xkp
k , (2.1)

which does not depend on the pinary digits xn, n > N has a vanishing p-adic derivative and is
thus a pseudo constant. These functions are piecewise constant below some length scale, which
in principle can be arbitrary small but finite. The result means that the constants appearing in
the solutions the p-adic field equations are constants functions only below some length scale. For
instance, for linear differential equations integration constants are arbitrary pseudo constants. In
particular, the p-adic counterparts of the absolute minima (defined by the correspondence with
infinite primes) are highly degenerate because of the presence of the pseudo constants. This in turn
means a characteristic randomness of the spin glass also in the time direction since the surfaces at
which the pseudo constants change their values do not give rise to infinite surface energy densities
as they would do in the real context.

The basic character of cognition would be spin glass like nature making possible “engineering”
at the level of thoughts (planning) whereas classical non-determinism of the Kähler action would
make possible “engineering” at the level of the real world.

2.2.5 Localization in zero modes

The Kähler function defining WCW metric possesses infinite number of zero modes which represent
non-quantum-fluctuating degrees of freedom. The requirement that physics is local at the level of
zero modes implies that each quantum jump involves a localization in zero modes. This localization
could be complete or in a region whose size is determined by the p-adic length scale hypothesis.

Localization would mean an enormous calculational simplification: functional integral reduces
into ordinary functional integral over the quantum-fluctuating degrees of freedom and there is no
need to integrate over the zero modes. The complete or partial localization in zero modes would
explain why the world of conscious experience looks classical. Perhaps the complete localization is
however too much to wish for: it could however be that one must use wave functionals in the zero
modes only in the case that one is interested in a comparison of the transition rates associated with
different values of zero modes rather than in transition rates with the condition that a localization
has occurred to definite values of zero modes.

The functional integral over the fiber degrees of freedom can be approximated by a Gaussian
integrals around maxima. Classical non-determinism would suggest the possibility of several max-
ima in fiber degrees of freedom but the symmetric space property of the fiber suggests that there is
only single maximum of Kähler function. The existence of single maximum gives good hopes that
the configuration space integration reduces effectively to Gaussian integration of free field theory.
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2.3 The Notion Of The Reduced WCW

Quantum jumps occur with highest probability to those values of zero modes which correspond
to the maxima of the Kähler function and a simplified description of the situation is obtained by
considering the reduced WCW CHred consisting of the maxima of Kähler function with respect to
both zero modesandquantum fluctuating degrees of freedom.

The hypothesis that the space CHred is an enumerable set is a natural first guess. In macro-
scopic length scales, one might indeed hope that the generation of Kähler electric fields reducing
the vacuum degeneracy could imply a discrete degeneracy for the maxima of the Kähler action.

In elementary particle length scales this hypothesis fails and it is good to analyze the situation
in more detail since it gives some about how complex the situation can be. For the so called CP2

type extremals the classical non-determinism gives rise to a functional continuum of degenerate
maxima of the Kähler function. The degenerate maxima correspond to random zitterbewegung
orbits for which the “time parameter” u is an arbitrary function of CP2 coordinates. In this case
however zero modes characterizing light like random curve representing the zitterbewegung orbit
behave exactly like conformal gauge degrees of freedom. The choice of the “time parameter” u
however affects S-matrix elements: dependence is very weak and only through the volumes of
the propagator lines determined by the selection of u (Kähler action for CP2 type extremal is
proportional to its volume) occurring in quantum jump. Effectively the functional continuum is
replaced with the real continuum of the volume of the propagator line varying from zero to the
volume of CP2.

A localization for the positions of the vertices of the Feynman diagrams defined by CP2 type
extremals cannot however be assumed. Neither can one assume that only single Feynman diagram
is selected if one wants that a generalization of ordinary Feynman diagrammatics results. There
are several alternative identifications.

1. The degrees represented by Feynman diagrams with varying positions of vertices represent
fiber degrees of freedom so that there would be slight dependence of the Kähler function on
the positions of the vertices. Certainly the Feynman diagrams with different topologies have
different value of Kähler action and must correspond to fiber degrees of freedom. The reason
is that vertex regions of the Feynman diagrams must involve deformations of CP2 extremals
since otherwise Feynman diagrams are singular as 4-manifolds. Note that the idea about
localization in fiber degrees of freedom is not favored by this example.

2. The positions for the vertices of the Feynman diagram are excellent candidates for zero modes
and localization is not possible now. The fact that these degrees of freedom correspond to
center of mass degrees of freedom related to the isometries of the theory might distinguish
between them and other zero modes. One can consider also a refinement for localization in
the zero modes hypothesis: localization occurs only in length scale resolution defined by the
p-adic length scale. In fact, the assumption that CP2 type extremals have suffered topological
condensation on space-time sheets with size of order p-adic length scale characterizing the
elementary particle implies this.

Whether the notion of CHred makes sense for the p-adic space-time regions is not at all obvious.
For the proposed construction of the WCW metric p-adic regions do not contribute to the Kähler
function which is real-valued. Only in case that the p-adic contribution is rational number, it could
be interpreted as a real valued contribution to the Kähler function. In case of CP2 type extremals
this is not the case although the exponent of the Kähler function for a full CP2 type extremal is
a rational number if the proposed model for the p-adic evolution of Kähler coupling strength is
correct. If it does not make sense to distinguish between the maxima of the Kähler function in
the p-adic context, one cannot define CHred on basis of this criterion. From the point of view of
cognition this means maximal freedom of imagination.

An interesting question is whether one must count the cognitive degeneracy as a degeneracy of
physical states. If localization occurs in each quantum jump with respect to both real and p-adic
zero mode degeneracy, and if all cognitive options are equally probable, then the only conclusion
seems to be that space-time surfaces for which the cognitive degeneracy is highest, represent the
most probable final states. This would mean that the systems with the highest cognitive resources
would be winners in the struggle for survival.
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2.3.1 Explicit definition of the ultra-metric distance function for energy landscape

The points of CHred are completely analogous to the minima of the free energy and the precise
analogy with spin glass suggests that CHred must possess naturally an ultra-metric topology. One
can quite generally construct an explicit ultra-metric distance function for the set of energy minima
in a given energy landscape describing energy as a function of the coordinates of some WCW using
existing recipes [B5]. The concept is useful when the energy landscape has fractal like structure.
An attractive metaphor is to regard energy as a height function for a landscape with mountains.

The distance function between two energy minima should describe the difficulty of getting from
a given minimum to another one. A concrete measure for this difficulty is obtained by considering
all possible paths from x to y. The height for the highest point on this path, absolute maximum
hmax(γ) of the height function on this path gives the measure for the difficulty for reaching y along
the path γ. There exists some easiest path from x to y. The difficulty to reach y from x can be
defined as the height of the highest point associated with the easiest path and hence the minimum
of hmax(γ) in the set of all possible paths from x to y:

d(x, y) = Min(hmax(γ(x, y)) .

It is easy check that this distance function is ultra-metric:

d(x, z) ≤Max{d(x, y), d(y, z)} .

All what is needed is to notice that for any path x→ z going through y highest point of the path
is either the highest point associated with the path from x→ y or y → z: from this the inequality
follows trivially since one can in principle find also easier paths.

2.3.2 Identification of the height function in the case of the reduced WCW ?

Obviously the negative for the maximum of Kähler function as function of zero modes is the
counterpart of free energy. This function could well be many valued but this is an unessential
complication. It is not clear whether K is negative definite (there are strong reasons to believe
that this is the case). One can however consider any positive definite function of K as a height
function defining an ultra-metric norm in the manner suggested. The requirement that p-adic
norm results should fix the definition uniquely.

The exponential exp(−Kmax) of the maximum of Kähler function as function of the zero modes,
which is the inverse for the vacuum functional of the theory, is the first guess for the height function
defining the ultra-metric norm (the wandering from 3-surface X3 to Y 3 corresponds to quantum
tunnelling physically.). The justification for this identification is that the integration over the fiber
degrees of freedom gives Gaussian determinant cancelling the metric determinant and leaves on the
exponent of Kähler function to the functional integral over zero modes. The intuitive expectation
is that ultra-metric norm is p-adic for some p and that the space of zero modes decomposes into
regions Dp In order to get a power of p as required by p-adicity, one can expand h as powers of p
and identify p-adic norm as pn for the highest pinary digit n with non-vanishing coefficient.

The height function can have a normalization factor and this factor could be chosen so that
the ultra-metric norm is a power of p for CP2 type extremals, which are certainly very important
building blocks of preferred extremals The argument relating the gravitational coupling constant
to the Kähler coupling strength and fixing the dependence of the Kähler coupling strength on the
prime p, suggests that one must define the height function as

hp =
exp(−K(p))

exp(−K(p = 1))
,

where the Kähler function at p = 1 is formally obtained by regarding the value of the Kähler
coupling strength as a function in the set of all natural numbers.

2.3.3 Does the proposed height function hp define p-adic topology?

The great question is whether one can obtain p-adic ultra-metricity in this manner. There is some
evidence for this.
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1. Criticality and spin glass analogy suggests that exp(K) as a function of zero modes is fractal.
If it is p-adic fractal then p-adic topology is expected to be a natural consequence: in this
case the map of CHred to its p-adic counterpart could make it possible to replaced CHred

with a smooth function.

2. CP2 type extremals, the counterparts of black holes and a model of elementary particle in
TGD, have finite negative Kähler action. One can glue CP2 type extremals to any space-
time surface to lower the Kähler action. 3-surfaces Z3 on path from X3 to Y 3 containing
CP2 type extremals on X4(Z3) are excellent candidates for “mountains” in the landscape
metaphor. The height of Z3 is roughly described by the number of CP2 type extremals glued
on X4(Z3).

3. The argument leading to a correct prediction of gravitational constant in terms of assuming
that Kähler coupling strength αK depends on zero modes only through the p-adic prime
assumed to characterize a given region Dp of WCW for which the set of maxima of Kähler
function as function of zero modes should obey has p-adic topology. The crucial input is the
relationship

exp(Kp(CP2))
R2

G
=

1

p
,

which is equivalent with G = exp(Kp(CP2)L2
p , where Lp '

√
p × R is the p-adic length

scale and R ' 104
√
G is CP2 size and the fundamental p-adic length scale. This formula is

a dimensional estimate for gravitational coupling strength in terms of the p-adic length scale
squared and the exponential of Kähler function for CP2 type extremal describing graviton.
The exponent gives the probability for the appearance of one virtual graviton in a given
quantum state. The probability is very small since the exponent is negative for CP2type
extremal and gravitation is consequently a very weak interaction.

4. If one makes the identification

R2

G
(∼ 108) = exp(−Kp=1),

then the function

hp =
exp(−Kp)

exp(−Kp=1)
/

is the n: th power of p for a vacuum extremal to which n CP2 type extremals are glued.
This is just the p-adic norm pn! If hp were pn-valued in the general case it would be a p-adic
pseudo constant and rather tame as a fractal. Very probably, this is not true in the general
case and the p-adic norm of the p-adic counterpart of hp in the canonical identification

Np ≡ |Id(hp)|p ,
Id(
∑
xnp

n) =
∑
n xnp

−n .

depending on the most significant pinary digit of hp only, is a good candidate for a p-
adically ultra-metric height function having also a correct normalization. In any case, it
seems that the number of virtual CP2 type extremals (gravitons!) glued to an preferred
extremal X4(X3) could define the height function. p-Adicity would emerge naturally and
would have a direct physical meaning. Of course, this identification works for n ≥ 0 only:
the physical interpretation of the p-adic norm in n < 0 case is open.

A possible interpretation in terms of virtual graviton emission suggests the interpretation of the

factor R2

G = exp(−Kp=1) as a Gaussian determinant
√
detG associated with the integration over

the zero modes around the maximum. The definition of Gaussian determinant in the real context
is problematic and p-adicization plus adelic decomposition of the functional integral might provide
a precise definition of

√
detG. The divergence of the Gaussian determinant in the real context
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would lead to the vanishing of the gravitational constant. This picture is in accordance with
the assumption that gravitational constant does not appear in quantum TGD as a fundamental
constant and that the curvature scalar term in the low energy effective action essentially results
from radiative corrections and hence derives from the logarithm of detG.

3 P-Adic Numbers And Quantum Criticality

TGD Universe is quantum critical in the sense that the value of Kähler coupling constant is
completely analogous to critical temperature. Therefore the obvious question is how p-adicity
might relate to quantum criticality.

3.1 Connection With Quantum Criticality

p-Adicization of the reduced WCW relates in an interesting manner to quantum criticality. At
quantum criticality the number of the absolute minima of Kähler action for a surface Y 3 belonging
to light cone boundary measures the cognitive resources of this surface and of its diffeomorphs.
Nd is assumed to behave as Nd ∼ exp(−Kcr), where Kähler function is evaluated for the critical
value αcr of the Kähler coupling strength. αcr is like Hagedorn temperature appearing in the
thermodynamics of strings. Above αcr the theory might not be mathematically well defined since
(at least real) the sum over the WCW integrals associated with the maxima of Kähler function
would diverge exponentially at the limit when the value of Kähler function increases. In string
thermodynamics this corresponds to the growth of number g(E) of the states of given energy more
rapidly than the inverse of the Boltzmann factor exp(−E/TH). Below αcr the theory is certainly
well defined but in TGD framework the cognitive resources of the Universe would not be maximal
since vacuum functional would differ significantly from zero for very few space-time surfaces only.
At quantum criticality the situation is optimal but it is not clear whether the real theory makes
sense at quantum criticality: at least in string thermodynamics the partition function diverges also
at Hagedorn temperature.

The cognitive resources of p-adic space-time sheet are measured by the entropy type quantity
log(Nd)/log(2) having lower bound log(p)/log(2) bits for the 3-surfaces allowed by the vacuum
functional. For instance, the maximal cognitive resources of electronic space-time sheet (M127 =
2127 − 1) would be 127 bits. In TGD one must allow even infinite primes and for these cognitive
resources can be literally infinite.

