CONTENTS # Introduction to "Topological Geometrodynamics: an Overview" ## M. Pitkänen, February 2, 2024 Email: matpitka6@gmail.com. http://tgdtheory.com/public_html/. Postal address: Rinnekatu 2-4 A 8, 03620, Karkkila, Finland. ORCID: 0000-0002-8051-4364. ## Contents | L | Bas | f Sic~Ideas~of~Topological~Geometrodynamics~(TGD) | |---|-----|---| | | 1.1 | Geometric Vision Very Briefly | | | 1.2 | Two Visions About TGD as Geometrization of Physics and Their Fusion 6 | | | | 1.2.1 TGD as a Poincare Invariant Theory of Gravitation | | | | 1.2.2 TGD as a Generalization of the Hadronic String Model | | | | 1.2.3 Fusion of the Two Approaches via a Generalization of the Space-Time Concept | | | 1.3 | Basic Objections | | | | 1.3.1 Topological Field Quantization | | | 1.4 | Quantum TGD as Spinor Geometry of World of Classical Worlds | | | | 1.4.1 World of Classical Worlds | | | | 1.4.2 Identification of Kähler function | | | | 1.4.3 WCW spinor fields | | | | 1.4.4 The role of modified Dirac action | | | 1.5 | Construction of scattering amplitudes | | | | 1.5.1 Reduction of particle reactions to space-time topology | | | | 1.5.2 Construction of the counterparts of S-matrices | | | | 1.5.3 The notion of M-matrix | | | 1.6 | TGD as a generalized number theory | | | | 1.6.1 The Threads in the Development of Quantum TGD | | | | 1.6.2 Number theoretic vision very briefly | | | | 1.6.3 p-Adic TGD and fusion of real and p-adic physics to single coherent whole | | | | 1.6.4 Infinite primes | | | 1.7 | An explicit formula for $M^8 - H$ duality | | | | 1.7.1 Holography in H | | | | 1.7.2 Number theoretic holography in M_c^8 | CONTENTS 2 | | | 1.7.3 | Can one find an explicit formula for $M^8 - H$ duality? | 18 | | |---|--------------------------|---------------|---|-----------|--| | | | 1.7.4 | What could the number theoretic holography mean physically? | 19 | | | | | 1.7.5 | Twistor lift of the holography | 19 | | | | 1.8 | Hierar | chy of Planck Constants and Dark Matter Hierarchy | 20 | | | | | 1.8.1 | Dark Matter as Large \hbar Phases | 20 | | | | | 1.8.2 | Hierarchy of Planck Constants from the Anomalies of Neuroscience and Biology | 21 | | | | | 1.8.3 | Dark Matter as a Source of Long Ranged Weak and Color Fields | 22 | | | | 1.9 | Twisto | ors in TGD and connection with Veneziano duality | 22 | | | | | 1.9.1 | Twistor lift at space-time level | 22 | | | | | 1.9.2 | Twistor lift at the level of scattering amplitudes and connection with Veneziano | | | | | | | duality | 23 | | | | 1.10 | Organ | ization of "TGD: an Overview" | 26 | | | 2 | Sou | rces | | 27 | | | 3 | The contents of the book | | | | | | | 3.1 | PART | I: GENERAL OVERVIEW | 27 | | | | | 3.1.1 | Why TGD and What TGD is? | 27 | | | | | 3.1.2 | Topological Geometrodynamics: Three Visions | 27 | | | | | 3.1.3 | TGD Inspired Theory of Consciousness | 28 | | | | | 3.1.4 | TGD and M-Theory | 28 | | | | | 3.1.5 | Can one apply Occam's razor as a general purpose debunking argument to | | | | | 0.0 | D 4 D.T. | TGD? | 29 | | | | 3.2 | | II: PHYSICS AS INFINITE-DIMENSIONAL SPINOR GEOMETRY | 30 | | | | | 3.2.1 | The Geometry of the World of Classical Worlds | 30 | | | | 2.2 | 3.2.2 | Classical TGD | 31 | | | | 3.3 | | III: PHYSICS AS GENERALIZED NUMBER THEORY | 32 | | | | | 3.3.1 | Physics as a Generalized Number Theory | 32 | | | | 9.4 | 3.3.2 | Unified Number Theoretical Vision | 34 | | | | 3.4 | | IV: HYPER-FINITE FACTORS OF TYPE II ₁ , HIERARCHY OF PLANCK TANTS, AND $M^8 - H$ duality | 35 | | | | | 3.4.1 | Evolution of Ideas about Hyper-finite Factors in TGD | 35 | | | | | 3.4.1 $3.4.2$ | Does TGD Predict a Spectrum of Planck Constants? | 37 | | | | | 3.4.2 | Does M^8-H duality reduce classical TGD to octonionic algebraic geometry?: | 31 | | | | | 0.4.0 | Part I | 39 | | | | | 3.4.4 | Does M^8-H duality reduce classical TGD to octonionic algebraic geometry?: | 99 | | | | | 0.4.4 | Part II | 40 | | | | | 3 4 5 | Does M^8-H duality reduce classical TGD to octonionic algebraic geometry?: | 40 | | | | | 0.4.0 | Part III | 43 | | | | | 3.4.6 | Could quantum randomness have something to do with classical chaos? | 43 | | | | | 3.4.7 | TGD view about McKay Correspondence, ADE Hierarchy, Inclusions of Hy- | 40 | | | | | 0.4.1 | perfinite Factors, $M^8 - H$ Duality, SUSY, and Twistors | 45 | | | | | 3.4.8 | The Recent View about SUSY in TGD Universe | 46 | | | | 3.5 | | V: APPLICATIONS | 47 | | | | 5.5 | 3.5.1 | Cosmology and Astrophysics in Many-Sheeted Space-Time | 47 | | | | | 3.5.1 | Overall View About TGD from Particle Physics Perspective | 48 | | | | | 3.5.2 | Particle Massivation in TGD Universe | 50 | | | | | 3 5 4 | New Physics Predicted by TGD | 51 | | ## 1 Basic Ideas of Topological Geometrodynamics (TGD) Standard model describes rather successfully both electroweak and strong interactions but sees them as totally separate and contains a large number of parameters which it is not able to predict. For about four decades ago unified theories known as Grand Unified Theories (GUTs) trying to understand electroweak interactions and strong interactions as aspects of the same fundamental gauge interaction assignable to a larger symmetry group emerged. Later superstring models trying to unify even gravitation and strong and weak interactions emerged. The shortcomings of both GUTs and superstring models are now well-known. If TGD - whose basic idea emerged towards the end of 1977 - would emerge now it would be seen as an attempt to solve the difficulties of these approaches to unification. The basic physical picture—behind—the geometric vision of TGD—corresponds to a fusion of two rather disparate approaches: namely—TGD—as a Poincare invariant theory of gravitation and TGD as a generalization of the old-fashioned string model. After 1995 number theoretic vision started to develop—and was initiated by the success of mass calculations based on p-adic thermodynamics. Number theoretic vision involves all number fields and is—complementary—to the geometric vision: one can say that this duality is—analogous to momentum-position duality of wave mechanics. TGD can be also regarded as topological quantum theory in a very general sense as already the attribute "Topological" in "TGD" makes clear. Space-time surfaces as minimal surfaces can be regarded as representatives of homology equivalence classes and p-adic topologies generalize the notion of local topology and apply to the description of correlates of cognition. ## 1.1 Geometric Vision Very Briefly T(opological) G(eometro)D(ynamics) is one of the many attempts to find a unified description of basic interactions. The development of the basic ideas of TGD to a relatively stable form took time of about half decade [K1]. The basic vision and its relationship to existing theories is now rather well understood. - 1. Space-times are representable as 4-surfaces in the 8-dimensional embedding space $H = M^4 \times CP_2$, where M^4 is 4-dimensional (4-D) Minkowski space and CP_2 is 4-D complex projective space (see Appendix). - 2. Induction procedure (a standard procedure in fiber bundle theory, see Appendix) allows to geometrize various fields. Space-time metric characterizing gravitational fields corresponds to the induced metric obtained by projecting the metric tensor of H to the space-time surface. Electroweak gauge potentials are identified as projections of the components of CP₂ spinor connection to the space-time surface, and color gauge potentials as projections of CP₂ Killing vector fields representing color symmetries. Also spinor structure can be induced: induced spinor gamma matrices are projections of gamma matrices of H and induced spinor fields just H spinor fields restricted to space-time surface. Spinor connection is also projected. The interpretation is that distances are measured in embedding space metric and parallel translation using spinor connection of embedding space. - Twistor lift of TGD means that one can lift space-time surfaces in H to 6-D surfaces a analogs of twistor space of space-time surface in the Cartesian product of the twistor spaces of M^4 and CP_2 , which are the only 4-manifolds allowing twistor space with Kähler structure [A7]. The twistor structure would be induced in some sense, and should coincide with that associated with the induced metric. Clearly, the 2-spheres defining the fibers of twistor spaces of M^4 and CP_2 must allow identification: this 2-sphere defines the S^2 fiber of the twistor space of the space-time surface. This poses a constraint on the embedding of the twistor space of space-time surfaces as sub-manifold in the Cartesian product of twistor spaces. The existence of Kähler structure allows to lift 4-D Kähler action to its 6-D counterparts and the 6-D counterpart of twistor space is obtained by its dimensional reduction so that one obtains a sphere bundle. This makes possible twistorialization for all space-time surfaces: in general relativity the general metric does not allow this. - 3. A geometrization of quantum numbers is achieved. The isometry group of the geometry of CP_2 codes for the color gauge symmetries of strong interactions. Vierbein group codes for electroweak symmetries, and explains their breaking in terms of CP_2 geometry so that standard model gauge group results. There are also important deviations from the standard model: color quantum numbers are not spin-like but analogous to orbital angular momentum: this difference is expected to be seen only in CP_2 scale. In contrast to GUTs, quark and lepton numbers are separately conserved and family replication has a topological explanation in terms of topology of the partonic 2-surface carrying fermionic quantum numbers. M^4 and CP_2 are unique choices for many other reasons. For instance,
they are the unique 4-D space-times allowing twistor space with Kähler structure. M^4 light-cone boundary allows a huge extension of 2-D conformal symmetries. M^4 and CP_2 allow quaternionic structures. Therefore standard model symmetries have number theoretic meaning. 4. Induced gauge potentials are expressible in terms of embedding space coordinates and their gradients and general coordinate invariance implies that there are only 4 field-like variables locally. Situation is thus extremely simple mathematically. The objection is that one loses linear superposition of fields. The resolution of the problem comes from the generalization of the concepts of particle and space-time. Space-time surfaces can be also particle like having thus finite size. In particular, space-time regions with Euclidian signature of the induced metric (temporal and spatial dimensions in the same role) emerge and have interpretation as lines of generalized Feynman diagrams. Particles in space-time can be identified as a topological inhomogeneities in background space-time surface which looks like the space-time of general relativity in long length scales. One ends up with a generalization of space-time surface to many-sheeted space-time with space-time sheets having extremely small distances of about 10^4 Planck lengths (CP_2 size). As one adds a particle to this kind of structure, it touches various space-time sheets and thus interacts with the associated classical fields. Their effects superpose linearly in good approximation and linear superposition of fields is replaced with that for their effects. This resolves the basic objection. It also leads to the understanding of how the space-time of general relativity and quantum field theories emerges from TGD space-time as effective space-time when the sheets of many-sheeted space-time are lumped together to form a region of Minkowski space with metric replaced with a metric identified as the sum of empty Minkowski metric and deviations of the metrics of sheets from empty Minkowski metric. Gauge potentials are identified as sums of the induced gauge potentials. TGD is therefore a microscopic theory from which the standard model and general relativity follow as a topological simplification, however forcing a dramatic increase of the number of fundamental field variables. - 5. A further objection is that classical weak fields identified as induced gauge fields are long ranged and should cause—large parity breaking effects due to weak interactions. These effects are indeed observed but only in living matter. The basic problem is that one has long ranged classical electroweak gauge fields. The resolution of the problem is that the quantum averages of induced weak and color gauge fields vanish due to the fact that color rotations affect both space-time surfaces and induced weak and color fields. Only the averages of electromagnetic fields are nonvanishing. The correlations functions for weak fields are nonvanishing below Compton lengths of weak bosons. In living matter large values of effective Planck constant labelling phases of ordinary matter identified as dark matter make possible long ranged weak fields and color fields. - 6. General coordinate invariance requires holography so that space-time surfaces are analogous to Bohr orbits for particles identified as 3-surfaces. Bohr orbit property would be naturally realized by a 4-D generalization of holomorphy of string world sheets and implies that the space-time surfaces are minimal surfaces apart from singularities. This holds true for any action as long as it is general coordinate invariant and constructible in terms of the induced geometry. String world sheets and light-like orbits of partonic 2-surfaces correspond to singularities at which the minimal surface property of the space-time surfaces realizing the preferred extremal property fails. Preferred extremals are not completely deterministic, which implies what I call zero energy ontology (ZEO) meaning that the Bohr orbits are the fundamental objects. This leads to a solution of the basic paradox of quantum measurement theory. Also the mathematically ill-defined path integral disappears and leaves only the well-defined functional integral over the Bohr orbits. 