3.2 Geometric Description Of The Critical Phenomena?

The idea that critical systems might have a geometric description is not new. There is a lot of
evidence that simple, purely geometric lattice models based on the bond concept reproduce same
critical exponents as the thermal models [B4]. The probability for a bond to exist corresponds to
temperature in these models. For example, in a bond percolation model it is possible to relate the
critical exponents to various fractal dimensions. This provides a nice manner to reduce the problem
of predicting critical temperature to that of predicting the critical probability for the bond. This
problem is local and once the temperature dependence of the bond probability and critical bond
probability are known one can calculate the critical temperature.

What is new that in TGD approach the concept of bond ceases to be a phenomenological concept
related to the simple modelling of the critical systems. TGD predicts that the boundaries of 3-
surfaces can have arbitrarily large sizes. Furthermore, the formation of the join along boundaries
bonds connecting the boundaries of two disjoint 3-surfaces seems to provide the basic mechanism
for the formation of macroscopic quantum systems with long range correlations. This means that
phase transitions should basically correspond to changes in the connectedness of the boundary of
the 3-space. The description of the super fluidity, super conductivity and Quantum Hall effect
based on the join along boundaries bond concept is suggested in [K10, K1] and also other phase
transitions might be describable in the same manner. In hadronic length scale flux tubes correspond
to color flux tubes connecting valence quarks. In nuclear length scale the short range part of the
nuclear force corresponds to the formation of join along boundaries bonds between nucleons.
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p-Adic approach suggests a concrete description for the phase transition changing the connect-
edness of the 3-surface. Disjoint 3-surfaces are labelled by p-adic numbers, whose p-adic expansion
does not contain powers pn with n > N , where N is some finite integer: the larger the value of N
the larger the degree of disjointness. This means that phase transitions (say evaporation or con-
densation) changing the connectedness of the 3-surface should correspond to transitions changing
the value of N . In evaporation process N increases and in condensation process N decreases. Also
catastrophic processes like the breaking of a solid object to pieces might correspond to increase in
N . Typical self organization processes such as biological growth and healing might correspond to
a gradual decrease of N .

Fractal like configurations with a discrete scale invariance are known to play important role in
the description of the critical phenomena: they are the most probable configurations at the critical
point. The idea that fractal corresponds to a fixed point of a discrete scaling transformation, is in
accordance with the definition of the fractals as fixed points for a set of affine transformations acting
on subsets of some metric space [A7]. A natural candidate for the discrete scaling transformation
is the transformation of the 4-surface induced by the multiplication of the p-adic argument Z of
H-coordinate h(Z) by a power of p: Z → pnZ. A tempting idea is that most probable 3-spaces
indeed are invariant under these scalings. This even suggests that something, which might be
called “Mandelbrot cosmology”, might provide a description of the Universe in all length scales
as a 4-dimensional analog of Mandelbrot set. The breaking of the discrete scaling invariance is
bound to occur, when one considers finite subsystem instead of the whole Universe. p-Adic cutoff
might provide an elegant description for the breaking of the exact scaling invariance: 3-surface in
question depends on finite number of the pinary digits of Z only.

3.3 Initial Value Sensitivity And P-Adic Differentiability

Initial value sensitivity is one of the basic properties of the critical systems and implies unpre-
dictability in practice. p-Adic differentiability seems to be related to this property in a very
general manner. Consider a configuration of an initial value sensitive system, which can possess
very high dimension. For definiteness, assume that the dynamics is described by some differential
equations, which can be reduced to equations of first order for WCW coordinates X (we do not
bother to write indices):

dX

dt
= J(X) . (3.1)

Space-time coordinate is a p-adic number one can assume that time coordinate is a p-adic number,
too.

The purely p-adic feature of this differential equation follows from the fact that any function
depending on a finite number of pinary digits of a p-adic number possesses a vanishing p-adic
derivative! This implies that the integration constants are not just ordinary constants but functions
of the p-adic number t depending on finite number of pinary digits of t! Obviously this implies
classical non-determinism in long time scales! One can construct solutions of the differential
equation in the form X(t) = X0(t) + X1(t), where X0(t) depends on a finite number of pinary
digits of the p-adic time t and equations reduce to

dX1

dt
= J(X0 +X1) . (3.2)

Of course, one must be careful in defining what “finite number of pinary digits” means, when
p-adic cutoff is actually present. The simplest integration constants depend on the p-adic norm of
t (or on the lowest pinary digit of t) only.

The result is in accordance with the so called Slaving Principle [B2]. One can think that the
dynamics in long time scales (low pinary digits of p-adic number t) is given by the integration
constants having arbitrary dependence on these pinary digits and the dynamics in short length
scales is determined by the differential equations in the “background” given by these time dependent
integration constants.
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Initial value sensitivity implies effectively non-deterministic behavior and p-adic numbers per-
haps provide a possibility to describe it properly. The properties of the Kähler function suggests
that the classical non-determinism might be in fact actual. The point is that the classical space
time surface associated with a given 3-surface need not be unique. This surface is determined as
a preferred extremal of the so called Kähler action and Kähler action possesses enormous vacuum
degeneracy [K3]: the most general vacuum extremal has 2- dimensional CP2 projection, which is
so called Lagrange manifold possessing a vanishing induced Kähler form. Symplectic transforma-
tions and Diff(M4) act as exact dynamical symmetries of the vacuum extremals and Diff(M4)
contains p-adically analytic transformations of M4 as subgroup. It might well happen that those
absolute minima, which are obtainable as small deformations of the vacuum extremals inherit the
characteristic degeneracy of the vacuum extremals.

The classical macroscopic non-determinism might be essential to the possibility of the quantum
measurements. In TGD the state function reduction is described as “jump between histories”
that is two deterministic time developments [K12]. In quantum measurement microscopic and
macroscopic system are strongly correlated and microscopic transition induces a phase transition
like phenomenon in a macroscopic critical system. The general belief is that quantum effects
become unimportant in macroscopic systems. The situation need not be this if macroscopic system
is critical, or even non-deterministic.

In the TGD inspired theory of “thinking systems”, conscious thoughts correspond to quantum
jumps selecting one of the possible time developments in the quantum superposition of several quan-
tum average effective space-time times allowed by the non-determinism. p-Adic pseudo constants
could provide a mathematical description for this non-determinism. These “cognitive” quantum
jumps are certainly involved with a realistic description of a quantum measurement modelling also
the presence of the observer quantum mechanically.

In turns out that quantum non-determinism, classical non-determinism of Kähler action and
p-adic non-determinism are very closely related in quantum TGD: one could even speak of a holy
trinity of non-determinisms. Quantum non-determinism corresponds closely to the classical non-
determinism of Kähler action: quantum jumps select between various branches of the branches of
multi-furcations of classical space-time surface. The p-adic counterparts of these branches are in
turn obtained by varying pseudo constants in the solution of the p-adic Euler-Lagrange equations
for the Kähler action: this requirement in fact makes it possible to assign unique p-adic prime to
a given, sufficiently small space-time region.

3.4 There Are Very Many P-Adic Critical Orbits

An interesting connection between the p-adicity and initial value sensitive systems is related to the
possibility to replace also the WCW (possibly infinite dimensional) with an algebraic extension
of the p-adic numbers. The underlying motivation is the need to get a proper mathematical
description of the finite accuracy for the observables and p-adic cutoff provides this description.

This in turn suggests Universality in some aspects of the dynamical behavior. The dynamical
equations dX/dt = J(X) define a flow that is a diffeomorphism X → F (X, t) of WCW . This flow
contains as integration constants arbitrary functions of the p-adic time coordinate t depending
on a finite number of pinary digits of t so that classical non-determinism is present. By p-adic
conformal invariance this diffeomorphism ought to be p-adically analytic map that is representable
as a power series of the algebraically extended p-adic numbers x and t.

The p-adic analyticity of the dynamic diffeomorphism gives strong constraints on the properties
of the dynamic map. A particularly interesting map is in this respect Poincare map. One can
ask several interesting questions. How does the Universal behavior of one- dimensional and 2-
dimensional analytic iterated maps generalize to the p-adic case? What do attractors look like?
What are the counterparts of Julia set and Mandelbrot set? What about routes to chaos? Could
p-adic hypothesis provide deeper explanation for the fact that period doubling seems to be a rather
general mechanism for the transition to turbulence. It might be possible to answer these questions
since p-adic analyticity is very strong constraint on the behavior of the maps.

Already the study of the simplest p-adic complex maps reveal some surprises. The simplest
map to study is the map Z → Zn for any extension of p-adic numbers (dimension is arbitrary!).
The repeller consists of the points p-adic norm equal to one. Due to the roughness of the p-adic
topology, the real counterpart of the repeller is of same dimension as WCW itself so that the
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critical orbits form a set with a non-vanishing measure! For example, in the 2-dimensional case
and for the 2-adic extension, the set of the critical orbits corresponds in the real plane to a square
(1/2, 1]× (1/2, 1].

How do the small deformations of Z → Zn of form Z → Zn + εZm affect the set of the critical
orbits? If the norm of the parameter ε is sufficiently small, the previous repeller belongs to the
repeller also now. Also new points can appear in repeller. These considerations suggest that the
repellers/attractors of the p-adically analytic maps have rather simple structure as compared to
their real and complex counterparts. An interesting possibility is that in general case these sets
are fractal like objects resembling the fractals associated with p-adic order parameters.

The fact that set of critical orbits is n-dimensional rather than (n − 1) or lower-dimensional
in the p-adic case suggests an interesting physical interpretation in accordance with the general
idea that p-adic topology corresponds to criticality. In ordinary situation these orbits are not
very interesting because a small deformation spoils their criticality. In p-adic case the situation
is different since the critical orbits are meta-stable and their are very many of them. In TGD
one can even identify good candidates for the set of of these meta-stable critical orbits as small
deformations of the vacuum extremals of the Kähler action. Needless to emphasize, this vacuum
degeneracy is a phenomenon not encountered in the standard field theories.

4 P-Adic Slaving Principle And Elementary Particle Mass
Scales

The understanding of the elementary particle mass scales is a fundamental problem in the unified
field theories. The attempts to understand the generation of the mass scales dynamically have not
been successful. The basic problem is the fine tuning difficulty: the predicted mass scale hierarchy
is not stable under the small changes of the model parameters. A possible explanation for the
failure is that the fundamental mass scales are really fundamental and therefore cannot depend on
the details of the dynamical model.

Criticality is known to imply Universality and criticality indeed is the fundamental property of
Kähler action. Therefore the derivation of the elementary particle length scale(s) should be based
on a proper formulation of the criticality concept. p-Adic numbers indeed provide a promising
tool in this respect and the following arguments show that it is possible not only to understand
some general elementary particle length scale but leptonic, hadronic and intermediate gauge boson
length scales plus a small number of shorter length scales in terms of primes near prime powers
of two. The most important length scales correspond to Mersenne primes: there are only sixteen
Mersenne primes below electron length scale and the remaining Mersenne primes correspond to
super astronomical length scales.

What is nice that the p-adic hypothesis makes possible to express these length scales as square
roots of Mersenne primes and possibly Fermat primes, that is prime numbers of type p = 2m ± 1.
What is amusing is that Mersenne primes are closely related to the so called Perfect Numbers
n = 2m−1(2m − 1) representable not only as a product of their prime factors but also as a sum of
their proper divisors. The ancient number mystics believed that this property makes these numbers
very exceptional in the World Order!

4.1 P-Adic Length Scale Hypothesis

p-Adic length scale hypothesis has served as a basic hypothesis of p-adic TGD for several years.
This hypothesis states that the scales Lp =

√
pl, l = 1.376 · 104

√
G are fundamental length scale

at p-adic condensate level p. The original interpretation of the hypothesis was following:

1. Above the length scale Lp p-adicity sets on and effective course grained space-time topology
is p-adic rather than ordinary real topology.

2. The length scale Lp serves as a p-adic length scale cutoff for the field theory description of
particles. This means that space-time begins to look like Minkowski space so that quantum
field theory M4 → CP2 becomes a realistic approximation. Below this length scale string
like objects and other particle like 3-surfaces dominate.
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3. It is un-natural to assume that just single p-adic field would be chosen from the infinite
number of possibilities. Rather, there is an infinite number of cutoff length scales. To each
prime p there corresponds a cutoff length scale Lp above which p-adic quantum field theory
M4 → CP2 makes sense and one has a hierarchy of p-adic quantum field theories. These
different p-adic field theories correspond to different hierarchically levels possibly present in
the topological condensate. Hierarchical ordering < p1 < p2 < ... means that only the surface
p1 < p2 can condense on the surface p2. The condensed surface can in practice be regarded
as a point like particle at level p2 described by the p-adic conformal field theory below length
scale Lp2 .

The work with p-adic QFT has however demonstrated that the hypothesis a) and b) are prob-
ably wrong and the following interpretation is closer to the truth.

1. The length scale Lp =
√
pl defines an infrared cutoff rather than ultraviolet cutoff for a p-

adic quantum field theory formulated in terms of quarks and leptons and gauge bosons. For
instance, for hadrons this length scale is of order hadron size and Lp defines UV cutoff for
possibly existing field theory describing hadrons as basic objects. Above Lp real topology
effectively replaces the p-adic one (real continuity implies p-adic continuity) and if length
scale resolution Lp is used real physics is excellent approximation.

2. p-Adic QFT is free of UV divergences with any UV cutoff and there is no need to assume
that p-adicity fails below some length scale. Rather, p-adicity is completely general property
of the effective quantum average space-time defined by the Quantum TGD, which is based on
the real number field. The concept of the effective space-time, or topological condensate, is in
turn necessary for the formulation of field theory limit of TGD. The analogy of Quantum TGD
with spin glass phase gives strong support for the p-adic topological condensate consisting
of p-adic regions with different p glued together along their boundaries.

p-Adic topologies form a hierarchy of increasingly coarser topologies. The p-adic norm N(xp)
defines a function of a real argument via the canonical identification of the non-negative real
numbers and p-adic numbers. The p-adic norm is same as ordinary real norm for x = pk and is
constant at each interval [pk, pk+1). This means that

1. p-adic topologies are coarser than real topologies so that the functions, which are continuous
in the p-adic topology need not be continuous in the real topology.

2. p-adic topologies are ordered: the larger the value of p, the coarser the topology in the long
length scales. In short length scales the situation is just the opposite.

4.2 Slaving Principle And P-Adic Length Scale Hypothesis

Slaving Principle states that there exists a hierarchy of dynamics with increasing characteristic
length (time) scales and the dynamical variables of a given length scale obey dynamics, where
the dynamical variables of the longer length (time) scale serve as “masters” that is effectively as
external parameters or integration constants. The dynamics of the “slave” corresponds to a rapid
adaptation to the conditions posed by the “master”.

p-Adic length scale hierarchy suggests a quantitive realization of this philosophy.

1. By the previous considerations there is an infinite hierarchy of length scales Lp such that the
space-time surfaces below the length scale Lp look like Minkowski space and p-adic quantum
field theory M4 → CP2 makes sense below the length scale Lp. These length scales are
associated with the different condensation levels present in the topological condensate and
define the typical size of the p-adic surface in absence of the collective quantum effects, which
should correspond to the formation of the flux tubes between objects with size of order Lp.
The reason why the typical size is just this is that the embedding of the p-adic coordinate
space into space H has strongest discontinuities in the real topology, when coordinate values
correspond to powers of p so that a typical embedding decomposes into separate pieces with
size of order Lp. Of course, this kind of discontinuity is possible for all powers of p but is not
observable in shorter length scales for the physically most interesting values of p due to the
extreme smallness of the corresponding length scales.
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2. The lowest level of the hierarchy corresponds to 2-adic dynamics and this field theory makes
sense below the cutoff length scale L2 =

√
2l defining the typical size for a 2-adic surface.

Solutions of the 2-adic field equations are non-deterministic due to the possibility of the
integration constants depending on finite number of binary digits. The dependence on a finite
number of positive bits of the real coordinates only means that they are genuine constants
below some length scale L2(lower) < L2, which in principle depends on the state of the
system.

3. 2-adic pseudo-constants are analogous to external parameters and should be determined by
the dynamics associated with the longer length and time scales. The properties of the p-adic
numbers suggest that these constants in turn are p-adically differentiable functions of their
argument with some value of p1 > 2 determined by the p1-adic dynamics describing the
interaction between p = 2 surface condensed on p = p1 level and p = p1 background surface.
The p1-adic integration constants associated with these functions are actual constants above
the length scale Lp1(lower) ≥ L2(lower) but also these in principle depend on a finite number
of pinary digits and their values are determined by the interaction of p1 level with the next
level in the condensation hierarchy.

4. At the next level p1 one encounters p1-adic dynamics and new p-adic integration constants.
The net effect is that one obtains a hierarchy of p-adic numbers 2 < p1 < p2 < ... in
correspondence with the length and time scales L2 < Lp1 < Lp2 < ...: the higher the
boss the larger the p. In TGD it is very tempting to interpret the various levels of the
slaving hierarchy as the levels of the topological condensate so that the surfaces at level p are
condensed on the surfaces of level p1 > p (see Fig. 1 ). Not all values of p need be present in
the hierarchy and it might well happen that certain values of p are in an exceptional position
physically.

Figure 1: Two-dimensional visualization of topological condensate concept

4.3 Primes Near Powers Of Two And Slaving Hierarchy: Mersenne
Primes

All values of p are in principle present in the Slaving Hierarchy but the assumption that all values
of p are equally important physically is not realistic. The point is that the number N(n) of primes
smaller than n behaves as N(n) ∼ n/ln(n) and there are just too many prime numbers. For
example, for n = 1038 there are about one prime number per 87 natural numbers!

A natural looking assumption is that a new physically important length scale emerges, when
a fixed number of powers of 2 combine to form a new length scale. The reason is that a given
interval [2k, 2k+1) forms an independent fractal unit (for the simplest fractals these intervals are
related by a similarity, see figures in [K14] and it is therefore unnatural to cut this unit into pieces
as would happen if p were far from a power of two. This breaking would indeed happen since p-
adically differentiable functions have sharp gradients at points pk. This non-breaking or “synergy”
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is reached provided the allowed primes are as close as possible to powers of 2: p ' 2m. It should be
noticed that this condition also guarantees that the frequency peaks associated with various powers
of p in good approximation correspond to period doubling frequencies characteristic to fractal and
chaotic systems.

The best approximation achievable corresponds to Fermat and Mersenne primes

p = 2m ± 1 . (4.1)

It can be shown that for Fermat primes (+) the condition m = 2k must be satisfied and for
Mersenne primes (-) m must be itself prime.

How abundant are the prime numbers of type p = 2m ± 1? The great surprise was that there
are very few numbers of this kind!

1. The primes of type 2m + 1, Fermat primes, are very rare: only 5 numbers in the range
1 < n < 22

21 ' 1010
6

(!) [A2] and there are good arguments suggesting that the number
of the Fermat primes is finite! The known Fermat primes correspond to m = 2k, with
k = 0, 1, 2, 3, 4. The corresponding primes are p = 3, 5, 17, 257, 65537. Note that the lowest
Fermat prime 3 is also a Mersenne prime. It will be later found that p-adic conformal
invariance is in TGD possible for primes p satisfying the condition p mod 4 = 3 and this
condition is not satisfied by Fermat primes F > 3.

2. The primes of form 2m − 1, Mersenne primes, are also there as follows from the requirement
that m is prime. The list of allowed exponents of m consists of the following numbers:

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, ....

.

One can make two observations about these numbers:

1. m = 127 corresponds to the number 1038 fundamental to Physics. The square root of this
number gives the ratio of the proton length scale to Planck length scale. This suggests the
possibility that fundamental physical length scales are given by square roots of Mersenne and
possibly Fermat primes using some length scale of order Planck scale as a unit.

2. m = 61 corresponds to the number of order 1019: this in turn allows the possibility that
fundamental physical length scales are linearly related to Fermat and Mersenne primes. This
alternative however turns out to be not the correct one.

These observations lead to following scenario for the fundamental length scales:

1. The p-adic length scale Lp, below which p-adic quantum field theory approximation makes
sense, is proportional to the square root of p and these length scales are p-adically the most
interesting length scales:

Lp =
√
pl ,

l ∼ k · 104
√
G ,

k ' 1.376 . (4.2)

Only quite recently the physical interpretation of the length scale l was found. Contrary to
the original expectations, CP2 is not of order Planck length but of order l. At this length scale
Euclidian regions of space-time, in particular CP2 type extremals representing elementary
particles, become important. Above this length scale a field theory in Minkowski space is
expected to be a good approximation to quantum physics.

2. Physically the most interesting length scales correspond to the p-adic cutoff length scales Lp
associated with the Mersenne primes Mn.
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3. The fact that l is of the same order of magnitude as the length scale at which the coupling
constants of the standard model become approximately equal, is not probably an accident.
Below l it is not anymore sensible to speak about the topological condensation of CP2 type
extremals since CP2 type extremals themselves have size of order l. Hence the symmetry
breaking effects caused by the topological condensation cannot be present in the string model
type description applying below l.

The predictions are as follows:

1. m = 127 corresponds to electron Compton length.

2. m = 107 corresponds to proton Compton length LP .

3. m = 89 corresponds to length scale of order 1/256 times proton Compton length and is
identifiable approximately as LW /2

√
2, where LW is intermediate boson length scale of about

LP /100.

4. m = 61 corresponds to length scale of the order of 10−6LP is not reachable by the present
day accelerators.

5. m = 521 corresponds to a completely super-astronomical length scale of order 1027 light
years!

It seems that the proposed scenario might have caught something essential in the problem of
the elementary particle mass scales: it predicts correctly 3 fundamental length scales associated
with leptons, hadrons and intermediate gauge bosons from number theory; there is extremely large
gap in the length scale hierarchy after electron Compton length and new shorter length scales exist
but unfortunately they are outside the reach of the present day experiments. The calculations of
the third part of the book show that not only the mass scales can be understood but also particle
masses can be predicted with errors below one per cent using the length scale hypothesis combined
with the p-adic Super Virasoro invariance and p-adic thermodynamics.

4.4 Length Scales Defined By Prime Powers Of Two And Finite Fields

Above M127 there is an extremely large gap for Mersenne primes and this suggests that there
must be also other physically important primes. Certainly all primes near powers of two define
physically interesting length scales by 2-adic fractality but there are two many of them. The first
thing, which comes into mind is to consider the set of primes near prime powers of two containing
as special case Mersenne primes. The following argument is one of the many arguments in favor
of these length scales developed during last years.

TGD Universe is critical at quantum level and criticality is related closely to the scaling invari-
ance. This suggests that unitary irreducible representations of p-adic scalings x → pmx, m ∈ Z
should play central role in quantum theory. Unitarity requires that scalings are represented by
a multiplication with phase factor and the reduction to a representation of a finite cyclic group
Zm requires that scalings x → pmx, m some integer, act trivially. In ordinary complex case the

representations in question correspond to the phase factors Ψk(x) = |x|(
ik2π
ln(p)

) = exp(iln(|x|) k2π
ln(p) ),

k ∈ Z and the reduction to a representation of Zm is also possible but there is no good reason for
restricting the consideration to discrete scalings.

1. The Schrödinger amplitudes in question are p-adic counterparts of the ordinary complex
functions Ψk(x) = exp(iln(|x|)k ik2πln(p) ), k ∈ Z. They have a unit p-adic norm, they are

analogous to plane waves, they depend on p-adic norm only and satisfy the scaling invariance
condition

Ψk(pmx|p→ p1) = Ψk(x|p→ p1) ,

Ψk(x|p→ p1) = Ψk(|x|p|p→ p1) ,

|Ψk(x|p→ p1)|p = 1 , (4.3)
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which guarantees that these functions are effectively functions on the set of the p-adic num-
bers with cutoff performed in m: th power.

2. The solution to the conditions is suggested by the analogy with the real case:

Ψk(x|p→ p1) = exp(i
kn(x)2π

m
) ,

n(x) = lnp(N(x)) ∈ N , (4.4)

where n(x) is integer (the exponent of the lowest power of the p-adic number) and k =
0, 1, ...,m − 1 is integer. The existence of the functions is however not obvious. It will be
shortly found that the functions in question exist in p > 2-adic for all m relatively prime
with respect to p but exist for all odd m and m = 2 in the 2-adic case.

3. If m is prime (!) the functions K = Ψk form a finite field G(m, 1) = Zm with respect to the
p-adic sum defined as the p-adic product of the Schrödinger amplitudes

K + L = Ψk+l = ΨkΨl , (4.5)

and multiplication defined as

KL = Ψkl . (4.6)

Hence, if the proposed Schödinger amplitudes possessing definite scaling invariance properties
are physically important, then the length scales defined by the prime powers of two must be
physically special since Schrödinger amplitudes or equivalently, the p-adic scaling momenta
k labeling them, have a natural finite field structure. By the Slaving Hierarchy Hypothesis,
also the p-adic length scales near prime powers of two (and perhaps of prime p > 2, too) are
therefore physically interesting. p-Adic scalings correspond to p-adic translations if p-adic
coordinates correspond to exponentials of the ordinary linear coordinates so that translations
are represented by scalings.

The generalized plane waves exist p-adically if nontrivial N = p: th root of the quantity
exp(i2π) = 1 exists.

1. N = 2: th roots of 1 exist trivially for all values of p.

2. In 2-adic case the roots exist always for odd values of N and especially so for prime values
of N : the trick is to write 11/N = −(−1)1/N = −(1− 2)1/N and use the Taylor series

(1 + x)1/N =
∑
n

An
n!
xn ,

An =

n−1∏
k=0

(
1

N
− k)(−1)n ,

x = −2 . (4.7)

to show the existence of one root different from the trivial root. In 2-adic case the powers
of x = 2 converge to zero rapidly and compensate the powers of 2 coming from n! in the
denominator. The coefficients An possess 2-adic norm not larger than 1.
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3. For p > 2 nontrivial N = p: th roots do not allow representation as plane waves for the
simple reason that only the trivial p: th root of 1 exists p-adically. Roots of unity must have
p-adic norm equal to one and by writing the condition modulo p one obtains a condition
aN mod p = 1 in G(p, 1). The roots of unity in G(p, 1) satisfy always ap−1 = 1 and the
possible orders N are factors of p − 1. In particular, prime roots with p1 > p − 1 are not
possible. The number of prime factors is typically quite small. For instance, for primes of
order p = 2127 the number of prime roots is of order 6.

The conclusion is that for p > 2 only those finite fields G(p1, 1) for which p1 is factor of
p − 1 are realizable as representation of phase factors whereas for p = 2 all fields G(p1, 1) allow
this kind of representation. Therefore p = 2-adic numbers are clearly exceptional. In the p-adic
case the functions Ψp(x, |p → p1) give irreducible representations for the group of p-adic scalings
x → pmx, m ∈ Z and the integers k can be regarded as scaling momenta. This suggests that
these functions should play the role of the ordinary momentum eigenstates in the quantum theory
of fractal structures. The result motivates the hypothesis that prime powers of two and also of
p define physically especially interesting p-adic length scales: this hypothesis will be of utmost
importance in future applications of TGD.