7. A string model-like picture emerges from TGD and one ends up with a rather concrete view about the topological counterpart of Feynman diagrammatics. The natural stringy action would be given by the string world sheet area, which is present only in the space-time regions with Minkowskian signature. Gravitational constant could be present as a fundamental constant in string action and the ratio $\hbar/G/R^2$ would be determined by quantum criticality conditions. The hierarchy of Planck constants $h_{eff}/h = n$ assigned to dark matter in TGD framework would allow to circumvent the objection that only objects of length of order Planck length are possible since string tension given by $T = 1/\hbar_{eff}G$ apart from numerical factor could be arbitrary small. This would make possible gravitational bound states as partonic 2-surfaces as structures connected by strings and solve the basic problem of superstring theories. This option allows the natural interpretation of M^4 type vacuum extremals with CP_2 projection, which is Lagrange manifold as good approximations for space-time sheets at macroscopic length scales. String area does not contribute to the Kähler function at all. Whether induced spinor fields associated with Kähler-Dirac action and de-localized inside the entire space-time surface should be allowed remains an open question: super-conformal symmetry strongly suggests their presence. A possible interpretation for the corresponding spinor modes could be in terms of dark matter, sparticles, and hierarchy of Planck constants. It is perhaps useful to make clear what TGD is not and also what new TGD can give to physics. - 1. TGD is *not* just General Relativity made concrete by using embeddings: the 4-surface property is absolutely essential for unifying standard model physics with gravitation and to circumvent the incurable conceptual problems of General Relativity. The many-sheeted space-time of TGD gives rise only at the macroscopic limit to GRT space-time as a slightly curved Minkowski space. TGD is *not* a Kaluza-Klein theory although color gauge potentials are analogous to gauge potentials in these theories. - TGD space-time is 4-D and its dimension is due to completely unique conformal properties of light-cone boundary and 3-D light-like surfaces implying enormous extension of the ordinary conformal symmetries. Light-like 3-surfaces represent orbits of partonic 2-surfaces and carry fundamental fermions at 1-D boundaries of string world sheets. TGD is *not* obtained by performing Poincare gauging of space-time to introduce gravitation and is plagued by profound conceptual problems. - 2. TGD is *not* a particular string model although string world sheets emerge in TGD very naturally as loci for spinor modes: their 2-dimensionality makes among other things possible quantum deformation of quantization known to be physically realized in condensed matter, and conjectured in TGD framework to be crucial for understanding the notion of finite measurement resolution. Hierarchy of objects of dimension up to 4 emerge from TGD: this obviously means analogy with branes of super-string models. - TGD is *not* one more item in the collection of string models of quantum gravitation relying on Planck length mystics. Dark matter becomes an essential element of quantum gravitation and quantum coherence in astrophysical scales is predicted just from the assumption that strings connecting partonic 2-surfaces are responsible for gravitational bound states. - TGD is *not* a particular string model although AdS/CFT duality of super-string models generalizes due to the huge extension of conformal symmetries and by the identification of WCW gamma matrices as Noether super-charges of super-symplectic algebra having a natural conformal structure. - 3. TGD is *not* a gauge theory. In TGD framework the counterparts of also ordinary gauge symmetries are assigned to super-symplectic algebra (and its Yangian [A1] [?, ?, ?]), which is a generalization of Kac-Moody algebras rather than gauge algebra and suffers a fractal hierarchy of symmetry breakings defining hierarchy of criticalities. TGD is *not* one more quantum field theory like structure based on path integral formalism: path integral is replaced with functional integral over 3-surfaces, and the notion of classical space-time becomes an exact part of the theory. Quantum theory becomes formally a purely classical theory of WCW spinor fields: only state function reduction is something genuinely quantal. - 4. TGD view about spinor fields is *not* the standard one. Spinor fields appear at three levels. Spinor modes of the embedding space are analogs of spinor modes characterizing incoming and outgoing states in quantum field theories. Induced second quantized spinor fields at space-time level are analogs of stringy spinor fields. Their modes are localized by the well-definedness of electro-magnetic charge and by number theoretic arguments at string world sheets. Kähler-Dirac action is fixed by supersymmetry implying that ordinary gamma matrices are replaced by what I call Kähler-Dirac gamma matrices this something new. WCW spinor fields, which are classical in the sense that they are not second quantized, serve as analogs of fields of string field theory and imply a geometrization of quantum theory. - 5. TGD is in some sense an extremely conservative geometrization of entire quantum physics: no additional structures such as gauge fields as independent dynamical degrees of freedom are introduced: Kähler geometry and associated spinor structure are enough. "Topological" in TGD should not be understood as an attempt to reduce physics to torsion (see for instance [?]) or something
similar. Rather, TGD space-time is topologically non-trivial in all scales and even the visible structures of the everyday world represent non-trivial topology of space-time in the TGD Universe. - 6. Twistor space or rather, a generalization of twistor approach replacing masslessness in 4-D sense with masslessness in 8-D sense and thus allowing description of also massive particles emerged originally as a technical tool, and its Kähler structure is possible only for $H = M^4 \times CP_2$. It however turned out that much more than a technical tool is in question. What is genuinely new is the infinite-dimensional character of the Kähler geometry making it highly unique, and its generalization to p-adic number fields to describe correlates of cognition. Also the hierarchy of Planck constants $h_{eff} = n \times h$ reduces to the quantum criticality of the TGD Universe and p-adic length scales and Zero Energy Ontology represent something genuinely new. The great challenge is to construct a mathematical theory around these physically very attractive ideas and I have devoted the last 45 years to the realization of this dream and this has resulted in 26 online books about TGD and nine online books about TGD inspired theory of consciousness and of quantum biology. A collection of 30 online books is now (August 2023) under preparation. The goal is to minimize overlap between the topics of the books and make the focus of a given book sharper. ## 1.2 Two Visions About TGD as Geometrization of Physics and Their Fusion As already mentioned, TGD as a geometrization of physics can be interpreted both as a modification of general relativity and generalization of string models. ## 1.2.1 TGD as a Poincare Invariant Theory of Gravitation The first approach was born as an attempt to construct a Poincare invariant theory of gravitation. Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure, is regarded as a surface in the 8-dimensional space $H = M_{\times}^4 C P_2$, where M^4 denotes Minkowski space and $CP_2 = SU(3)/U(2)$ is the complex projective space of two complex dimensions [A3, A6, A2, A5]. The identification of the space-time as a sub-manifold [A4, A9] of $M^4 \times CP_2$ leads to an exact Poincare invariance and solves the conceptual difficulties related to the definition of the energy-momentum in General Relativity. It soon however turned out that sub-manifold geometry, being considerably richer in structure than the abstract manifold geometry, leads to a geometrization of all basic interactions. First, the geometrization of the elementary particle quantum numbers is achieved. The geometry of CP_2 explains electro-weak and color quantum numbers. The different H-chiralities of H-spinors correspond to the conserved baryon and lepton numbers. Secondly, the geometrization of the field concept results. The projections of the CP_2 spinor connection, Killing vector fields of CP_2 and of H-metric to four-surface define classical electro-weak, color gauge fields and metric in X^4 . The choice of H is unique from the condition that TGD has standard model symmetries. Also number theoretical vision selects $H = M^4 \times CP_2$ uniquely. M^4 and CP_2 are also unique spaces allowing twistor space with Kähler structure. ### 1.2.2 TGD as a Generalization of the Hadronic String Model The second approach was based on the generalization of the mesonic string model describing mesons as strings with quarks attached to the ends of the string. In the 3-dimensional generalization 3-surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons in the sense that the quantum numbers of the elementary particles reside on the boundaries. Various boundary topologies (number of handles) correspond to various fermion families so that one obtains an explanation for the known elementary particle quantum numbers. This approach leads also to a natural topological description of the particle reactions as topology changes: for instance, two-particle decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces. This decay vertex does not however correspond to a direct generalization of trouser vertex of string models. Indeed, the important difference between TGD and string models is that the analogs of string world sheet diagrams do not describe particle decays but the propagation of particles via different routes. Particle reactions are described by generalized Feynman diagrams for which 3-D light-like surface describing particle propagating join along their ends at vertices. As 4-manifolds the space-time surfaces are therefore singular like Feynman diagrams as 1-manifolds. Quite recently, it has turned out that fermionic strings inside space-time surfaces define