The ordinary (number theoretic) p-adic plane waves associated with the translations can be
constructed as functions fk(x) = akx, k = 0, ..., n, an = 1. For p > 2 these plane waves are
periodic with period n, which is factor of p− 1 so that wavelengths correspond to factors of p− 1
and generate a finite number of physically favored length scales. The p-adic plane waves with
the momenta k = 0, ..., p − 2 form finite field G(p, 1), when p-adic arithmetics is replaced with
the modulo p arithmetics, that is to accuracy O(p) (note that the definition of the arithmetic
operations is not the same as in the previous case). The square roots of the p-adic plane waves
are also well defined

The important property of the p-adic plane waves is that they are pseudo constants: this
property played profound role in the earlier formulations of the p-adic QFT limit. It took a
considerable time to discover that the counterparts of the ordinary real plane waves providing
representations for translation group exists and satisfy the appropriate orthogonality relations.
Therefore number theoretic plane waves do not play so essential role in p-adic QFT as was originally
believed.

5 CP2 Type Extremals

CP2 type extremals are perhaps the most important vacuum extremals of the Kähler action. The
reason is that they are vacuum extremals with a negative and finite Kähler action and hence
favored both by the absolute minimization of the Kähler action and criticality (randomness of
light-like projection to M4 implies criticality). It seems that also other identification of preferred
extremals allow CP2 type vacuum extremals and actually all known extremals. On the other hand,
maximization of Kähler function does not favor CP2 type extremals because the virtual CP2 type
extremals are exponentially suppressed. CP2 type extremals seem to play the same role as black
holes possess in General Relativity. p-Adic thermodynamics, leading to excellent predictions for
the masses of the elementary particles, predicts that elementary particles should possess p-adic
entropy and Hawking-Bekenstein law for the entropy generalizes.

In GRT based cosmology black holes populate the most probable Universe, which is of course
a problem: in TGD black holes are replaced by elementary particles. The second law of thermo-
dynamics requires that the very early Universe should have a low entropy and hence that black
holes should populate the recent day Universe: in TGD the very early cosmology is dominated by
cosmic strings, which is a low entropy state. The absolute minimization of the Kähler action would
imply that most cosmic strings would decay to elementary particles and produce p-adic entropy.
It is not clear whether also criticality implies this. To get a grasp of the orders of magnitude, it is
good to notice that electron, which corresponds to p = M127 = 2127 − 1, has entropy equal to 127
bits.

The basic observation is that the M4
+ projection of the CP2 type extremal corresponds to a

light like random curve and the quantization of this motion leads to Virasoro algebra and Kac
Moody algebra characterizing quantized transversal motion superposed with the cm motion. CP2
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type extremals allow covariantly constant right handed neutrino spinors as solutions of the Dirac
equation for the induced spinors in the interior and this leads to N = 1 super symmetry and a
generalization of the Virasoro invariance to Super Virasoro invariance.

The previous p-adic mass calculations were based on this picture but it turned out that the
Super Virasoro invariance and related Kac Moody symmetries generalize to the level of WCW
geometry and in an extended form provide the basic symmetries of the quantum TGD. Although
the quantization of the zitterbewegung motion of the CP2 type extremals is a phenomenological
procedure only, and is not needed in the fundamental theory, it deserves to be described because
of its key role in the development of quantum TGD. There were however some strange features
involved: for instance, N = 1 super-symmetry generated by right-handed neutrino was exact only
for minimal surfaces.

The realization that super-symmetry requires Kähler-Dirac action led to the final breakthrough.
CP2 type extremals allow quaternion-conformal symmetries and the super-generators associated
with quark and lepton numbers are non-vanishing despite the fact that vacuum extremals are in
question. Even Super-Kac-Moody generators are non-vanishing. Even more, CP2 type extremals
cease to be vacua for Dirac action. Especially beautiful feature of CP2 type extremals is that they
can describe also massive states and zitterbewegung is the geometric correlate of massivation.

5.1 Zitterbewegung Motion Classically

The M4
+ projection of a CP2 type extremal is a random light like curve. Also Dirac equation,

which gives also classically rise to a motion with light velocity and this motivates the term “zit-
terbewebung”. Zitterbewegung occurs at the light of velocity and any given 3-velocity gives rise
to the solution of light likeness condition if one fixes the time component of velocity to be

dm0

dτ
=

√
mij

dmi

dτ

dmj

dτ
.

(5.1)

The vanishing of CP2 part of the second fundamental form requires that velocity and acceleration
are orthogonal:

mkl
dmk

dτ

d2ml

dτ2
= 0 . (5.2)

This condition is identically satisfied.
A very general solution to the conditions is provided by the equations

d2mk

dτ2
= F kl

dml

dτ
, (5.3)

describing the motion the of massless charged particle in external Maxwell field.

5.2 Basic Properties Of CP2 Type Extremals

CP2 type extremal has the following explicit representation

mk = fk(u(sk)) , mkl
dfk

du
df l

du = 0 . (5.4)

The function u(sk) is an arbitrary function of CP2 coordinates and serves effectively as a time
parameter in CP2 defining a slicing of CP2 to time=constant sections. The functions fk are
arbitrary apart from the restriction coming from the light likeness. When one expands the functions
fk to Fourier series with respect to the parameter u, light likeness conditions reduce to classical
Virasoro conditions Ln = 0.

It is possible to write the expression for mk in a physically more transparent form by separating
the center of mass motion and by introducing p-adic length scale Lp as a normalization factor.
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mk

Lp
= mk

0 + pk0u+
∑
n

1√
n
aknexp(i2πnu) + c.c. . (5.5)

The first term corresponds to the center of mass term responsible for rectilinear motion along
geodesic line and second term corresponds to the zitterbewegung motion. pk serves as an effective
classical momentum which can be normalized as pkp

k = ε, ε = ±1 or ε = 0. What has significance
is whether pk is time like, light like, or space like. Conformal invariance corresponds to the freedom
to replace u with a new “time parameter” f(u).

The physically most natural representation of u is as a function f(U) of the fractional volume
U for a 4-dimensional sub-manifold of CP2 spanned by the 3-surfaces X3(U = 0) and X3(U):

u = f(U) , U = V (sk)
V (CP2)

= SK(u)
SK(CP2)

. (5.6)

The range of the values for U is bounded from above: U ≤ Vmax/V (CP2) and the value U = 1
is possible only if CP2 type extremal begins and ends as a point. U represents also Kähler action
using the value of the Kähler action for CP2 as a unit.

The requirement that CP2 type extremal extends over an infinite time and spatial scale implies
the requirement

f(Umax) =∞ . (5.7)

For f(Umax) < ∞ CP2 type extremal can exist only in a finite temporal and spatial interval for
finite values of “momentum” components pk. This suggest a precise geometric distinction between
real and virtual particles: virtual particles correspond to the functions f(Umax) < ∞ in contrast
to the incoming and outgoing particles for which one has f(Umax) =∞. This hypothesis, although
it looks like an ad hoc assumption, is at least worth of studying.

The mere requirement that virtual CP2 type extremal extends over a temporal or spatial
distance of order L > Lp implies that for L < Lp the value of U is smaller than one. Kähler action,
which is given by

SK(X4) = U × SK(CP2) , (5.8)

remains small for distances much smaller than L. For f(Umax) = ∞ this is even more true. This
has an important implication: below a certain length scale the exponential of the Kähler action
associated with the internal line of a Feynman diagram does not give rise to a suppression factor
whereas above some characteristic length L and time scale there is an exponential suppression of
the propagator by the factor exp(−SK(CP2)) practically hindering the propagation over distances
larger than this length scale.

The presence of the exponential obviously introduces an effective infrared cutoff: this cutoff
is prediction of the fundamental theory rather than ad hoc input as in quantum field theories.
Of course, infrared cutoff results also from the condition f(Umax) < ∞. Physically the infrared
cutoff results from the topological condensation of the CP2 type extremals to larger space-time
sheets. These could correspond to massless extremals (MEs). p-Adic length scale Lp is an excellent
candidate for the cutoff length scale in the directions transversal to ME.

The suppression factor coming from the exponent of the Kähler action implies a distance
dependent renormalization of the propagators. In the long length scale limit the suppression factor
approaches to a constant value

exp

[
− Vmax
V (CP2)

SK(CP2)

]
,

and can be absorbed to the coupling constant so that the dependence on the maximal length of
the internal lines can be interpreted as an effective coupling constant evolution. For instance, the
smallness of the gravitational constant could be understood as follows. Since gravitons propagate
over macroscopic distances, the virtual CP2 type extremals develops a full Kähler action and there
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is huge suppression factor reducing the value of the gravitational coupling to its observed value: at
short length scales the values of the gravitational coupling approaches to Gshort = L2

p which means
strong gravitation for momentum transfers Q2 > 1/L2

p. The values of Vmax and thus those of the
suppression factor can vary: only at the limit when CP2 type extremal has point like contact with
the lines it joins together, one has Vmax = V (CP2). If the boundary component characterizing
elementary particle family belongs to CP2 type extremal (it could be associated with a larger
space-time sheet), CP2 type extremal contains a hole: also this reduces the maximal volume of the
CP2 type extremal.

5.3 Quantized Zitterbewegung And Super Virasoro Algebra

Calculating various Fourier components of right left hand side of the light likeness condition
mklp

kpl = 0 for pk = dmk/du explicitly using the general expansion for mk separating center
of mass motion from zitterbewegung, one obtains classical Virasoro conditions

p20 = L0 ,

Ln|phys〉 = 0 , . (5.9)

where Ln are defined by by their classical expressions as bi-linears of the Fourier coefficients.
Therefore interior degrees of freedom give Virasoro algebra and zitterbewegung is more or less
equivalent with the classical string dynamics.

It is not however not obvious whether a quantization of this dynamics is needed. If quantization
is needed (perhaps to formulate the unitarity conditions in zero modes properly), it corresponds
to the construction of the bosonic wave functionals in zero modes defined by the zitterbewegung
degrees of freedom. Quantization could be carried out in the same manner as in string models.

The simplest assumption motivated by the Euclidian metric of CP2 type extremal is that the
commutator of pk and mk is proportional to a delta function as in ordinary quantization. One can
Fourier expand mk and pk in the form

mk = mk
0 + pk0s+

1

K

∑ 1

n
ak,†n exp(inKs) +

∑ 1

n
aknexp(−inKs) ,

pk = pk0 + i
∑

ak,†n exp(inKs)− i
∑

aknexp(−inKs) . (5.10)

Here cm motion has been extracted and the formula is identical with the formula expressing the
motion for a fixed point of string. The parameter K is Kac Moody central charge. Note that the
exponents exp(iKns) exist provided that Ks is p-adically of order O(p) or, if algebraic extension
by introducing

√
p is allowed, of order O(

√
p).

The commutator of pi and mj is of the standard form if the oscillator operators obey Kac-
Moody algebra

[
pi,0,m

j
0

]
= m j

i ,

Comm(a†i,m, a
j
n) = Kmδ(m,n)m j

i . (5.11)

Here K appears Kac-Moody central charge, which must be integer in the real context at least.
Expressing the light likeness condition as quantum condition, one obtains an infinite series of

conditions, which give the quantum counterparts of the Virasoro conditions

p20 = kL0 ,

Ln|phys〉 = 0 , n < 0 . (5.12)

k is some proportionality constant. One can solve these conditions by going to the transverse gauge
in which physical states are created by oscillator operators orthogonal to an arbitrarily chosen light
like vector. What quantization means physically is that zitterbewegung amplitudes are constrained



5.4 Zitterbewegung At The Level Of The Kähler-Dirac Action 25

by a Gaussian vacuum functional. A good guess motivated by the p-adic considerations is that the
width of the ground state Gaussian is given by a p-adic length scale Lp: this is achieved if mk is
replaced with mk/Lp in the general expression for mk(u). The experience with string models would
suggests that vacuum functionals might be crucial for the understanding of graviton emission.

5.4 Zitterbewegung At The Level Of The Kähler-Dirac Action

At the level of the Kähler-Dirac action zitterbewegung motion implies that the conserved momen-
tum associated with CP2 type extremal, besides being conserved and non-vanishing, is also time
like. This means that zitterbewegung creates massive particles besides massless particles as well as
off-mass-shell versions of both and Super Virasoro conditions imply the quantization of the mass
squared spectrum.

This means that in quantum TGD Feynman diagrammatics is topologized in the sense that
the lines of Feynman diagram correspond to CP2 type extremals which in general performing
zitterbewegung. The non-determinism of the CP2 type extremals means that one obtains a sum
over over all possible diagrams with vertices at arbitrary space-time locations just as in quantum
field theory approach. What is so nice that the time-development operator associated with an
individual line of the diagram is the exponent of the Hamiltonian operator identified as the Poincare
energy associated with the modified Dirac action. This operator is that associated with a free theory
and contains no nonlinear terms. Interactions result from criticality property of the extremals of
Kähler action. In particular, one gets rid of the divergences of the interacting quantum field
theories by the topologization of the Feynman diagrammatics.

6 Black-Hole-Elementary Particle Analogy

String models have provided considerable insights into black hole thermodynamics by reducing it
to ordinary thermodynamics for stringy black holes [B3] although one still does not understand,
which is the mechanism of the thermalization. In TGD context elementary particles are regarded
as thermodynamical systems in p-adic sense. This is something new since the standard theories
of particle physics describe elementary particles as pure quantum states. The resulting thermal
description of the the particle massivation is extremely successful. The fact that one can associate
a well defined entropy to an elementary particle, suggests an analogy between black holes and
elementary particles and this analogy indeed exists in a quite precise form as will be found. It also
leads to a partial explanation for the p-adic length scale hypothesis serving as the corner stone of the
p-adic mass calculations. The identification of the CP2 type extremal as a cognitive representation
of elementary particle suggests that p-adic entropy characterizes information associated with a
cognitive representation provided by CP2 type extremal.

6.1 Generalization Of The Hawking-Bekenstein Law Briefly

In TGD elementary particles are modelled as so called CP2 type extremals, which are surfaces
with a size of order Planck length having metric with Euclidian signature. These vacuum surfaces
are isometric with CP2 itself and have a one-dimensional, random light like curve as the M4

+

projection. A natural candidate for the TGD counterpart of the black hole horizon is the surface
at which the Euclidian signature of the metric associated with the CP2 type extremal is changed
to the Minkowskian signature of the background space-time. The radius r of this surface is the
crucial length scale for the topological condensation and the simplest guess is that it is of the order
of the size of the CP2 radius and hence of the fundamental p-adic length scale. The hope is that
the generalization of the black hole thermodynamics, with r replacing the radius of the black hole
horizon, could give this information.

p-Adic mass calculations indeed give the p-adic counterpart of the Hawking-Bekenstein formula
S ∝ GM2 as an identity at p-adic level:

Sp = − 1

Tp
(M2

p/m
2
0) ,
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where 1/Tp = n is the the integer valued inverse of the p-adic temperature and the mass scale
m2

0/3 corresponds to unit p-adic number in the unit used. The peculiar looking sign of Sp does not
have in the p-adic context the same significance as in real context since the real counterpart of Sp
is positive. Although p-adic entropy and mass squared are linearly related, the real counterparts
are not in such a simple relation. In case of massive particles the real counterpart of the entropy
is in excellent approximation equal to S = log(p) whereas the mass is of order 1/p (p is of order
1038 for electron!). For massless (or nearly massless) particles one has S ≤ log(p)/p. The large
difference between fermionic and photonic entropies does not favor pair annihilation and this
suggests that matter antimatter asymmetry is generated thermodynamically. For instance, via the
topological condensation of fermions and anti-fermions on different space-time sheets during the
early cosmology.

The generalization of the Hawking-Bekenstein formula in the form of the area law S = A/4G
reads as

S =
xA

4l2
,

where the fundamental p-adic length scale l ' 1.376 · 104
√
G replaces Planck length

√
G and x is

a numerical constant near unity. The radius of the elementary particle horizon is in an excellent

approximation given by r(p) =
√

log(p)
πx l. Particles are thus surrounded by an Euclidian region

of the space-time with radius r. Thus the fundamental p-adic length scale l of order CP2 size
has a direct geometric meaning. For instance, in the energy scales below 1/l the induced metric
of the space-time becomes Euclidian and it might be possible to describe particle physics using
Euclidian field theory: essentially QFT in a small deformation of CP2 would be in question. It is
encouraging, that l is also the length scale at which the standard model couplings become identical
and super symmetry is expected to become manifest.

The p-adic length scale hypothesis stating that the primes p near prime powers of two are the
physically most interesting p-adic primes, is the cornerstone of p-adic mass calculations but there
is no really convincing argument for why should it be so. The proportionality of r to

√
log(p)

suggests an explanation for the p-adic length scale hypothesis. The point is that for p ' 2k, k

prime, one has r ∝ L(k) and if the numerical constant x is chosen to be x = log(2)
π , the radius of

elementary particle horizon is in excellent approximation r(p ' 2k) = L(k). Note also that the
area of the elementary particle horizon becomes quantized in multiples of prime. This suggests
that the precise value of p ' 2k is such that this condition is satisfied optimally and that physics
is k-adic below r and p ' 2k-adic above r.

M4
+×CP2 allows the embedding of Schwartshild metric in the region below Schwartchild radius

but the embedding fails for too small values of the radial variable [K18]. An interesting possibility is
that black hole entropy is just the sum of the elementary particle entropies topologically condensed
below the horizon. This would give STGD ∝

∑
m2
i < SGRT ∝ (

∑
mi)

2. An interesting problem is
related to the detailed definition of p-adic entropy: are the entropies of particles with same value of
p additive as p-adic numbers or does the additivity hold true for the real counterparts of the p-adic
entropies. A related question is whether it might be that also in case of black holes additivity
holds true, not for the mass as it is usually assumed, but for the p-adic mass squared for a given
p (in TGD inspired model of hadron this is true for quark masses). This could be understood as
a result of strong gravitational interactions. The additivity with respect to mass squared would
give an upper bound of order 10−4/

√
G for the contribution of a given p-adic prime to the total

mass. For instance, the total contribution of electrons to the mass would be always below this
mass irrespective of the number of electrons!

6.2 In What Sense CP2 Type Extremals Behave Like Black Holes?

CP2 type extremals are in some respects classically black hole like objects since their metric is
Euclidian. When this kind of surface is glued to Minkowskian background there must exist a
two-dimensional surface, where the signature of the induced metric changes from the Minkowskian
(1,−1,−1,−1) to the Euclidian (−1,−1,−1,−1). On this surface, which could be called elemen-
tary particle horizon, the metric is degenerate and has the signature (0,−1,−1,−1). Physically
elementary particle horizon can be visualized as the throat of the wormhole feeding the elementary
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particle gauge fluxes to the background space-time. Of course, one cannot exclude the presence of
several wormholes for a given space-time sheet.

This surface indeed behaves in certain respects like horizon. Time like geodesic lines cannot
go through this surface. The reason is that the square of the four velocity associated with the
geodesic is conserved:

vµv
µ = 1 , 0 or − 1 ,

depending on whether the geodesic is time like, light like or space like. Clearly, a time like geodesic
cannot enter from the external world to the interior of the CP2 type extremal. If a space like
geodesic starts from the interior of the CP2 type extremal it can in principle continue as a space
like geodesic into the exterior. These analogies should not be taken too seriously: it does not make
sense to identify particles orbits as geodesics in these length scales shorter than the actual sizes of
particle.

These analogies suggest that Hawking-Bekenstein formula S = A/4G relating black hole entropy
to the area of the black hole horizon, might have a generalization to the elementary particle context
with the radius of the elementary particle horizon replacing the black hole horizon. The unit of
the area need not be determined by Planck length

√
G, it could be replaced by the fundamental

p-adic length scale l ∼ 104
√
G: this length scale indeed replaces Planck length as a fundamental

length scale in TGD.

6.3 Elementary Particles As P-Adically Thermal Objects?

In the p-adic mass calculations elementary particles were assumed to be thermal objects in the
p-adic sense. What is new that energy is replaced with mass squared and the thermalization
is believed to result from the interactions of a topologically condensed CP2 type extremal with
the background space-time surface of a much larger size. The thermalization mixes massless
states with Planck mass states and gives rise to particle massivation. Super Virasoro invariance
− abstracted from the Virasoro invariance of the CP2 type extremals − together with the general
symmetry considerations based on the symmetries of M4

+×CP2, leads to the realization of the mass
squared operator essentially as the Virasoro generator L0 in certain representations of the Super
Virasoro algebra constructed using the representations of various Kac Moody algebras associated
with Lorentz group, electro-weak group and color group.
−L0 takes thus the role of a Hamiltonian in the partition function:

exp(−H/T )→ pL0/Tp ,

where Tp is the p-adic temperature, which by number theoretic reasons is quantized to 1/Tp = n, n
a positive integer. Mass squared is essentially the thermal expectation of L0. The real mass squared
is the real counterpart of the p-adic mass squared in the canonical identification x =

∑
xnp

n →∑
xnp

−n ≡ xR mapping p-adics to reals. Assuming that elementary particles correspond to p-adic
primes near prime powers of two, one obtains excellent predictions, not only for the mass scales
of elementary particles but also for the particle mass ratios. For instance, electron corresponds to
the Mersenne prime M127 = 2127 − 1.

It should be noticed that the real counterpart of the p-adic inverse temperature 1/Tp is naturally
defined as

(
1

Tp
)r = (

1

Tp
)Rlog(p) ,

where log(p) factor results from the definition of Boltzmann weights as powers of p rather than
power of e. The real counterpart Tr of Tp can be identified as

Tr =
1

nlog(p)
. (6.1)

One might wonder about whether the sign of Tp should be taken as negative since positive exponent
of L0 appears in the Boltzmann weights. The sign is correct; for the opposite sign Tr would be
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in good approximation equal to 1
(p−n)log(p) , which is not consistent with the fact that physically

temperature decreases when n increases.
As already explained, the new vision about p-adics and cognition forces to modify this early

vision by interpreting CP2 type extremals as cognitive representations of elementary particles
rather than genuine elementary particles.

6.3.1 p-Adic mass squared

The thermal expectation of the p-adic mass squared operator is proportional to the thermal ex-
pectation of the Virasoro generator L0:

M2
p = k〈L0〉 ,
k = 1 . (6.2)

The correct choice for the value of the rational number k is k = 1 as became clear in the recent
reconstruction of the quantum TGD [K11].

The real mass squared M2 is identified as

M2 =
M2
Rπ

2

l2
,

l ' 1.376 · 104
√
G , (6.3)

where l is the fundamental p-adic length scale and M2
R is the real counterpart of M2

p in the canonical

identification.
√
G is Planck length scale.

6.3.2 p-Adic entropy is proportional to p-adic mass squared

The definition of the p-adic entropy involves some number theory. The general definition

S = −pnlog(pn) ,

in terms of the probabilities pn of various states does not work as such since the e-based logarithm
log(pn) does not exist p-adically. Since p-adic Boltzmann weights are integer powers of p it is
natural to modify somehow the p-based logarithm logp(x) so that the resulting logarithm Logp(x)
exists for any p-adic number and has the basic property

Logp(xy) = Logp(x) + Logp(y) ,

guaranteeing the additivity of the p-adic entropy for non-interacting systems. The definition sat-
isfying these constraints is

Logp(x =
∑
n≥n0

xnp
n) ≡ n0 . (6.4)

The lowest power in the expansion of x in powers of p fixes the value of the logarithm in the same
way as it determines also the norm of the p-adic number. This leads to the definition of p-adic
entropy as

Sp = −
∑
p

pnLogp(pn) . (6.5)

In p-adic thermodynamics the p-adic probabilities have the general form

pn =
pL0(n)/Tp

Z
.
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Here L0(n) denotes the eigenvalue of the Virasoro generator L0, which is integer. The partition
function Z = trace(pL0/Tp) has unit p-adic norm if the ground state is massless, so that its p-adic
logarithm vanishes in this case: Logp(Z) = 0. This implies Logp(pn) = Logp(p

L0(n)/Tp) = L0(n)/Tp
so that the p-adic entropy reduces to

Sp =
1

Tp
〈L0〉 , (6.6)

ane hence that the p-adic mass squared and p-adic entropy are proportional to each other

Sp = − 1

kTp
M2
p . (6.7)

By noticing that the entropy for Schwartschild black hole is given by

S = 4πGM2 , (6.8)

one finds that in the p-adic context the analog of the Hawking-Bekenstein formula indeed holds as
an identity.

The proposed identification of the entropy is in accordance with the formula dE = TdS. In
the p-adic context E should clearly be replaced by 〈−L0〉 and T by Tp. The differentials do not
however make sense since the thermodynamical quantities are now discrete. Since only 〈−L0〉 and
Tp appear as variables one could define

〈−L0〉 = TpSp .

This definition gives Sp = − 1
kTp

M2
p and is in accordance with the standard definition of the

Shannon entropy. The definition for the real counterpart of the p-adic entropy is

S = log(p)SR .

The inclusion of log(p)-factor maximizes the resemblance with the usual Shannon entropy defined
in terms of the e-based logarithm and makes it possible to compare the real counterpart of entropy
with other kind of entropies.

6.3.3 The real counterparts of entropy and mass squared are not linearly related

Due to the delicacies related to the canonical identification, the real counterparts of entropy and
mass squared differ drastically from each other and there is no simple relationship between the
two quantities. The reason is that the vacuum expectation of −L0 is of order −np for particles
having Tp = 1 and, essentially due to the presence of minus sign, one has SR(p) = 1 in an excellent
approximation, whereas the real counterpart of M2

p is of order n/p. For photon and other (nearly)
massless bosons the entropy vanishes or is very small.

The fundamental difference in the thermal properties of fermions and massless bosons should
have observable consequences. For instance, the annihilation of fermion-anti-fermion pair to mass-
less particles means a considerable reduction of the p-adic entropy and would not be a favorable
process thermodynamically. Thus the second law of thermodynamics would favor the presence of
net fermion and anti-fermion number densities. For instance, fermions and anti-fermions could
suffer a topological condensation on different space-time sheets to avoid annihilation during early
cosmology or anti-fermions could even suffer topological evaporation as suggested in [?, ?]. This
in turn would lead to the generation of matter-antimatter asymmetry. It should be noticed that
lare entropies are in accordance with the second law of thermodynamics.
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6.3.4 Hawking-Bekenstein area formula in elementary particle context

Hawking-Bekenstein formula in the p-adic form Sp ∝ M2
p holds true on basis of the previous

considerations although ther are no hopes of deriving the area law from the first principles at this
stage. Hawking-Bekenstein formula can be also written in the form

S =
A

4G
,

relating black hole entropy to the area of the black hole horizon. One might hope that in the real
context a generalization of the area law to the form

S = x
A

4L2
,

where L is some fundamental length scale analogous to the gravitational constant G and x is some
numerical constant near unity, would hold true. Since the size of CP2 defines the fundamental
p-adic length scale and replaces

√
G as a fundamental length scale in TGD, it is conceivable that L

is of the order of the CP2 size l ∼ 104
√
G. The area in question would be most naturally the area

of the elementary particle horizon, where the signature of the induced metric for the topologically
condensed CP2 type extremal changes from Euclidian to Minkowskian. It is well known that l is
also the length scale at which the couplings of the standard model become identical and super-
symmetry is expected to become manifest. This is what is expected since above cm energy 1/l one
would have an Euclidian quantum field theory in CP2.

The radius r of the elementary particle horizon is of order

r '
√
log(p)L . (6.9)

This means that the # contacts connecting the CP2 type extremal to the background space-time
are surrounded by an Euclidian region with a size of order L.