an exact part of quantum TGD and that this is essential for understanding gravitation in long length scales. Also the analog of AdS/CFT duality emerges in that the Kähler metric can be defined either in terms of Kähler function identifiable as Kähler action assignable to Euclidian space-time regions or Kähler action + string action assignable to Minkowskian regions. The recent view about construction of scattering amplitudes is very "stringy". By strong form of holography string world sheets and partonic 2-surfaces provide the data needed to construct scattering amplitudes. Space-time surfaces are however needed to realize quantum-classical correspondence necessary to understand the classical correlates of quantum measurement. There is a huge generalization of the duality symmetry of hadronic string models. The proposal is that scattering amplitudes can be regarded as sequences of computational operations for the Yangian of super-symplectic algebra. Product and co-product define the basic vertices and realized geometrically as partonic 2-surfaces and algebraically as multiplication for the elements of Yangian identified as super-symplectic Noether charges assignable to strings. Any computational sequences connecting given collections of algebraic objects at the opposite boundaries of causal diamond (CD) produce identical scattering amplitudes. ## 1.2.3 Fusion of the Two Approaches via a Generalization of the Space-Time Concept The problem is that the two approaches to TGD seem to be mutually exclusive since the orbit of a particle like 3-surface defines 4-dimensional surface, which differs drastically from the topologically trivial macroscopic space-time of General Relativity. The unification of these approaches forces a considerable generalization of the conventional space-time concept. First, the topologically trivial 3-space of General Relativity is replaced with a "topological condensate" containing matter as particle like 3-surfaces "glued" to the topologically trivial background 3-space by connected sum operation. Secondly, the assumption about connectedness of the 3-space is given up. Besides the "topological condensate" there could be "vapor phase" that is a "gas" of particle like 3-surfaces and string like objects (counterpart of the "baby universes" of GRT) and the non-conservation of energy in GRT corresponds to the transfer of energy between different sheets of the space-time and possible existence vapour phase. . What one obtains is what I have christened as many-sheeted space-time (see Fig. http://tgdtheory.fi/appfigures/manysheeted.jpg or Fig. ?? in the appendix of this book). One particular aspect is topological field quantization meaning that various classical fields assignable to a physical system correspond to space-time sheets representing the classical fields to that particular system. One can speak of the field body of a particular physical system. Field body consists of topological light rays, and electric and magnetic flux quanta. In Maxwell's theory the physical system does not possess this kind of field identity. The notion of the magnetic body is one of the key players in TGD inspired theory of consciousness and quantum biology. The existence of monopole flux tubes requiring no current as a source of the magnetic field makes it possible to understand the existence of magnetic fields in cosmological and astrophysical scales. This picture became more detailed with the advent of zero energy ontology (ZEO). The basic notion of ZEO is—causal diamond (CD) identified as—the Cartesian product of CP_2 and of the intersection of future and past directed—light-cones and having scale coming as an integer multiple of CP_2 size is fundamental. CDs form a fractal hierarchy and zero energy states decompose to products of positive and negative energy parts assignable to the opposite boundaries of CD defining the ends of the space-time surface. The counterpart of zero energy state in positive energy ontology is the pair of initial and final states of a physical event, say particle reaction. At space-time level ZEO means that 3-surfaces are pairs of space-like 3-surfaces at the opposite light-like boundaries of CD. Since the extremals of Kähler action connect these, one can say that by holography the basic dynamical objects are the space-time surface connecting these 3-surfaces and identifiable as analogs of Bohr orbits. This changes totally the vision about notions like self-organization: self-organization by quantum jumps does not take for a 3-D system but for the entire 4-D field pattern associated with it. General Coordinate Invariance (GCI) allows to identify the basic dynamical objects as space-like 3-surfaces at the ends of space-time surface at boundaries of CD: this means that space-time surface is analogous to Bohr orbit. An alternative identification of the lines of generalized Feynman diagrams—is as light-like 3-surfaces at which the signature of the induced metric changes from Minkowskian to Euclidian—Also the Euclidian 4-D regions can have a similar interpretation. The requirement that the two interpretations are equivalent,—leads to a strong form of General Coordinate
Invariance. The outcome is effective 2-dimensionality stating that the partonic 2-surfaces identified as intersections of the space-like ends of space-time surface and light-like wormhole throats are the fundamental objects. That only effective 2-dimensionality is in question is due to—the effects caused by the failure of strict determinism of Kähler action. In finite length scale resolution these effects can be neglected below UV cutoff and above IR cutoff. One can also speak about a strong form of holography. The understanding of the super symplectic invariance leads to the proposal that super symplectic algebra and other Kac-Moody type algebras labelled by non-negative multiples of basic conformal weights allow a hierarchy of symmetry breakings in which the analog of gauge symmetry breaks down to a genuine dynamical symmetry. This gives rise to fractal hierarchies of algebras and symmetry breakings. This breaking can occur also for ordinary conformal algebras if one restricts the conformal weights to be non-negative integers. ## 1.3 Basic Objections Objections are the most powerful tool in theory building. The strongest objection against TGD is the observation that all classical gauge fields are expressible in terms of four embedding space coordinates only- essentially CP_2 coordinates. The linear superposition of classical gauge fields taking place independently for all gauge fields is lost. This would be a catastrophe without many-sheeted space-time. Instead of gauge fields, only the effects such as gauge forces are superposed. Particles topologically condense to several space-time sheets simultaneously and experience the sum of gauge forces. This transforms the weakness to extreme economy: in a typical unified theory the number of primary field variables is countered in hundreds if not thousands, now it is just four. Second objection is that TGD space-time is quite too simple as compared to GRT space-time due to the embeddability to 8-D embedding space. One can also argue that Poincare invariant theory of gravitation cannot be consistent with General Relativity. The above interpretation makes it possible to understand the relationship to GRT space-time and how the Equivalence Principle (EP) follows from Poincare invariance of TGD. The interpretation of GRT space-time is as effective space-time obtained by replacing many-sheeted space-time with Minkowski space with effective metric determined as a sum of Minkowski metric and sum over the deviations of the induced metrics of the space-time sheets from Minkowski metric. Poincare invariance strongly suggests classical EP for the GRT limit in long length scales at least. One can also consider other kinds of limits such as the analog of GRT limit for Euclidian space-time regions assignable to elementary particles. In this case deformations of CP_2 metric define a natural starting point and CP_2 indeed defines a gravitational instanton with a very large cosmological constant in Einstein-Maxwell theory. Also gauge potentials of the standard model correspond classically to superpositions of induced gauge potentials over space-time sheets. ## 1.3.1 Topological Field Quantization Topological field quantization distinguishes between TGD based and more standard - say Maxwellian - notion of field. In Maxwell's fields created by separate systems superpose and one cannot tell which part of field comes from which system except theoretically. In TGD these fields correspond to different space-time sheets and only their effects on test particle superpose. Hence physical systems have well-defined field identifies - field bodies - in particular magnetic bodies. The notion of magnetic body carrying dark matter with non-standard large value of Planck constant has become central concept in TGD inspired theory of consciousness and living matter, and by starting from various anomalies of biology one ends up to a rather detailed view about the role of magnetic body as intentional agent receiving sensory input from the biological body and controlling it using EEG and its various scaled up variants as a communication tool. Among other thins this leads to models for cell membrane, nerve pulse, and EEG. ## 1.4 Quantum TGD as Spinor Geometry of World of Classical Worlds A turning point in the attempts to formulate a mathematical theory was reached after seven years from the birth of TGD. The great insight was "Do not quantize". The basic ingredients to the new approach have served as the basic philosophy for the attempt to construct Quantum TGD since then and have been the following ones. #### 1.4.1 World of Classical Worlds The notion of WCW reduces the interacting quantum theory to a theory of free WCW spinor fields. - 1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized Schrödinger amplitude identified as WCW spinor in the configuration space CH ("world of classical worlds", WCW) consisting of all possible 3-surfaces in H. "All possible" means that surfaces with arbitrary many disjoint components and with arbitrary internal topology and also singular surfaces topologically intermediate between two different manifold topologies are included. - 2. 4-D general coordinate invariance forces holography and replaces the ill-defined path integral over all space-time surfaces with a discrete sum over 4-D analogs of Bohr orbits for particles identified as 3-surfaces. Holography means that basic objects are these analogs of Bohr orbits. Since there is no quantization at the level of WCW, one has an analog of wave mechanics with point-like particles replaced with 4-D Bohr orbits. - 3. One must geometrize WCW as the space of Bohr orbits. In an infinite-dimensional situation the existence of geometry requires maximal symmetries already in the case of loop spaces. Physics is unique from its mathematical existence. - WCW is endowed with $\,$ metric and spinor structure so that one can define various metric related differential operators, say Dirac operators, appearing in the field equations of the theory 1 ¹There are four kinds of Dirac operators in TGD. The geometrization of quantum theory requires Kähler metric definable either in terms of Kähler function identified as a the bosonic action for Euclidian space-time regions #### 1.4.2 Identification of Kähler function The evolution of these basic ideas has been rather slow but has gradually led to a rather beautiful vision. One of the key problems has been the definition of Kähler function. Kähler function is Kähler action for a preferred extremal assignable to a given 3-surface but what this preferred extremal is? The obvious first guess was as absolute minimum of Kähler action but could not be proven to be right or wrong. One big step in the progress was boosted by the idea that TGD should reduce to almost topological QFT in which braids would replace 3-surfaces in finite measurement resolution, which could be inherent property of the theory itself and imply discretization at partonic 2-surfaces with discrete points carrying fermion