It is interesting to look for the detailed form of the Hawking-Bekenstein law for elementary
particles. One obtains the following general relationship

S ≡ log(p)SR = log(p)(〈−L0

Tp
〉)R == Xlog(p)M2

R = X × log(p)
l2

π2
M2 ,

X ≡ M2
R

SR
. (6.10)

For massive particles X ∼ p holds true. Hence the entropy is related by a factor p · 108 to the
corresponding black hole entropy:

S = a2SBH ,

SBH = 4πGM2

a =

√
log(p)X

4π3

l√
G
∼ 104 ,

l ' 1.376 · 104
√
G . (6.11)

6.4 P-Adic Length Scale Hypothesis And P-Adic Thermodynamics

The basic assumption of p-adic mass calculations is that physically interesting p-adic primes cor-
respond to prime powers of two:

p ' 2k , k prime .

There are several arguments in favor of this hypothesis but no really convincing argument. The
area law however leads to a very attractive, if not even convincing, explanation of the p-adic length
scale hypothesis.
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The proportionality of the elementary particle horizon radius to
√
log(p) suggests quite attrac-

tive partial explanation for the p-adic length scale hypothesis. The point is that for p ' 2k, k
prime one has r ∝ L(k). Thus, if the numerical constant x is chosen suitably, it is possible to
obtain very precisely

r(p ' 2k) = L(k) .

The reason is that the p-adic entropy is in thermal equilibrium very near to its maximum value.
The required value of the coefficient x is

x =
log(2)

π
. (6.12)

The requirement that rF (rB) is as near as possible to the appropriate p-adic length scale L(k)
(L(k)

√
p) fixes also the precise value of the p-adic prime p ' 2k.

This hypothesis means that the area of the elementary particle horizon is quantized in the
multiples of prime k:

A = kA1 . (6.13)

The quantization law for the area has been proposed also in the context of the non-perturbative
quantum gravity. A suggestive possibility is that physics is k-adic below the elementary particle
horizon and p ' 2k-adic above it. The appearance of an additional k-adic length scale suggests
that for p ' 2k the degeneracy of the effective space-time surfaces is especially large due to the
additional k-adic degeneracy and that the p-adic scattering amplitudes are be especially large for
this reason. Hence the favored p-adic primes would emerge purely dynamically.

It must be noticed that k-adic fractality allows also more general primes of type p ' 2k
n

, where
k is prime and n is integer. For these primes the radius of the elementary particle horizon is√
kn−1L(k) and hence also a natural k-adic length scale. There are very few physically interesting

length scales of this type. As the p-adic mass calculations show, the best fit to the neutrino mass
squared differences is obtained for pν ' 213

2=169 rather than p ' 2167. The length scale L(pν) is
also the natural length scale associated with the double cell layers appearing very frequently in
bio-systems (k = 167 corresponds to the typical size of a cell)!

6.5 Black Hole Entropy As Elementary Particle Entropy?

In TGD Schwartshild metric does not allow a global embedding as a surface in M4
+ × CP2. One

can however find embeddings, which extend also below the Schwartshild radius. This suggests
that particles in the interior of the black hole are topologically condensed below the radius rs. The
problem is whether the single particle entropies are additive as real numbers or as p-adic numbers.

6.5.1 Additivity of real entropies?

Consider first the additivity as real numbers. With this assumption the sum for the real counter-
parts of the p-adic entropies of various particles gives a lower bound for the black hole entropy:

S =
∑
i

S(i) =
∑
i

km2
i .

This entropy is by a factor is 108 · p larger than the corresponding black hole entropy so that black
hole-elementary particle analogy does not work at quantitative level. For sufficiently large particle
numbers elementary particle entropy becomes smaller than the black hole entropy, which behaves
as (

∑
mi)

2. In case of protons p = M107 = 2107 − 1 the critical value of N would be roughly
N ∼ 1032, which would mean black hole with a mass of order 100 kilograms.
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6.5.2 Additivity of the p-adic entropies?

One can consider also a different definition of the black hole entropy. In p-adic thermodynamics
the natural additive quantity for many particle systems is the Virasoro generator L0 (mass squared
essentially) rather than energy. The additivity works quite nicely for the TGD based model of a
hadron as a bound state of quarks. Therefore one could consider the possibility that also for black
holes the mass squared of elementary particles with same value of p-adic prime p is p-adically
additive

(m2
p)R = (

∑
i

m2
p(i))R rather than m =

∑
mi .

Therefore for a black hole containing only particles with single value of the p-adic prime p, the
Hawking-Bekenstein formula in the form

Sp ∝M2
p

would hold true. For the real counterparts this proportionality does not hold.
When the particle number N exceeds p/n, the mass squared of the system reduces from its

upper bound 10−4/
√
G by a factor of order 1/

√
p. Thus the mass of, say, the electrons inside black

hole, is always below this upper bound irrespective of the number of the electrons!
If particles with several p-adic primes are present inside the black hole then the formula for the

black hole entropy reads as

S =
∑
p

S(p) =
∑
p

k(p)M2(p) ,

so that the proportionality to the total mass squared does not hold true except approximately (in
the case that the mass is in good approximation given by the total mass of a particular particle
species).

6.6 Why Primes Near Prime Powers Of Two?

The great challenge of TGD is to predict the p-adic prime associated with a given elementary
particle. The problem decomposes into the following subproblems.

1. One must understand why there is a definite value of the p-adic prime associated with a given
real region of space-time surface (in particular, the space-time time surface describing ele-
mentary particle) and how this prime is determined. The new view about p-adicity allows to
understand the possibility to label elementary particles by p-adic primes if p-adic–real phase
transitions occur already at elementary particle level or if real elementary particle regions are
accompanied by p-adic space-time sheets possible providing some kind of a cognitive model
of particle. The latter alternative has turned out to be the correct one.

The great question mark is the correlation of the p-adic prime characterizing the particle with
the quantum numbers of the particle: is this correlation due to the intrinsic properties of the
particle or perhaps a result of some kind of adaptation at elementary particle length scales.
In the latter case sub-cosmologies with quite different elementary particle mass spectra are
possible. On the other and, quantum self-organization does not allow too many final state
patterns, so that elementary particle mass spectrum could be more or less a constant of
Nature.

2. One must understand why quantum evolution by quantum jumps has led to a situation in
which elementary particle like surfaces correspond to some preferred primes. It indeed seems
that an evolution at elementary particle level is in question (how p-adic evolution follows from
simple number theoretic consistency conditions is discussed in the [K8]. It seems that the
degeneracy due to the p-adic space-time regions associated with the system must be counted
as giving rise to different final states in a quantum jump between quantum histories. If the
number Nd(X

3) of the physically equivalent cognitive variants of the space-time surface is
especially high, this particular physical state dominates over the other final states of the
quantum jump. Highly cognitive systems are winners in the fight for survival. Thus in TGD
framework evolution is also, and perhaps basically, evolution of cognition.
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3. One should also understand why the primes p ' 2k near prime powers of two are favored
physically and to predict the value of k for an elementary particle with given quantum
numbers. The analogy between elementary particles and black holes suggests only a partial
explanation for the prime powers of 2 and the real explanation should probably involve
enhanced cognitive resources for these primes.

In order to formulate the argument supporting p-adic length scale hypothesis one must first
describe the general conceptual background.

1. WCW of the 3-surfaces decomposes into regions DP labelled by infinite p-adic primes. In
each quantum jump localization of CH spinor field to single sector DP must occur if lo-
calization in zero modes occurs. Quantum time development corresponds to a sequence of
quantum jumps between quantum histories and the value of the infinite-p p-adic prime P
characterizing the 3-surface associated with the entire universe increases in a statistical sense.
This has natural interpretation as evolution. In a well defined sense the infinite prime charac-
terizing infinitely large universe is a composite of finite p-adic primes characterizing various
real regions (space-time sheets) of the space-time. The effective infinite-p p-adic topology
associated with this infinite prime is very much like real topology since canonical identifica-
tion mapping infinite number to its real counterpart just drops the infinitesimals of infinite-p
p-adic number. Therefore real physics is an excellent approximation at this level. If the
S-matrix is complex rational, the approximation is in fact exact. Note that real topology is
quite possible also at the level of WCW and WCW might consist of both real and infinite-P
p-adic regions.

2. The requirement that quantum jumps correspond to quantum measurements in the sense of
QFT, implies that also localization in zero modes occurs in each quantum jump: localization
could occur also in the length scale resolution defined by the p-adic length scale Lp. The
strongest hypothesis suggested by the properties of thermodynamical spin glasses is that
quantum jump occurs to a state localized around single maximum of the Kähler function.

3. This picture suggests that evolution has occurred already at the elementary particle level
and selected preferred p-adic primes characterizing the space-time regions associated with
the elementary particles. A crucial question is whether this evolution could have occurred
for isolated elementary particles or whether the interaction of the elementary like space-time
regions with the surrounding space-time has served as a selective pressure. It might well be
that the latter option is the correct one. If this is the case, one can say that the winners in
the fight for survival correspond to infinite primes, which are composites of preferred finite
primes, perhaps the finite primes given by the p-adic length scale hypothesis.

4. In TGD framework evolution is also evolution of cognition and the most plausible guess is
that p-adic non-determinism is what makes cognition possible. Of course, also the classical
non-determinism of Kähler action is also present and also important. Perhaps one should
call the space-time sheets of finite time duration made possible by this non-determinism
as “sensory space-time sheets” as opposed to p-adic space-time sheets. Certainly this non-
determinism should be responsible for volition. In any case, the degenerate space-time sheets
are not physically equivalent in this case as they are in case of the p-adic non-determinism.
The number Nd(X

3) of the p-adically degenerate and physically equivalent absolute minima
X4(X3) of Kähler action is the measure for the cognitive resources of the 3-surface. The
basic idea is simple: if Nd(X

3) is very large then quantum jumps lead with high probability
to some degenerate physically equivalent maximum of the Kähler function associated with
given value of p. One can see this also from the point of view of an elementary particle:
the high cognitive degeneracy could mean that the particle can adapt to the environment -
the surviving elementary particles would be the most intelligent ones! What one should be
able to show is that cognitive degeneracy is especially large for some preferred primes so that
evolution selects these primes as the most intelligent ones.

About two decades after writing the above lines I would formulate the same idea in terms
of hierarchy of Planck constants heff = n× h. Large heff assignable to the magnetic body
of the particle means high intelligence and large negentropic reources. This can be made



6.6 Why Primes Near Prime Powers Of Two? 34

concrete by using concrete model for elementary particles as wormhole contacts connected
by Kähler magnetic flux tubes carrying monopole flux at both space-time sheets involved.
The magnetic flux tubes would correspond to large heff .

In this conceptual framework one can develop more precise variants for arguments supporting
the p-adic length scales hypothesis.

1. The simplest possibility is that single maximum of Kähler function is selected in the quantum
jump. In this case the relative rate for quantum jumps to a given physical final state with fixed
physical configuration is proportional to the p-adic cognitive degeneracy Nd(N), where N
denotes the infinite primes characterizing the interacting space-time surface associated with
the final state. N decomposes into a product of infinite primes p and Nd(N) decomposes
decomposes into a product N =

∏
P Nd(P ) Nd(N) is maximized if Nd(P ) is maximzes. The

elementary systems for which Nd(P ) is especially large are winners.

2. The situation reduces to the level of finite p-adic primes if takes seriously the argument
allowing to estimate the value of the gravitational constant. The argument was based on
the assumption that P decomposes in a well defined sense into passive primes pi and active
prime p characterizing elementary particle: thus there would be the correspondence P ↔ p.
This suggests that it is possible to understand the finite p-adic prime p associated with the
elementary particle by restricting the consideration to the 3-surfaces describing topologically
condensed elementary particles: that is, CP2 type extremals glued to a space-time sheet with
size of order Compton length. p-Adic cognitive degeneracy Nd(p) should be especially high
for p-adic primes predicted by the p-adic length scale hypothesis.

3. The interpretation of p-adic regions as cognitive regions suggests a more concrete explanation
for the p-adic length scale hypothesis. The degeneracy due to p-adic non-determinism for
the p-adic CP2 type extremals presumably depends on the value of the p-adic prime char-
acterizing the cognitive version of elementary particle. If real and p-adic space-time sheets
accompany each other as adelic vision assumes, one might understand the origin of the p-adic
length scale hypothesis. p-Adic primes near prime powers of two are winners because the the
degeneracy due to p-adic non-determinism is especially larger for them and allows cognitive
representations with high information content. The observed elementary particles would thus
dominate in the Universe simply because the thoughts about them are winners in the fight
for survival.

The question why particle correspond to preferred p-adic primes(s) must be also answered and
here very general number theoretic explanation has emerged [K19]. Therefore the remaining
question is why p-adic length scale hypothesis and why the correlation of p-adic prime with
the quantum numbers and topology of the partonic 2-surface. Here the answer about two
decades later would be that the value of Planck constant heff = n × h measuring the
negentropy resources is very large for survivors.

4. The black hole-elementary particle analogy suggests that the primes p ' 2k, k prime, are
especially interesting since the radius of the elementary particle horizon is the p-adic length
scale L(k). This could be understood since k-adicity provides an additional cognitive de-
generacy for the absolute minima of Kähler function coming from the region of size L(k)
surrounding a topologically condensed elementary particle and any # contact. This en-
hances the value of Nd(p) further by a multiplicative factor Nd(k) so that Nd(P ) becomes
especially large.