number. It took long time to realize that there is no discretization in 4-D sense - this would lead to difficulties with basic symmetries. Rather, the discretization occurs for the parameters characterizing co-dimension 2 objects representing the information about space-time surface so that they belong to some algebraic extension of rationals. These 2-surfaces - string world sheets and partonic 2-surfaces - are genuine physical objects rather than a computational approximation. Physics itself approximates itself, one might say! This is of course nothing but strong form of holography. - 1. TGD as almost topological QFT vision suggests that Kähler action for preferred extremals reduces to Chern-Simons term assigned with space-like 3-surfaces at the ends of space-time (recall the notion of causal diamond (CD)) and with the light-like 3-surfaces at which the signature of the induced metric changes from Minkowskian to Euclidian. Minkowskian and Euclidian regions would give at wormhole throats the same contribution apart from coefficients and in Minkowskian regions the $\sqrt{g_4}$ factors coming from metric would be imaginary so that one would obtain sum of real term identifiable as Kähler function and imaginary term identifiable as the ordinary Minkowskian action giving rise to interference effects and stationary phase approximation central in both classical and quantum field theory. - Imaginary contribution the presence of which I realized only after 33 years of TGD could also have topological interpretation as a Morse function. On physical side the emergence of Euclidian space-time regions is something completely new and leads to a dramatic modification of the ideas about black hole interior. - 2. The way to achieve the reduction to Chern-Simons terms is simple. The vanishing of Coulomb contribution to Kähler action is required and is true for all known extremals if one makes a general ansatz about the form of classical conserved currents. The so called weak form of electric-magnetic duality defines a boundary condition reducing the resulting 3-D terms to Chern-Simons terms. In this way almost topological QFT results. But only "almost" since the Lagrange multiplier term forcing electric-magnetic duality implies that Chern-Simons action for preferred extremals depends on metric. ### 1.4.3 WCW spinor fields Classical WCW spinor fields are analogous to Schrödinger amplitudes and the construction of WCW Kähler geometry reduces to the second quantization of free spinor fields of H. - 1. The WCW metric is given by anticommutators of WCW gamma matrices which also have interpretation as supercharges assignable to the generators of WCW isometries and allowing expression as non-conserved Noether charges. Holography implies zero energy ontology (ZEO) meaning that zero energy states are superpositions of Bohr orbits connecting boundaries of causal diamond (CD). CDs form a fractal
hierarchy and their space forming the spine of WCW is finite-dimensional and can be geometrized. The alternative interpretation is as a superposition of pairs of ordinary 3-D fermionic states assignable to the ends of the space-time surfaces. - 2. There are several Dirac operators. WCW Dirac operator D_{WCW} appears in Super-symplectic gauge conditions analogous to Super Virasoro conditions. The algebraic variant of the H or as anti-commutators for WCW gamma matrices identified as conformal Noether super-charges associated with the second quantized modified Dirac action consisting of string world sheet term and possibly also modified Dirac action in Minkowskian space-time regions. These two possible definitions reflect a duality analogous to AdS/CFT duality. Dirac operator D_H appears in fermionic correlation functions: this is due to the fact that free fermions appearing as building bricks of WCW gamma matrices are modes of D_H . The modes of D_H define the ground states of super-symplectic representations. There is also the modified Dirac operator D_{X^4} acting on the induced spinors at space-time surfaces and it is dictated by symmetry one the action fixing the space-time surfaces as Bohr orbits is fixed. D_H is needed since it determines the expressions of WCW gamma matrices as Noether charges assignable to 3-surfaces at the ends of WCW. #### 1.4.4 The role of modified Dirac action 1. By quantum classical correspondence, the construction of WCW spinor structure in sectors assignable to CDs reduces to the second quantization of the induced spinor fields of H. The basic action is so called modified Dirac action in which gamma matrices are replaced with the modified) gamma matrices defined as contractions of the canonical momentum currents of the bosonic action defining the space-time surfaces—with the embedding space gamma matrices. In this way one achieves super-conformal symmetry and conservation of fermionic currents among other things and a consistent Dirac equation. Modified Dirac action is needed to define WCW gamma matrices as super charges assignable to WCW isometry generators identified as generators of symplectic transformations and by holography are needed only at the 3-surface at the boundaries of WCW. It is important to notice that the modified Dirac equation does not determine propagators since induced spinor fields are obtained from free second quantized spinor fields of H. This means enormous simplification and makes the theory calculable. 2. An important interpretational problem relates to the notion of the induced spinor connection. The presence of classical W boson fields is in conflict with the classical conservation of em charge since the coupling to classical W fields changes em charge. One way out of the problem is the fact that the quantum averages of weak and gluon fields vanish unlike the quantum average of the em field. This leads to a rather precise understanding of electroweak symmetry breaking as being due the fact that color symmetries rotate space-time surfaces and also affect the induced weak fields. One can also consider a stronger condition. If one requires that the spinor modes have well-defined em charge, one must assume that the modes in the generic situation are localized at 2-D surfaces - string world sheets or perhaps also partonic 2-surfaces - at which classical W boson fields vanish. Covariantly constant right handed neutrinos generating super-symmetries forms an exception. The vanishing of the Z^0 field is possible for Kähler-Dirac action and should hold true at least above weak length scales. This implies that the string model in 4-D space-time becomes part of TGD. Without these conditions classical weak fields can vanish above weak scale only for the GRT limit of TGD for which gauge potentials are sums over those for space-time sheets. The localization would simplify the mathematics enormously and one can solve exactly the Kähler-Dirac equation for the modes of the induced spinor field just like in super string models. At the light-like 3-surfaces the signature of the induced metric changes from Euclidian to Minkowskian so that $\sqrt{g_4}$ vanishes. One can pose the condition that the algebraic analog of the massless Dirac equation is satisfied by the modes of the modified-Dirac action assignable to the Chern-Simons-Kähler action. ## 1.5 Construction of scattering amplitudes ## 1.5.1 Reduction of particle reactions to space-time topology Particle reactions are identified as topology changes [A8, A10, A11]. For instance, the decay of a 3-surface to two 3-surfaces corresponds to the decay $A \to B+C$. Classically this corresponds to a path of WCW leading from 1-particle sector to 2-particle sector. At quantum level this corresponds to the dispersion of the generalized Schrödinger amplitude localized to 1-particle sector to two-particle sector. All coupling constants should result as predictions of the theory since no nonlinearities are introduced. During years this naïve and very rough vision has of course developed a lot and is not anymore quite equivalent with the original insight. In particular, the space-time correlates of Feynman graphs have emerged from theory as Euclidian space-time regions and the strong form of General Coordinate Invariance has led to a rather detailed and in many respects un-expected visions. This picture forces to give up the idea about smooth space-time surfaces and replace space-time surface with a generalization of Feynman diagram in which vertices represent the failure of manifold property. I have also introduced the word "world of classical worlds" (WCW) instead of rather formal "configuration space". I hope that "WCW" does not induce despair in the reader having tendency to think about the technicalities involved! #### 1.5.2 Construction of the counterparts of S-matrices What does one mean with the counterpart of S-matrix in the TGD framework has been a long standing problem. The development of ZEO based quantum measurement theory has led to a rough overall view of the situation. - 1. There are two kinds of state function reductions (SFRs). "Small" SFRs (SSFRs) following the TGD counterpart of a unitary time evolution defines a sequence of SFRs, which is analogous to a sequence of repeated quantum measurements associated with the Zeno effect. In wave mechanics nothing happens in these measurements. In quantum optics these measurements correspond to weak measurements. In TGD SSFR affects the zero energy state but leaves the 3-D state at the passive boundary of CD unaffected. - 2. In TGD framework each SSFR is preceded by a counterpart of a unitary time evolution, which means dispersion in the space of CDs and unitary time evolution in fermionic degrees of freedom such that the passive boundary of CDs and 3-D states at it are unaffected but a superposition of CDs with varying active boundaries in the space of CDs is formed. In SSFR a localization in the space of CDs occurs such that the active is fixed. In a statistical sense the size of the CD increases and the increasing distance between the tips of the CD gives rise to the arrow of geometric time. - 3. Also "big" SFRS (BSFRs) can occur and they correspond to ordinary SFRs. In BSFR the roles of the active and passive boundary are changed and this means that the arrow of time is changed. Big SFR occurs when the SSFR corresponds to a quantum measurement, which does not commute with the operators, which define the states at the passive boundary of CD as their eigenstates. This means a radical deviation from standard quantum measurement theory and has predictions in all scales. - 4. One can assign the counterpart of S-matrix to the unitary time evolution between two subsequent SSFRs and also to the counterpart of S-matrix associated with BSFR. At least in the latter case the dimension of the state space can increase since at least BSFRs lead to the increase of the dimension of algebraic extension of rationals assignable to the space-time surface by $M^8 H$ duality. Unitarity is therefore replaced with isometry. - 5. I have also considered the possibility that unitary S-matrix could be replaced in the fermionic degrees of freedom with Kähler metric of the state space satisfying analogs of unitarity conditions but it seems that this is un-necessary and also too outlandish an idea. ## 1.5.3 The notion of M-matrix 1. The most ambitious dream is that zero energy states correspond to a complete solution basis for the Dirac operators associated with WCWs associated with the spaces of CDs with fixed passive boundary: this would define an S-matrix assignable to SFR. Also the analog of S-matrix for the localizations of the states to the active boundary assignable to the BSFR changing the state at the passive boundary of CD is needed. - 2. If one allows entanglement between positive and energy parts of the zero energy state but assumes that the states at the passive boundary are fixed, one must introduce the counterpart of the density matrix, or rather its square root. This classical free field theory would dictate what I have called M-matrices defined between positive and negative energy parts of zero energy states which form orthonormal rows of what I call U-matrix as a matrix defined between zero energy states. A biven M-matrix in turn would decompose to a product of a hermitian square root of density matrix and unitary S-matrix. - 3. M-matrix would define time-like entanglement coefficients between positive and negative energy parts of zero energy states (all net quantum numbers vanish for them) and can be regarded as a hermitian square root of density matrix multiplied by a unitary S-matrix. Quantum theory would be in a well-defined sense a square root of thermodynamics. The orthogonality and hermiticity of the M-matrices commuting with S-matrix means that they span infinite-dimensional Lie algebras acting as symmetries of the S-matrix. Therefore quantum TGD would reduce
to group theory in a well-defined sense. - 4. In fact the Lie algebra of Hermitian M-matrices extends to Kac-Moody type algebra obtained by multiplying hermitian square roots of density matrices with powers of the S-matrix. Also the analog of Yangian algebra involving only non-negative powers of S-matrix is possible and would correspond to a hierarchy of CDs with the temporal distances between tips coming as integer multiples of the CP_2 time. - The M-matrices associated with CDs are obtained by a discrete scaling from the minimal CD and characterized by integer n are naturally proportional to a representation matrix of scaling: $S(n) = S^n$, where S is unitary S-matrix associated with the minimal CD [K10]. This conforms with the idea about unitary time evolution as exponent of Hamiltonian discretized to integer power of S and represented as scaling with respect to the logarithm of the proper time distance between the tips of CD. - 5. I have also considered the notion of U-matrix. U-matrix elements between M-matrices for various CDs are proportional to the inner products $Tr[S^{-n_1} \circ H^i H^j \circ S^{n_2} \lambda]$, where λ represents unitarily the discrete Lorentz boost relating the moduli of the active boundary of CD and H^i form an orthonormal basis of Hermitian square roots of density matrices. \circ tells that S acts at the active boundary of CD only. I have proposed a general representation for the U-matrix, reducing its construction to that of the S-matrix. ## 1.6 TGD as a generalized number theory Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional configuration space ("world of classical worlds", WCW), p-adic numbers and quantum TGD, and TGD inspired theory of consciousness, have been for last ten years the basic three strongly interacting threads in the tapestry of quantum TGD. The fourth thread deserves the name "TGD as a generalized number theory". It involves three separate threads: the fusion of real and various p-adic physics to a single coherent whole by requiring number theoretic universality discussed already, the formulation of quantum TGD in terms of complexified counterparts of classical number fields, and the notion of infinite prime. Note that one can identify subrings such as hyper-quaternions and hyper-octonions as sub-spaces of complexified classical number fields with Minkowskian signature of the metric defined by the complexified inner product. ## 1.6.1 The Threads in the Development of Quantum TGD The development of TGD has involved several strongly interacting threads: physics as infinite-dimensional geometry; TGD as a generalized number theory, the hierarchy of Planck constants interpreted in terms of dark matter hierarchy, and TGD inspired theory of consciousness. In the following these threads are briefly described. 1. Quantum T(opological) G(eometro)D(ynamics) as a classical spinor geometry for infinite-dimensional WCW, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness and of quantum biology have been for last decade of the second millenium the basic three strongly interacting threads in the tapestry of quantum TGD. - 2. The discussions with Tony Smith initiated a fourth thread which deserves the name "TGD as a generalized number theory". The basic observation was that classical number fields might allow a deeper formulation of quantum TGD. The work with Riemann hypothesis made time ripe for realization that the notion of infinite primes could provide, not only a reformulation, but a deep generalization of quantum TGD. This led to a thorough and rather fruitful revision of the basic views about what the final form and physical content of quantum TGD might be. Together with the vision about the fusion of p-adic and real physics to a larger coherent structure these sub-threads fused to the "physics as generalized number theory" thread. - 3. A further thread emerged from the realization that by quantum classical correspondence TGD predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is not at all clear whether standard quantum mechanics can accommodate this hierarchy, and that a dynamical quantized Planck constant might be necessary and strongly suggested by the failure of strict determinism for the fundamental variational principle. The identification of hierarchy of Planck constants labelling phases of dark matter would be natural. This also led to a solution of a long standing puzzle: what is the proper interpretation of the predicted fractal hierarchy of long ranged classical electro-weak and color gauge fields. Quantum classical correspondences allows only single answer: there is infinite hierarchy of p-adically scaled up variants of standard model physics and for each of them also dark hierarchy. Thus TGD Universe would be fractal in very abstract and deep sense. The chronology based identification of the threads is quite natural but not logical and it is much more logical to see p-adic physics, the ideas related to classical number fields, and infinite primes as sub-threads of a thread which might be called "physics as a generalized number theory". In the following I adopt this view. This reduces the number of threads to three corresponding to geometric, number theoretic and topological views of physics. TGD forces the generalization of physics to a quantum theory of consciousness, and TGD as a generalized number theory vision leads naturally to the emergence of p-adic physics as physics of cognitive representations. ## 1.6.2 Number theoretic vision very briefly Number theoretic vision about quantum TGD involves notions like adelic physics, $M^8 - H$ duality and number theoretic universality. A short review of the basic ideas that have developed during years is in order. - 1. The physical interpretation of M^8 is as an analog of momentum space and $M^8 H$ duality is analogous to momentum-position duality of ordinary wave mechanics. - 2. Adelic physics means that all classical number fields, all p-adic number fields and their extensions induced by extensions of rationals and defining adeles, and also finite number fields are basic mathematical building bricks of physics. - The complexification of M^8 , identified as complexified octonions, would provide a realization of this picture and M^8-H duality would map the algebraic physics in M^8 to the ordinary physics in $M^4 \times CP_2$ described in terms of partial differential equations. - 3. Negentropy Maximization Principle (NMP) states that the conscious information assignable with cognition representable measured in terms of p-adic negentropy increases in statistical sense. - NMP is mathematically completely analogous to the second law of thermodynamics and number theoretic evolution as an unavoidable statistical increase of the dimension of the algebraic extension of rationals characterizing a given space-time region implies it. There is no paradox involved: the p-adic negentropy measures the conscious information assignable to the entanglement of two systems regarded as a conscious entity whereas ordinary entropy measures the lack of information about the quantums state of either entangled system. - 4. Number theoretical universality requires that space-time surfaces or at least their $M^8 H$ duals in M_c^8 are defined for both reals and various p-adic number fields. This is true if they are defined by polynomials with integer coefficients as surfaces in M^8 obeying number theoretic holography realized as associativity of the normal space of 4-D surface using as holographic data 3-surfaces at mass shells identified in terms of roots of a polynomial. A physically motivated additional condition is that the coefficients of the polynomials are smaller than their degrees. - 5. Galois confinement is a key piece of the number theoretic vision. It states that the momenta of physical states are algebraic integers in the extensions of rationals assignable to the space-time region considered. These numbers are in general complex and are not consistent with particle in box quantization. The proposal is that physical states satisfy Galois confinement being thus Galois singlets and having therefore total momenta, whose components are ordinary integers, when momentum unit defined by the scale of causal diamond (CD) is used. - 6. The notion of p-adic prime was introduced in p-adic mass calculations that started the developments around 1995. p-Adic length scale hypothesis states that p-adic primes near powers of 2 have a special physical role (as possibly also the powers of other small primes such as p=3). The proposal is that p-adic primes correspond to ramified primes assignable to the extension and identified as divisors of the polynomial defined by the products of the root differences for the roots of the polynomial defining space-time space and having interpretation as values of, in general complex, virtual mass squared. ### 1.6.3 p-Adic TGD and fusion of real and p-adic physics to single coherent whole The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers might be important for TGD. Experimentation with p-adic numbers led to the notion of canonical identification mapping reals to p-adics and vice versa. The breakthrough came with the successful p-adic mass calculations using p-adic thermodynamics for Super-Virasoro representations with the super-Kac-Moody algebra associated with a Lie-group containing standard model gauge group. Although the details of the calculations have varied from year to year, it was clear that p-adic physics reduces not only the ratio of proton and Planck mass, the great mystery number of physics, but all elementary particle mass scales, to number theory if one assumes that primes near prime powers of two are in a physically favored position. Why this is the case, became one of the key puzzles and led to a number of arguments with a common