5. These arguments do not yet tell how to deduce the prime k associated with a given elemen-
tary particle. Cognitive resources are measured by a negative on an negentropy type quantity
proportional to Nc = log(Nd(p)). A natural guess is that Nc is dominated by a term propor-
tional to log(p): Nc = A(p) + log(p). For p ' 2k one has an additional source of cognitive
degeneracy which gives Nc = log(k) + log(p) instead of Nc = log(p) and these primes thus
correspond to the local maxima of cognitive resources as a function of p. Quite generally, the
larger the p, the more probable is its appearance as elementary particle prime (neglecting
the constraints coming from, say, the cosmic temperature). Hence it seems that the p-adic
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evolution of a given elementary particle is frozen to some local maximum of Nd(p(k)), with
p(k) given by the p-adic length scale hypothesis.

6. Freezing can be understood if the transition probabilities P (k → k1) are so small that further
evolution by quantum jumps is impossible. A possible interpretation of the transition ki → kj
is a p-adic phase transition changing the elementary particle horizon from radius Lki to Lkj
so that P (ki → kj) would describe the probability of this phase transition. For neutrinos
the transition probabilities P (ki → kj) between different sectors allowed by the p-adic length
scale hypothesis seem to be largest whereas for higher quark generations they seem to be
smallest. Furthermore, k is smaller for higher generations. In particular, P (ki → kj) seems
to be largest for spherical boundary topology. This suggests that the (phase) transition
probabilities P (ki → kj) decrease as a function of the strength of the dominating particle
interaction and of the genus of the particle (reflecting itself via the modular contribution to
the particle mass increasing as a function of genus).

To sum up, the proposed formula would dictate the evolution of αs from the evolution of the
electro-weak parameters without any need for perturbative computations. Although the formula
of proposed kind is encouraged by the strong constraints between classical gauge fields in TGD
framework, it should be deduced in a rigorous manner from the basic assumptions of TGD before
it can be taken seriously.

7 General Vision About Coupling Constant Evolution

Addition: The view about coupling constant evolution has changed radically during 2016-2017
[K5, K7, K2, K16] as the number theoretic vision about TGD as adelic physics and the vision about
twistor lift of TGD have co-evolved. Number theoretic vision has extremely powerful consequences
and has led to amazingly simple proposals for the scattering amplitudes and coupling constant
evolution. The following rather old arguments making guesses about the values of coupling con-
stants are in the light of the new vision obsolete so that this section can be regarded more or less
as a curiosity. I have however decided to keep the section.

Zero energy ontology, the construction of M -matrix as time like entanglement coefficients defin-
ing Connes tensor product characterizing finite measurement resolution in terms of inclusion of
hyper-finite factors of type II1, the realization that symplectic invariance of N-point functions pro-
vides a detailed mechanism eliminating UV divergences, and the understanding of the relationship
between super-symplectic and super Kac-Moody symmetries: these are the pieces of the puzzle
whose combination making possible a rather concrete vision about coupling constant evolution in
TGD Universe and even a rudimentary form of generalized Feynman rules.

p-Adic coupling constant evolution is discrete by p-adic length scale hypothesis justified by zero
energy ontology. Discreteness means that continuous mass scale is replaced by mass scales coming
as half octaves of CP2 mass. One key question has been whether it is Kähler coupling strength
αK or gravitational coupling constant, which remains invariant under p-adic coupling constant
evolution. Second problem relates to the value of αK .

The realization that Kähler-Dirac action could be the fundamental variational principle initiated
the process, which led to an answer to these and many other questions. The idea that some kind of
Dirac determinant gives the vacuum functional identifiable as exponent of Kähler function in turn
identifiable as Kähler action SK for a preferred extremal came first. The basic challenges are to
understand the conditions fixing the preferred extremal of Kähler action and how to define the Dirac
determinant. After experimentation with several alternatives it became clear that the Kähler-Dirac
action contains besides the term defined by Kähler action also a measurement interaction term
guaranteeing quantum classical correspondence. An alternative idea inspired by TGD as almost
topological QFT vision and quantum holography was that 3-D Chern-Simons action for light-like
3-surfaces at which the induced metric of the space-time surface changes its signature could be
enough. This turned out be to not the case.

The most important outcome is a formula for Kähler coupling strength in terms of a calculable
and manifestly finite Dirac determinant without any need for zeta function regularization. The
formula fixes completely the number theoretic anatomy of Kähler coupling strength and of other
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gauge coupling strengths. When the formula for the gravitational constant involving Kähler cou-
pling strength and the exponent of Kähler action for CP2 type vacuum extremal - which remains
still a conjecture - is combined with the number theoretical results and with the constraints from
the predictions of p-adic mass calculations, one ends up to an identification of Kähler coupling
strength as fine structure constant at electron length scale characterized by p-adic prime M127.
Also the number theoretic anatomy of the ratio R2/~G, where R is CP2 size, can be understood to
high degree and a relationship between the p-adic evolutions of electromagnetic and color coupling
strengths emerges.

7.1 General Ideas About Coupling Constant Evolution

7.1.1 Zero energy ontology

In zero energy ontology one replaces positive energy states with zero energy states with positive and
negative energy parts of the state at the boundaries of future and past direct light-cones forming
a causal diamond. All conserved quantum numbers of the positive and negative energy states are
of opposite sign so that these states can be created from vacuum. “Any physical state is creatable
from vacuum” becomes thus a basic principle of quantum TGD and together with the notion of
quantum jump resolves several philosophical problems (What was the initial state of universe?,
What are the values of conserved quantities for Universe, Is theory building completely useless if
only single solution of field equations is realized?).

At the level of elementary particle physics positive and negative energy parts of zero energy
state are interpreted as initial and final states of a particle reaction so that quantum states become
physical events. The proposed realization of Equivelence Principle at quantum level is based on the
identification of classical Noether charges in Cartan algebra with the eigenvalues of their quantum
counterparts assignable to Kähler-Dirac action. At classical level EP follows at GRT limit obtained
by lumping many-sheeted space-time to M4 with effective metric satisfying Einstein’s equations
as a reflection of the underlying Poincare invariance.

7.1.2 Does the finiteness of measurement resolution dictate the laws of physics?

The hypothesis that the mere finiteness of measurement resolution could determine the laws of
quantum physics [K4] completely belongs to the category of not at all obvious first principles. The
basic observation is that the Clifford algebra spanned by the gamma matrices of the “world of
classical worlds” represents a von Neumann algebra [A6] known as hyperfinite factor of type II1
(HFF) [K4, K20, K6]. HFF [A3, A5] is an algebraic fractal having infinite hierarchy of included
subalgebras isomorphic to the algebra itself [A1]. The structure of HFF is closely related to several
notions of modern theoretical physics such as integrable statistical physical systems [A10], anyons
[D2], quantum groups and conformal field theories [A11], and knots and topological quantum field
theories [A8, A4].

Zero energy ontology is second key element. In zero energy ontology these inclusions allow
an interpretation in terms of a finite measurement resolution: in the standard positive energy
ontology this interpretation is not possible. Inclusion hierarchy defines in a natural manner the
notion of coupling constant evolution and p-adic length scale hypothesis follows as a prediction.
In this framework the extremely heavy machinery of renormalized quantum field theory involving
the elimination of infinities is replaced by a precisely defined mathematical framework. More
concretely, the included algebra creates states which are equivalent in the measurement resolution
used. Zero energy states are associated with causal diamond formed by a pair of future and past
directed light-cones having positive and negative energy parts of state at their boundaries. Zero
energy state can be modified in a time scale shorter than the time scale of the zero energy state
itself.

On can imagine two kinds of measurement resolutions. The element of the included algebra can
leave the quantum numbers of the positive and negative energy parts of the state invariant, which
means that the action of subalgebra leaves M-matrix invariant. The action of the included algebra
can also modify the quantum numbers of the positive and negative energy parts of the state such
that the zero energy property is respected. In this case the Hermitian operators subalgebra must
commute with M-matrix.
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The temporal distance between the tips of light-cones corresponds to the secondary p-adic time
scale Tp,2 =

√
pTp by a simple argument based on the observation that light-like randomness of

light-like 3-surface is analogous to Brownian motion. This gives the relationship Tp = L2
p/Rc,

where R is CP2 size. The action of the included algebra corresponds to an addition of zero
energy parts to either positive or negative energy part of the state and is like addition of quantum
fluctuation below the time scale of the measurement resolution. The natural hierarchy of time
scales is obtained as Tn = 2−nT since these insertions must belong to either upper or lower half of
the causal diamond. This implies that preferred p-adic primes are near powers of 2. For electron
the time scale in question is.1 seconds defining the fundamental biorhythm of 10 Hz.

M-matrix representing a generalization of S-matrix and expressible as a product of a positive
square root of the density matrix and unitary S-matrix would define the dynamics of quantum
theory [K4]. The notion of thermodynamical state would cease to be a theoretical fiction and in a
well-defined sense quantum theory could be regarded as a square root of thermodynamics.

7.1.3 How do p-adic coupling constant evolution and p-adic length scale hypothesis
emerge?

In zero energy ontology zero energy states have as embedding space correlates causal diamonds for
which the distance between the tips of the intersecting future and past directed light-cones comes
as integer multiples of a fundamental time scale: Tn = n × T0. p-Adic length scale hypothesis
allows to consider a stronger hypothesis Tn = 2nT0 and its generalization a slightly more general
hypothesis Tn = pnT0, p prime. It however seems that these scales are dynamically favored but
that also other scales are possible.

Could the coupling constant evolution in powers of 2 implying time scale hierarchy Tn = 2nT0
induce p-adic coupling constant evolution and explain why p-adic length scales correspond to
Lp ∝

√
pR, p ' 2k, R CP2 length scale? This looks attractive but there is a problem. p-Adic

length scales come as powers of
√

2 rather than 2 and the strongly favored values of k are primes
and thus odd so that n = k/2 would be half odd integer. This problem can be solved.

1. The observation that the distance traveled by a Brownian particle during time t satisfies
r2 = Dt suggests a solution to the problem. p-Adic thermodynamics applies because the
partonic 3-surfaces X2 are as 2-D dynamical systems random apart from light-likeness of their
orbit. For CP2 type vacuum extremals the situation reduces to that for a one-dimensional
random light-like curve in M4. The orbits of Brownian particle would now correspond to
light-like geodesics γ3 at X3. The projection of γ3 to a time=constant section X2 ⊂ X3

would define the 2-D path γ2 of the Brownian particle. The M4 distance r between the end
points of γ2 would be given r2 = Dt. The favored values of t would correspond to Tn = 2nT0
(the full light-like geodesic). p-Adic length scales would result as L2(k) = DT (k) = D2kT0
for D = R2/T0. Since only CP2 scale is available as a fundamental scale, one would have
T0 = R and D = R and L2(k) = T (k)R.

2. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would
not relate to the p-adic length scale via Tp = Lp/c as assumed implicitly earlier but via
Tp = L2

p/R0 =
√
pLp, which corresponds to secondary p-adic length scale. For instance,

in the case of electron with p = M127 one would have T127 = .1 second which defines
a fundamental biological rhythm. Neutrinos with mass around.1 eV would correspond to
L(169) ' 5 µm (size of a small cell) and T (169) ' 1.×104 years. A deep connection between
elementary particle physics and biology becomes highly suggestive.

3. In the proposed picture the p-adic prime p ' 2k would characterize the thermodynamics
of the random motion of light-like geodesics of X3 so that p-adic prime p would indeed be
an inherent property of X3. For Tp = pT0 the above argument is not enough for p-adic
length scale hypothesis and p-adic length scale hypothesis might be seen as an outcome of a
process analogous to natural selection. Resonance like effect favoring octaves of a fundamental
frequency might be in question. In this case, p would a property of CD and all light-like 3-
surfaces inside it and also that corresponding sector of WCW .
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7.2 The Bosonic Action Defining Kähler Function As The Effective Ac-
tion Associated With The Induced Spinor Fields

One could define the classical action defining Kähler function as the bosonic action giving rise
to the divergences of the isometry currents. In this manner bosonic action, especially the value
of the Kähler coupling strength, would come out as prediction of the theory containing no free
parameters.

Thus the Kähler action SB of preferred extremal of Käction defining Kähler function could be
defined by the functional integral over the Grassmann variables for the exponent of the massless
Dirac action. Formally the functional integral is defined as

exp(SB(X4)) =

∫
exp(SF )DΨDΨ̄ ,

SF = Ψ̄
[
Γ̂αD→α −D←α Γ̂α

]
Ψ
√
g .

(7.1)

Formally the bosonic effective action is expressible as a logarithm of the fermionic functional
determinant resulting from the functional integral over the Grassmann variables

SB(X4) = log(det(D)) ,

D = Γ̂αD→α . (7.2)

7.2.1 Formula for the Kähler coupling strength

The identification of exponent of Kähler function as Dirac determinant leads to a formula relating
Kähler action for the preferred extremal to the Dirac determinant. The eigenvalues are proportional
to 1/αK since the matrices Γ̂α have this proportionality. This gives the formula

exp(
SK(X4(X3))

8παK
) =

∏
i

λi =

∏
i λ0,i

αNK
. (7.3)

Here λ0,i corresponds to αK = 1. SK =
∫
J∗J is the reduced Kähler action.

For SK = 0, which might correspond to so called massless extremals [K3] one obtains the
formula

αK = (
∏
i

λ0,i)
1/N . (7.4)

Thus for SK = 0 extremals one has an explicit formula for αK having interpretation as the
geometric mean of the eigenvalues λ0,i. Several values of αK are in principle possible.

p-Adicization suggests that λ0,i are rational or at most algebraic numbers. This would mean
that αK is N : th root of this kind of number. SK in turn would be

SK = 8παK log(

∏
i λ0,i

αNK
) . (7.5)

so that SK would be expressible as a product of the transcendental π, N : th root of rational, and
logarithm of rational. This result would provide a general answer to the question about number
theoretical anatomy of Kähler coupling strength and SK . Note that SK makes sense p-adically
only if one adds π and its all powers to the extension of p-adic numbers. The exponent of Kähler
function however makes sense also p-adically.
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7.3 A Revised View About Coupling Constant Evolution

The development of the ideas related to number theoretic aspects has been rather tortuous and
based on guess work since basic theory has been lacking.

1. The original hypothesis was that Kähler coupling strength is invariant under p-adic coupling
constant evolution. Later I gave up this hypothesis and replaced it with the invariance
of gravitational coupling since otherwise the prediction would have been that gravitational
coupling strength is proportional to p-adic length scale squared. Second first guess was that
Kähler coupling strength equals to the value of fine structure constant at electron length
scale corresponding to Mersenne prime M127. Later I replaced fine structure constant with
electro-weak U(1) coupling strength at this length scale. The recent discussion returns back
to the roots in both aspects.

2. The recent discussion relies on the progress made in the understanding of quantum TGD at
partonic level [K21]. What comes out is an explicit formula for Kähler couplings strength
in terms of Dirac determinant involving only a finite number of eigenvalues of the Kähler-
Dirac operator. This formula dictates the number theoretical anatomy of g2K and also of other
coupling constants: the most general option is that αK is a root of rational. The requirement
that the rationals involved are simple combined with simple experimental inputs leads to very
powerful predictions for the coupling parameters.

3. A further simplification is due to the discreteness of p-adic coupling constant evolution al-
lowing to consider only length scales coming as powers of

√
2. This kind of discretization is

necessary also number theoretically since logarithms can be replaced with 2-adic logarithms
for powers of 2 giving integers. This raises the question whether p ' 2k should be replaced
with 2k in all formulas as the recent view about quantum TGD suggests.

4. The prediction is that Kähler coupling strength αK is invariant under p-adic coupling con-
stant evolution and from the constraint coming from electron and top quark masses very
near to fine structure constant so that the identification as fine structure constant is nat-
ural. Gravitational constant is predicted to be proportional to p-adic length scale squared
and corresponds to the largest Mersenne prime (M127), which does not correspond to a
completely super-astronomical p-adic length scale. For the parameter R2/G p-adicization
program allows to consider two options: either this constant is of form eq or 2q: in both cases
q is rational number. R2/G = exp(q) allows only M127 gravitons if number theory is taken
completely seriously. R2/G = 2q allows all p-adic length scales for gravitons and thus both
strong and weak variants of ordinary gravitation.

5. A relationship between electromagnetic and color coupling constant evolutions based on
the formula 1/αem + 1/αs = 1/αK is suggested by the induced gauge field concept, and
would mean that the otherwise hard-to-calculate evolution of color coupling strength is fixed
completely. The predicted value of αs at intermediate boson length scale is correct.

It seems fair to conclude that the attempts to understand the implications of p-adicization for
coupling constant evolution have begun to bear fruits.

7.3.1 Identifications of Kähler coupling strength and gravitational coupling strength

To construct an expression for gravitational constant one can use the following ingredients.

1. The exponent exp(2SK(CP2)) defining the value of Kähler function in terms of the Kähler
action SK(CP2) of CP2 type extremal representing elementary particle expressible as

SK(CP2) =
SK,R(CP2)

8παK
=

π

8αK
. (7.6)

Since CP2 type extremals suffer topological condensation, one expects that the action is
modified:
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SK(CP2) → a× SK(CP2) . (7.7)

a < 1 conforms with the idea that a piece of CP2 type extremal defining a wormhole contact
is in question. One must however keep mind open in this respect.

2. The p-adic length scale Lp assignable to the space-time sheet along which gravitational
interactions are mediated. Since Mersenne primes seem to characterized elementary bosons
and since the Mersenne prime M127 = 2127−1 defining electron length scale is the largest non-
super-astronomical length scale it is natural to guess that M127 characterizes these space-time
sheets.

1. The formula for the gravitational constant

A long standing basic conjecture has been that gravitational constant satisfies the following
formula

~G ≡ r~0G = L2
p × exp(−2aSK(CP2)) ,

Lp =
√
pR . (7.8)

Here R is CP2 radius defined by the length 2πR of the geodesic circle. What was noticed before
is that this relationship allows even constant value of G if a has appropriate dependence on p.

This formula seems to be correct but the argument leading to it was based on two erratic
assumptions compensating each other.

1. I assumed that modulus squared for vacuum functional is in question: hence the factor 2a
in the exponent. The interpretation of zero energy state as a generalized Feynman diagram
requires the use of vacuum functional so that the replacement 2a→ a is necessary.

2. Second wrong assumption was that graviton corresponds to CP2 type vacuum extremal-
that is wormhole contact in the recent picture. This does allow graviton to have spin 2.
Rather, two wormhole contacts represented by CP2 vacuum extremals and connected by
fluxes associated with various charges at their throats are needed so that graviton is string
like object. This saves the factor 2a in the exponent.

The highly non-trivial implication to be discussed later is that ordinary coupling constant
strengths should be proportional to exp(−aSK(CP2)).

The basic constraint to the coupling constant evolution comes for the invariance of g2K in p-adic
coupling constant evolution:

g2K =
a(p, r)π2

log(pK)
,

K =
R2

~G(p)
=

1

r

R2

~0G(p)
≡ K0(p)

r
. (7.9)

2. How to guarantee that g2K is RG invariant and N : th root of rational?

Suppose that g2K is N : th root of rational number and invariant under p-adic coupling constant
evolution.

1. The most general manner to guarantee the expressibility of g2K as N : th root of rational is
guaranteed for both options by the condition

a(p, r) =
g2K
π2
log(

pK0

r
) . (7.10)

That a would depend logarithmically on p and r = ~/~0 looks rather natural. Even the
invariance of G under p-adic coupling constant evolution can be considered.
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2. The condition

r

p
< K0(p) . (7.11)

must hold true to guarantee the condition a > 0. Since the value of gravitational Planck con-
stant is very large, also the value of corresponding p-adic prime must very large to guarantee
this condition. The condition a < 1 is guaranteed by the condition

r

p
> exp(− π

2

g2K
)×K0(p) . (7.12)

The condition implies that for very large values of p the value of Planck constant must be
larger than ~0.

3. The two conditions are summarized by the formula

K0(p)× exp(− π
2

g2K
) <

r

p
< K0(p) (7.13)

characterizing the allowed interval for r/p. If G does not depend on p, the minimum value

for r/p is constant. The factor exp(− π2

g2K
) equals to 1.8× 10−47 for αK = αem so that r > 1

is required for p ≥ 4.2 × 10−40. M127 ∼ 1038 is near the upper bound for p allowing r = 1.
The constraint on r would be roughly r ≥ 2k−131 and p ' 2131 is the first p-adic prime for
which ~ > 1 is necessarily. The corresponding p-adic length scale is.1 Angstroms.

This conclusion need not apply to elementary particles such as neutrinos but only to the
space-time sheets mediating gravitational interaction so that in the minimal scenario it would
be gravitons which must become dark above this scale. This would bring a new aspect to
vision about the role of gravitation in quantum biology and consciousness.

The upper bound for r behaves roughly as r < 2.3× 107p. This condition becomes relevant
for gravitational Planck constant GM1M2/v0 having gigantic values. For Earth-Sun system
and for v0 = 2−11 the condition gives the rough estimate p > 6 × 1063. The corresponding
p-adic length scale would be of around L(215) ∼ 40 meters.

4. p-Adic mass calculations predict the mass of electron as m2
e = (5 + Ye)2

−127/R2 where
Ye ∈ [0, 1) parameterizes the not completely known second order contribution. Top quark
mass favors a small value of Ye (the original experimental estimates for mt were above the
range allowed by TGD but the recent estimates are consistent with small value Ye [K15] ).
The range [0, 1) for Ye restricts K0 = R2/~0G to the range [2.3683, 2.5262]× 107.

5. The best value for the inverse of the fine structure constant is 1/αem = 137.035999070(98)
and would correspond to 1/g2K = 10.9050 and to the range (0.9757, 0.9763) for a for ~ = ~0
and p = M127. Hence one can seriously consider the possibility that αK = αem(M127 holds
true. As a matter fact, this was the original hypothesis but was replaced later with the
hypothesis that αK corresponds to electro-weak U(1) coupling strength in this length scale.
The fact that M127 defines the largest Mersenne prime, which does not correspond to super-
astrophysical length scale might relate to this co-incidence.

To sum up, the recent view about coupling constant evolution differs strongly from previous
much more speculative scenarios. It implies that g2K is root of rational number, possibly even
rational, and can be assumed to be equal to e2. Also R2/~G could be rational. The new element is
that G need not be proportional to p and can be even invariant under coupling constant evolution
since the parameter a can depend on both p and r. An unexpected constraint relating p and r for
space-time sheets mediating gravitation emerges.



7.3 A Revised View About Coupling Constant Evolution 42

7.3.2 Are the color and electromagnetic coupling constant evolutions related?

Classical theory should be also able to say something non-trivial about color coupling strength αs
too at the general level. The basic observations are following.

1. Both classical color YM action and electro-weak U(1) action reduce to Kähler action.

2. Classical color holonomy is Abelian which is consistent also with the fact that the only
signature of color that induced spinor fields carry is anomalous color hyper charge identifiable
as an electro-weak hyper charge.

Suppose that αK is a strict RG invariant. One can consider two options.

1. The original idea was that the sum of classical color action and electro-weak U(1) action
is RG invariant and thus equals to its asymptotic value obtained for αU(1) = αs = 2αK .
Asymptotically the couplings would approach to a fixed point defined by 2αK rather than
to zero as in asymptotically free gauge theories.

Thus one would have

1

αU(1)
+

1

αs
=

1

αK
. (7.14)

The relationship between U(1) and em coupling strengths is

αU(1) =
αem

cos2(θW )
' 1

104.1867
,

sin2(θW )|10 MeV ' 0.2397(13) ,

αem(M127) = 0.00729735253327 . (7.15)

Here Weinberg angle corresponds to 10 MeV energy is reasonably near to the value at electron
mass scale. The value sin2(θW ) = 0.2397(13) corresponding to 10 MeV mass scale [E1]
is used. Note however that the previous argument implying αK = αem(M127) excludes
α = αU(1)(M127) option.

2. Second option is obtained by replacing U(1) with electromagnetic gauge U(1)em.

1

αem
+

1

αs
=

1

αK
. (7.16)

Possible justifications for this assumption are following. The notion of induced gauge field
makes it possible to characterize the dynamics of classical electro-weak gauge fields using
only the Kähler part of electro-weak action, and the induced Kähler form appears only in
the electromagnetic part of the induced classical gauge field. A further justification is that
em and color interactions correspond to unbroken gauge symmetries.

The following arguments are consistent with this conclusion.

1. In TGD framework coupling constant is discrete and comes as powers of
√

2 corresponding to
p-adic primes p ' 2k. Number theoretic considerations suggest that coupling constants g2i are
algebraic or perhaps even rational numbers, and that the logarithm of mass scale appearing
as argument of the renormalized coupling constant is replaced with 2-based logarithm of
the p-adic length scale so that one would have g2i = g2i (k). g2K is predicted to be N : th
root of rational but could also reduce to a rational. This would allow rational values for
other coupling strengths too. This is possible if sin(θW ) and cos(θW ) are rational numbers
which would mean that Weinberg angle corresponds to a Pythagorean triangle as proposed
already earlier. This would mean the formulas sin(θW ) = (r2− s2)/(r2 + s2) and cos(θW ) =
2rs(r2 + s2).



7.3 A Revised View About Coupling Constant Evolution 43

2. A very strong prediction is that the beta functions for color and U(1) degrees of freedom
are apart from sign identical and the increase of U(1) coupling compensates the decrease of
the color coupling. This allows to predict the hard-to-calculate evolution of QCD coupling
constant strength completely.

3. α(M127) = αK implies that M127 defines the confinement length scale in which the sign
of αs becomes negative. TGD predicts that also M127 copy of QCD should exist and that
M127 quarks should play a key role in nuclear physics [K17, L1], [L1]. Hence one can argue
that color coupling strength indeed diverges at M127 (the largest not completely super-
astrophysical Mersenne prime) so that one would have αK = α(M127). Therefore the precise
knowledge of α(M127) in principle fixes the value of parameter K = R2/G and thus also the
second order contribution to the mass of electron.

4. αs(M89) is predicted to be 1/αs(M89) = 1/αK−1/α(M89). sin2(θW ) = .23120, αem(M89) '
1/127, and αU(1) = αem/cos

2(θW ) give 1/αU(1)(M89) = 97.6374. α = αem option gives
1/αs(M89) ' 10, which is consistent with experimental facts. α = αU(1) option gives
αs(M89) = 0.1572, which is larger than QCD value. Hence α = αem option is favored.

7.3.3 Can one deduce formulae for gauge couplings?

The improved physical picture behind gravitational constant allows also to consider a general
formula for gauge couplings.

1. The natural guess for the general formula would be as

g2(p, r) = kg2K × exp[−ag(p, r)× SK(CP2)] . (7.17)

here k is a numerical constant.

2. The condition

g2K = e2(M127) fixes the value of k if it’s value does not depend on the character of gauge
interaction:

k = exp[agr(M127, r = 1)× SK(CP2)] . (7.18)

Hence the general formula reads as

g2(p, r) = g2K × exp[(−ag(p, r) + agr(M127), r = 1))× SK(CP2)] .

(7.19)

The value of a(M127, r = 1) is near to its maximum value so that the exponential factor tends
to increase the value of g2 from e2. The formula can reproduce αs and various electro-weak
couplings although it is quite possibile that Weinberg angle corresponds to a group theoretic
factor not representable in terms of ag(p, r). The volume of the CP2 type vacuum extremal
would characterize gauge bosons. Analogous formula should apply also in the case of Higgs.

3. αem in very long length scales would correspond to

e2(p→∞, r = 1) = e2 × exp[(−1 + a(M127), r = 1))× SK(CP2)] = e2x ,

(7.20)

where x is in the range [0.6549, 0.6609].
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