gist: evolution is present already at the elementary particle level and the primes allowed by the p-adic length scale hypothesis are the fittest ones. It became very soon clear that p-adic topology is not something emerging in Planck length scale as often believed, but that there is an infinite hierarchy of p-adic physics characterized by p-adic length scales varying to even cosmological length scales. The idea about the connection of p-adics with cognition motivated already the first attempts to understand the role of the p-adics and inspired "Universe as Computer" vision but time was not ripe to develop this idea to anything concrete (p-adic numbers are however in a central role in TGD inspired theory of consciousness). It became however obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy of intelligences and that p-adic prime serves as a kind of intelligence quotient. Ironically, the almost obvious idea about p-adic regions as cognitive regions of space-time providing cognitive representations for real regions had to wait for almost a decade for the access into my consciousness. In string model context one tries to reduces the physics to Planck scale. The price is the inability to say anything about physics in long length scales. In TGD p-adic physics takes care of this shortcoming by predicting the physics also in long length scales. There were many interpretational and technical questions crying for a definite answer. 1. What is the relationship of p-adic non-determinism to the classical non-determinism of the basic field equations of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic topology only serve as an effective topology? If p-adic physics is direct image of real physics, how the mapping relating them is constructed so that it respects various symmetries? Is the basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is both, how should one glue the physics in different number field together to get the Physics? Should one perform p-adicization also at the level of the WCW? Certainly the p-adicization at the level of super-conformal representation is necessary for the p-adic mass calculations. 2. Perhaps the most basic and most irritating technical problem was how to precisely define padic definite integral which is a crucial element of any variational principle based formulation of the field equations. Here the frustration was not due to the lack of solution but due to the too large number of solutions to the problem, a clear symptom for the sad fact that clever inventions rather than real discoveries might be in question. Quite recently I however learned that the problem of making sense about p-adic integration has been for decades central problem in the frontier of mathematics and a lot of profound work has been done along same intuitive lines as I have proceeded in TGD framework. The basic idea is certainly the notion of algebraic continuation from the world of rationals belonging to the intersection of real world and various p-adic worlds. Despite various uncertainties, the number of the applications of the poorly defined p-adic physics has grown steadily and the applications turned out to be relatively stable so that it was clear that the solution to these problems must exist. It became only gradually clear that the solution of the problems might require going down to a deeper level than that represented by reals and p-adics. The key challenge is to fuse various p-adic physics and real physics to single larger structure. This has inspired a proposal for a generalization of the notion of number field by fusing real numbers and various p-adic number fields and their extensions along rationals and possible common algebraic numbers. This leads to a generalization of the notions of embedding space and space-time concept and one can speak about real and p-adic space-time sheets. One can talk about adelic space-time, embedding space, and WCW. The corresponds of real 4-surfaces with the p-adic ones is induced by number theoretical discretization using points of 4-surfaces $Y^4 \subset M_c^8$ identifiable as 8-momenta, whose components are assumed to be algebraic integers in an extension of rationals defined by the extension of rationals associated with a polynomial P with integer coefficients smaller than the degree of P. These points define a cognitive representation, which is universal in the sense that it exists also in the algebraic extensions of p-adic numbers. The points of the cognitive representations associated with the mass shells with mass squared values identified as roots of P are enough since $M^8 - H$ duality can be used at both M^8 and H sides and also in the p-adic context. The mass shells are special in that they allow for Minkowski coordinates very large cognitive representations unlike the interiors of the 4-surfaces determined by holography by using the data defined by the 3-surfaces at the mass shells. The higher the dimension of the algebraic extension associated with P, the better the accuracy of the cognitive representation. Adelization providing number theoretical universality reduces to algebraic continuation for the amplitudes from this intersection of reality and various p-adicities - analogous to a back of a book - to various number fields. There are no problems with symmetries but canonical identification is needed: various group invariant of the amplitude are mapped by canonical identification to various p-adic number fields. This is nothing but a generalization of the mapping of the p-adic mass squared to its real counterpart in p-adic mass calculations. This leads to surprisingly detailed predictions and far reaching conjectures. For instance, the number theoretic generalization of entropy concept allows negentropic entanglement central for the applications to living matter (see Fig. http://tgdtheory.fi/appfigures/cat.jpg or Fig. ?? in the appendix of this book). One can also understand how preferred p-adic primes could emerge as so called ramified primes of algebraic extension of rationals in question and characterizing string world sheets and partonic 2-surfaces. Preferred p-adic primes would be ramified primes for extensions for which the number of p-adic continuations of two-surfaces to space-time surfaces (imaginations) allowing also real continuation (realization of imagination) would be especially large. These ramifications would be winners in the fight for number theoretical survival. Also a generalization of p-adic length scale hypothesis emerges from NMP [K9]. The characteristic non-determinism of the p-adic differential equations suggests strongly that p-adic regions correspond to "mind stuff", the regions of space-time where cognitive representations reside. This interpretation implies that p-adic physics is physics of cognition. Since Nature is probably a brilliant simulator of Nature, the natural idea is to study the p-adic physics of the cognitive representations to derive information about the real physics. This view encouraged by TGD inspired theory of consciousness clarifies difficult interpretational issues and provides a clear interpretation for the predictions of p-adic physics. ### 1.6.4 Infinite primes The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy defined by a repeatedly second quantized arithmetic quantum field theory gave a further boost for the speculations about TGD as a generalized number theory. After the realization that infinite primes can be mapped to polynomials possibly representable as surfaces geometrically, it was clear how TGD might be formulated as a generalized number theory with infinite primes forming the bridge between classical and quantum such that real numbers, p-adic numbers, and various generalizations of p-adics emerge dynamically from algebraic physics as various completions of the algebraic extensions of complexified quaternions and octonions. Complete algebraic, topological and dimensional democracy would characterize the theory. The infinite primes at the first level of hierarchy, which represent analogs of bound states, can be mapped to irreducible polynomials, which in turn characterize the algebraic extensions of rationals defining a hierarchy of algebraic physics continuable to real and p-adic number fields. The products of infinite primes in turn define more general algebraic extensions of rationals. The interesting question concerns the physical interpretation of the higher levels in the hierarchy of infinite primes and integers mappable to polynomials of n > 1 variables. ## 1.7 An explicit formula for $M^8 - H$ duality M^8-H duality is a generalization of momentum-position duality relating the number theoretic and geometric views of physics in TGD and, despite that it still involves poorly understood aspects, it has become a fundamental building block of TGD. One has 4-D surfaces $Y^4 \subset M_c^8$, where M_c^8 is complexified M^8 having interpretation as an analog of complex momentum space and 4-D spacetime surfaces $X^4 \subset H = M^4 \times CP_2$. M_c^8 , equivalently E_c^8 , can be regarded as complexified octonions. M_c^8 has a subspace M_c^4 containing M^4 . **Comment:** One—should be very cautious with the meaning of "complex". Complexified octonions involve a complex imaginary unit i—commuting with the octonionic imaginary units I_k . i is assumed to also appear as an imaginary unit also in—complex algebraic numbers defined by the roots of—polynomials P defining holographic data in M_c^8 . In the following $M^8 - H$ duality and its twistor lift are discussed and an explicit formula for the dualities are deduced. Also possible variants of the duality are discussed. ## 1.7.1 Holography in H $X^4 \subset H$ satisfies holography and is analogous to the Bohr orbit of a particle identified as a 3-surface. The proposal is that holography reduces to a
4-D generalization of holomorphy so that X^4 is a simultaneous zero of two functions of complex CP_2 coordinates and of what I have called Hamilton-Jacobi coordinates of M^4 with a generalized Kähler structure. The simplest choice of the Hamilton-Jacobi coordinates is defined by the decomposition $M^4 = M^2 \times E^2$, where M^2 is endowed with hypercomplex structure defined by light-like coordinates (u,v), which are analogous to z and \overline{z} . Any analytic map $u \to f(u)$ defines a new set of light-like coordinates and corresponds to a solution of the massless d'Alembert equation in M^2 . E^2 has some complex coordinates with imaginary unit defined by i. The conjecture is that also more general Hamilton-Jacobi structures for which the tangent space decomposition is local are possible. Therefore one would have $M^4 = M^2(x) \times E^2(x)$. These would correspond to non-equivalent complex and Kähler structures of M^4 analogous to those possessed by 2-D Riemann surfaces and parametrized by moduli space. ## 1.7.2 Number theoretic holography in M_c^8 $Y^4 \subset M_c^8$ satisfies number theoretic holography defining dynamics, which should reduce to associativity in some sense. The Euclidian complexified normal space $N^4(y)$ at a given point y of Y^4 is required to be associative, i.e. quaternionic. Besides this, $N^4(i)$ contains a preferred complex Euclidian 2-D subspace $Y^2(y)$. Also the spaces $Y^2(x)$ define an integrable distribution. I have assumed that $Y^2(x)$ can depend on the point y of Y^4 . These assumptions imply that the normal space N(y) of Y^4 can be parameterized by a point of $CP_2 = SU(3)/U(2)$. This distribution is always integrable unlike quaternionic tangent space distributions. $M^8 - H$ duality assigns to the normal space N(y) a point of CP_2 . M_c^4 point y is mapped to a point $x \in M^4 \subset M^4 \times CP_2$ defined by the real part of its inversion (conformal transformation): this formula involves effective Planck constant for dimensional reasons. The 3-D holographic data, which partially fixes 4-surfaces Y^4 is partially determined by a polynomial P with real integer coefficients smaller than the degree of P. The roots define mass squared values which are in general complex algebraic numbers and define complex analogs of mass shells in $M_c^4 \subset M_c^8$, which are analogs of hyperbolic spaces H^3 . The 3-surfaces at these mass shells define 3-D holographic data continued to a surface Y^4 by requiring that the normal space of Y^4 is associative, i.e. quaternionic. These 3-surfaces are not completely fixed but an interesting conjecture is that they correspond to fundamental domains of tessellations of H^3 . What does the complexity of the mass shells mean? The simplest interpretation is that the space-like M^4 coordinates (3-momentum components) are real whereas the time-like coordinate (energy) is complex and determined by the mass shell condition. One would have $Re^2(E) - Im(E)^2 - p^2 = Re(m^2)$ and $2Re(E)Im(E) = Im(m^2)$. The condition for the real parts gives H^3 when $\sqrt{Re^2(E) - Im(E)^2}$ is taken as a time coordinate. The second condition allows to solve Im(E) in terms of Re(E) so that the first condition reduces to an equation of mass shell when $\sqrt{(Re(E)^2 - Im(E)^2)}$, expressed in terms of Re(E), is taken as new energy coordinate $E_{eff} = \sqrt{(Re(E)^2 - Im(E)^2)}$. Is this deformation of H^3 in imaginary time direction—equivalent with a region of the hyperbolic 3-space H^3 ? One can look at the formula in more detail. Mass shell condition gives $Re^2(E) - Im(E)^2 - p^2 = Re(m^2)$ and $2Re(E)Im(E) = Im(m^2)$. The condition for the real parts gives H^3 , when $\sqrt{Re^2(E) - Im(E)^2}$ is taken as an effective energy. The second condition allows to solve Im(E) in terms of Re(E) so that the first condition reduces to a dispersion relation for $Re(E)^2$. $$Re(E)^2 = \frac{1}{2}(Re(m^2) - Im(m^2) + p^2)(1 \pm \sqrt{1 + \frac{2Im(m^2)^2}{(Re(m^2) - Im(m^2) + p^2)^2}}$$ (1.1) Only the positive root gives a non-tachyonic result for $Re(m^2) - Im(m^2) > 0$. For real roots with $Im(m^2) = 0$ and at the high momentum limit the formula coincides with the standard formula. For $Re(m^2) = Im(m^2)$ one obtains $Re(E)^2 \to Im(m^2)/\sqrt{2}$ at the low momentum limit $p^2 \to 0$. Energy does not depend on momentum at all: the situation resembles that for plasma waves. ## 1.7.3 Can one find an explicit formula for $M^8 - H$ duality? The dream is an explicit formula for the M^8-H duality mapping $Y^4\subset M_c^8$ to $X^4\subset H$. This formula should be consistent with the assumption that the generalized holomorphy holds true for X^4 . The following proposal is a more detailed variant of the earlier proposal for which Y^4 is determined by a map g of $M_c^4 \to SU(3)_c \subset G_{2,c}$, where $G_{2,c}$ is the complexified automorphism group of octonions and $SU(3)_c$ is interpreted as a complexified color group. This map defines a trivial $SU(3)_c$ gauge field. The real part of g however defines a non-trivial real color gauge field by the non-linearity of the non-abelian gauge field with respect to the gauge potential. The quadratic terms involving the imaginary part of the gauge potential give an additional condition to the real part in the complex situation and cancel it. If only the real part of g contributes, this contribution would be absent and the gauge field is non-vanishing. How could the automorphism $g(x) \subset SU(3) \subset G_2$ give rise to $M^8 - H$ duality? - 1. The interpretation is that g(y) at given point y of Y^4 relates the normal space at y to a fixed quaternionic/associative normal space at point y_0 , which corresponds is fixed by some subgroup $U(2)_0 \subset SU(3)$. The automorphism property of g guarantees that the normal space is quaternionic/associative at y. This simplifies the construction dramatically. - 2. The quaternionic normal sub-space (which has Euclidian signature) contains a complex sub-space which corresponds to a point of sphere $S^2 = SO(3)/O(2)$, where SO(3) is the quaternionic automorphism group. The interpretation could be in terms of a selection of spin quantization axes. The local choice of the preferred complex plane would not be unique and is analogous to the possibility of having non-trivial Hamilton Jacobi structures in M^4 characterized by the choice of $M^2(x)$ and equivalently its normal subspace $E^2(x)$. These two structures are independent apart from dependencies forced by the number theoretic dynamics. Hamilton-Jacobi structure means a selection of the quantization axis of spin and energy by fixing a distribution of light-like tangent vectors of M^4 and the choice of the quaternionic normal sub-space fixes a choice of preferred quaternionic imaginary unit defining a quantization axis of the weak isospin. - 3. The real part Re(g(y)) defines a point of SU(3) and the bundle projection $SU(3) \to CP_2$ in turn defines a point of $CP_2 = SU(3)/U(2)$. Hence one can assign to g a point of CP_2 as $M^8 H$ duality requires and deduce an explicit formula for the point. This means a realization of the dream. - 4. The construction requires a fixing of a quaternionic normal space N_0 at y_0 containing a preferred complex subspace at a single point of Y^4 plus a selection of the function g. If M^4 coordinates are possible for Y^4 , the first guess is that g as a function of complexified M^4 coordinates obeys generalized holomorphy with respect to complexified M^4 coordinates in the same sense and in the case of X^4 . This might guarantee that the $M^8 H$ image of Y^4 satisfies the generalized holomorphy. - 5. Also space-time surfaces X^4 with M^4 projection having a dimension smaller than 4 are allowed. I have proposed that they might correspond to singular cases for the above formula: a kind of blow-up would be involved. One can also consider a more general definition of Y^4 allowing it to have a M^4 projection with dimension smaller than 4 (say cosmic strings). Could one have implicit equations for the surface Y^4 in terms of the complex coordinates of $SU(3)_c$ and M^4 ? Could this give for instance cosmic strings with a 2-D M^4 projection and CP_2 type extremals with 4-D CP_2 projection and 1-D light-like M^4 projection? #### 1.7.4 What could the number theoretic holography mean physically? What could be physical meaning of the number theoretic holography? The condition that has been assumed is that the CP_2 coordinates at the mass shells of $M_c^4 \subset M_c^8$ mapped to mass shells H^3 of $M^4 \subset M^4 \times CP_2$ are constant at the H^3 . This is true if the g(y) defines the same CP_2 point for a given component X_i^3 of the 3-surface at a given mass shell. g is therefore fixed apart from a local U(2) transformation leaving the CP_2 point invariant. A stronger condition would be that the CP_2 point is the same for each component of X_i^3 and even at each mass shell but this condition seems to be unnecessarily strong. Comment: One can o criticize this condition as too strong and one can consider giving up this condition. The motivation for this condition is that the number of algebraic points at the 3-surfaces associated with H^3 explodes since the coordinates associated with normal directions vanish. Kind of cognitive explosion would be in question. SU(3) corresponds to a subgroup of G_2 and one can wonder what the fixing of this subgroup could mean physically. G_2 is 14-D and the coset space $G_2/SU(3)$ is 6-D and a good guess is that it is just the 6-D twistor space $SU(3)/U(1) \times U(1)$ of CP_2 : at least the isometries are the same. The fixing of the SU(3) subgroup means fixing of a CP_2 twistor. Physically this means the fixing of the quantization axis of color isospin and hypercharge. ## 1.7.5 Twistor lift of the holography What is interesting is that
by replacing SU(3) with G_2 , one obtains an explicit formula form the generalization of $M^8 - H$ duality to that for the twistorial lift of TGD! One can also consider a twistorial generalization of the above proposal for the number theoretic holography by allowing local G_2 automorphisms interpreted as local choices of the color quantization axis. G_2 elements would be fixed apart from a local SU(3) transformation at the components of 3-surfaces at mass shells. The choice of the color quantization axes for a connected 3-surface at a given mass shell would be the same everywhere. This choice is indeed very natural physically since 3-surface corresponds to a particle. Is this proposal consistent with the boundary condition of the number theoretical holography mean in the case of 4-surfaces in M_c^8 and $M^4 \times CP_2$? - 1. The selection of $SU(3) \subset G_2$ for ordinary $M^8 H$ duality means that the $G_{2,c}$ gauge field vanishes everywhere and the choice of color quantization axis is the same at all points of the 4-surface. The fixing of the CP_2 point to be constant at H^3 implies that the color gauge field at $H^3 \subset M_c^8$ and its image $H^3 \subset H$ vanish. One would have color confinement at the mass shells H_i^3 , where the observations are made. Is this condition too strong? - 2. The constancy of the G_2 element at mass shells makes sense physically and means a fixed color quantization axis. The selection of a fixed $SU(3) \subset G_2$ for entire space-time surface is in conflict with the non-constancy of G_2 element unless G_2 element differs at different points of 4-surface only by a multiplication of a local $SU(3)_0$ element, that is local SU(3) transformation. This kind of variation of the G_2 element would mean a fixed color group but varying choice of color quantization axis. - 3. Could one consider the possibility that the local $G_{2,c}$ element is free and defines the twistor lift of M^8-H duality as something more fundamental than the ordinary M^8-H duality based on $SU(3)_c$. This duality would make sense only at the mass shells so that only the spaces $H^3 \times CP_2$ assignable to mass shells would make sense physically? In the interior CP_2 would be replaced with the twistor space $SU(3)/U(1) \times U(1)$. Color gauge fields would be non-vanishing at the mass shells but outside the mass shells one would have G_2 gauge fields. There is also a physical objection against the G_2 option. The 14-D Lie algebra representation of G_2 acts on the imaginary octonions which decompose with respect to the color group to $1 \oplus 3 \oplus \overline{3}$. The automorphism property requires that 1 can be transformed to 3 or $\overline{3}$ to themselves: this requires that the decomposition contains $3 \oplus \overline{3}$. Furthermore, it must be possible to transform 3 and $\overline{3}$ to themselves, which requires the presence of 8. This leaves only the decomposition $8 \oplus 3 \oplus \overline{3}$. G_2 gluons would both color octet and triplets. In the TDG framework the only conceivable interpretation would be in terms of ordinary gluons and leptoquark-like gluons. This does not fit with the basic vision of TGD. The choice of twistor as a selection of quantization axes should make sense also in the M^4 degrees of freedom. M^4 twistor corresponds to a choice of light-like direction at a given point of M^4 . The spatial component of the light-like vector fixes the spin quantization axis. Its choice together with the light-likeness fixes the time direction and therefore the rest system and energy quantization axis. Light-like vector fixes also the choice of M^2 and of E^2 as its orthogonal complement. Therefore the fixing of M^4 twistor as a point of $SU(4)/SU(3) \times U(1)$ corresponds to a choice of the spin quantization axis and the time-like axis defining the rest system in which the energy is measured. This choice would naturally correspond to the Hamilton-Jacobi structure fixing the decompositions $M^2(x) \times E^2(x)$. At a given mass shell the choice of the quantization axis would be constant for a given X_i^3 . ## 1.8 Hierarchy of Planck Constants and Dark Matter Hierarchy By quantum classical correspondence space-time sheets can be identified as quantum coherence regions. Hence the fact that they have all possible size scales more or less unavoidably implies that Planck constant must be quantized and have arbitrarily large values. If one accepts this then also the idea about dark matter as a macroscopic quantum phase characterized by an arbitrarily large value of Planck constant emerges naturally as does also the interpretation for the long ranged classical electro-weak and color fields predicted by TGD. Rather seldom the evolution of ideas follows simple linear logic, and this was the case also now. In any case, this vision represents the fifth, relatively new thread in the evolution of TGD and the ideas involved are still evolving. ## 1.8.1 Dark Matter as Large \hbar Phases D. Da Rocha and Laurent Nottale [E1] have proposed that Schrödinger equation with Planck constant \hbar replaced with what might be called gravitational Planck constant $\hbar_{gr} = \frac{GmM}{v_0}$ ($\hbar = c = 1$). v_0 is a velocity parameter having the value $v_0 = 144.7 \pm .7$ km/s giving $v_0/c = 4.6 \times 10^{-4}$. This is rather near to the peak orbital velocity of stars in galactic halos. Also subharmonics and harmonics of v_0 seem to appear. The support for the hypothesis coming from empirical data is impressive. Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hydrodynamics. Many-sheeted space-time however suggests that astrophysical systems are at some levels of the hierarchy of space-time sheets macroscopic quantum systems. The space-time sheets in question would carry dark matter. Nottale's hypothesis would predict a gigantic value of h_{gr} . Equivalence Principle and the independence of gravitational Compton length on mass m implies however that one can restrict the values of mass m to masses of microscopic objects so that h_{gr} would be much smaller. Large h_{gr} could provide a solution of the black hole collapse (IR catastrophe) problem encountered at the classical level. The resolution of the problem inspired by TGD inspired theory of living matter is that it is the dark matter at larger space-time sheets which is quantum coherent in the required time scale [K18]. It is natural to assign the values of Planck constants postulated by Nottale to the space-time sheets mediating gravitational interaction and identifiable as magnetic flux tubes (quanta) possibly carrying monopole flux and identifiable as remnants of cosmic string phase of primordial cosmology. The magnetic energy of these flux quanta would correspond to dark energy and magnetic tension would give rise to negative "pressure" forcing accelerate cosmological expansion. This leads to a rather detailed vision about the evolution of stars and galaxies identified as bubbles of ordinary and dark matter inside magnetic flux tubes identifiable as dark energy. Certain experimental findings suggest the identification $h_{eff} = n \times = h_{gr}$. The large value of h_{gr} can be seen as a way to reduce the string tension of fermionic strings so that gravitational (in fact all!) bound states can be described in terms of strings connecting the partonic 2-surfaces defining particles (analogous to AdS/CFT description). The values $h_{eff}/h = n$ can be interpreted in terms of a hierarchy of breakings of super-conformal symmetry in which the super-conformal generators act as gauge symmetries only for a sub-algebras with conformal weights coming as multiples of n. Macroscopic quantum coherence in astrophysical scales is implied. If also Kähler-Dirac action is present, part of the interior degrees of freedom associated with the Kähler-Dirac part of conformal algebra become physical. A possible is that the termionic oscillator operators generate super-symmetries and sparticles correspond almost by definition to dark matter with $h_{eff}/h = n > 1$. One implication would be that at least part if not all gravitons would be dark and be observed only through their decays to ordinary high frequency graviton ($E = hf_{high} = h_{eff}f_{low}$) of bunch of n low energy gravitons. ## 1.8.2 Hierarchy of Planck Constants from the Anomalies of Neuroscience and Biology The quantal ELF effects of ELF em fields on vertebrate brain have been known since seventies. ELF em fields at frequencies identifiable as cyclotron frequencies in magnetic field whose intensity is about 2/5 times that of Earth for biologically important ions have physiological effects and affect also behavior. What is intriguing that the effects are found only in vertebrates (to my best knowledge). The energies for the photons of ELF em fields are extremely low - about 10^{-10} times lower than thermal energy at physiological temperatures- so that quantal effects are impossible in the framework of standard quantum theory. The values of Planck constant would be in these situations large but not gigantic. This inspired the hypothesis that these photons correspond to so large a value of Planck constant that the energy of photons is above the thermal energy. The proposed interpretation was as dark photons and the general hypothesis was that dark matter corresponds to ordinary matter with non-standard value of Planck constant. If only particles with the same value of Planck constant can appear in the same vertex of Feynman diagram, the phases with different value of Planck constant are dark relative to each other. The phase transitions changing Planck constant can however make possible interactions between phases with different Planck constant but these interactions do not manifest themselves in particle physics. Also the interactions mediated by classical fields should be
possible. Dark matter would not be so dark as we have used to believe. The hypothesis $h_{eff} = h_{gr}$ - at least for microscopic particles - implies that cyclotron energies of charged particles do not depend on the mass of the particle and their spectrum is thus universal although corresponding frequencies depend on mass. In bio-applications this spectrum would correspond to the energy spectrum of bio-photons assumed to result from dark photons by h_{eff} reducing phase transition and the energies of bio-photons would be in visible and UV range associated with the excitations of bio-molecules. Also the anomalies of biology (see for instance [K15, K16, K14]) support the view that dark matter might be a key player in living matter. ### 1.8.3 Dark Matter as a Source of Long Ranged Weak and Color Fields Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not however seem to allow long ranged electro-weak gauge fields. The problem disappears if long range classical electro-weak gauge fields are identified as space-time correlates for massless gauge fields created by dark matter. Also scaled up variants of ordinary electro-weak particle spectra are possible. The identification explains chiral selection in living matter and unbroken $U(2)_{ew}$ invariance and free color in bio length scales become characteristics of living matter and of biochemistry and bio-nuclear physics. The recent view about the solutions of Kähler- Dirac action assumes that the modes have a well-defined em charge and this implies that localization of the modes to 2-D surfaces (right-handed neutrino is an exception). Classical W boson fields vanish at these surfaces and also classical Z^0 field can vanish. The latter would guarantee the absence of large parity breaking effects above intermediate boson scale scaling like h_{eff} . ## 1.9 Twistors in TGD and connection with Veneziano duality The twistorialization of TGD has two aspects. The attempt to generalize twistor Grassmannian approach emerged first. It was however followed by the realization that also the twistor lift of TGD at classical space-time level is needed. It turned out that the progress in the understanding of the classical twistor lift has been much faster - probably this is due to my rather limited technical QFT skills. ## 1.9.1 Twistor lift at space-time level 8-dimensional generalization of ordinary twistors is highly attractive approach to TGD [K23]. The reason is that M^4 and CP_2 are completely exceptional in the sense that they are the only 4-D manifolds allowing twistor space with Kähler structure [A7]. The twistor space of $M^4 \times CP_2$ is Cartesian product of those of M^4 and CP_2 . The obvious idea is that space-time surfaces allowing twistor structure if they are orientable are representable as surfaces in H such that the properly induced twistor structure co-incides with the twistor structure defined by the induced metric. In fact, it is enough to generalize the induction of spinor structure to that of twistor structure so that the induced twistor structure need not be identical with the ordinary twistor structure possibly assignable to the space-time surface. The induction procedure reduces to a dimensional reduction of 6-D Kähler action giving rise to 6-D surfaces having bundle structure with twistor sphere as fiber and space-time as base. The twistor sphere of this bundle is imbedded as sphere in the product of twistor spheres of twistor spaces of M^4 and CP_2 . This condition would define the dynamics, and the original conjecture was that this dynamics is equivalent with the identification of space-time surfaces as preferred extremals of Kähler action. The dynamics of space-time surfaces would be lifted to the dynamics of twistor spaces, which are sphere bundles over space-time surfaces. What is remarkable that the powerful machinery of complex analysis becomes available. It however turned out that twistor lift of TGD is much more than a mere technical tool. First of all, the dimensionally reduction of 6-D Kähler action contained besides 4-D Kähler action also a volume term having interpretation in terms of cosmological constant. This need not bring anything new, since all known extremals of Kähler action with non-vanishing induced Kähler form are minimal surfaces. There is however a large number of embeddings of twistor sphere of spacetime surface to the product of twistor spheres. Cosmological constant has spectrum and depends on length scale, and the proposal is that coupling constant evolution reduces to that for cosmological constant playing the role of cutoff length. That cosmological constant could transform from a mere nuisance to a key element of fundamental physics was something totally new and unexpected. - 1. The twistor lift of TGD at space-time level forces to replace 4-D Kähler action with 6-D dimensionally reduced Kähler action for 6-D surface in the 12-D Cartesian product of 6-D twistor spaces of M^4 and CP_2 . The 6-D surface has bundle structure with twistor sphere as fiber and space-time surface as base. - Twistor structure is obtained by inducing the twistor structure of 12-D twistor space using dimensional reduction. The dimensionally reduced 6-D Kähler action is sum of 4-D Kähler action and volume term having interpretation in terms of a dynamical cosmological constant depending on the size scale of space-time surface (or of causal diamond CD in zero energy ontology (ZEO)) and determined by the representation of twistor sphere of space-time surface in the Cartesian product of the twistor spheres of M^4 and CP_2 . - 2. The preferred extremal property as a representation of quantum criticality would naturally correspond to minimal surface property meaning that the space-time surface is separately an extremal of both Kähler action and volume term almost everywhere so that there is no coupling between them. This is the case for all known extremals of Kähler action with non-vanishing induced Kähler form. - Minimal surface property could however fail at 2-D string world sheets, their boundaries and perhaps also at partonic 2-surfaces. The failure is realized in minimal sense if the 3-surface has 1-D edges/folds (strings) and 4-surface 2-D edges/folds (string world sheets) at which some partial derivatives of the embedding space coordinates are discontinuous but canonical momentum densities for the entire action are continuous. - There would be no flow of canonical momentum between interior and string world sheet and minimal surface equations would be satisfied for the string world sheet, whose 4-D counterpart in twistor bundle is determined by the analog of 4-D Kähler action. These conditions allow the transfer of canonical momenta between Kähler- and volume degrees of freedom at string world sheets. These no-flow conditions could hold true at least asymptotically (near the boundaries of CD). - M^8-H duality suggests that string world sheets (partonic 2-surfaces) correspond to images of complex 2-sub-manifolds of M^8 (having tangent (normal) space which is complex 2-plane of octonionic M^8). - 3. Cosmological constant would depend on p-adic length scales and one ends up to a concrete model for the evolution of cosmological constant as a function of p-adic length scale and other number theoretic parameters (such as Planck constant as the order of Galois group): this conforms with the earlier picture. - Inflation is replaced with its TGD counterpart in which the thickening of cosmic strings to flux tubes leads to a transformation of Kähler magnetic energy to ordinary and dark matter. Since the increase of volume increases volume energy, this leads rapidly to energy minimum at some flux tube thickness. The reduction of cosmological constant by a phase transition however leads to a new expansion phase. These jerks would replace smooth cosmic expansion of GRT. The discrete coupling constant evolution predicted by the number theoretical vision could be understood as being induced by that of cosmological constant taking the role of cutoff parameter in QFT picture [L2]. ## 1.9.2 Twistor lift at the level of scattering amplitudes and connection with Veneziano duality The classical part of twistor lift of TGD is rather well-understood. Concerning the twistorialization at the level of scattering amplitudes the situation is much more difficult conceptually - I already mentioned my limited QFT skills. - 1. From the classical picture described above it is clear that one should construct the 8-D twistorial counterpart of theory involving space-time surfaces, string world sheets and their boundaries, plus partonic 2-surfaces and that this should lead to concrete expressions for the scattering amplitudes. - The light-like boundaries of string world sheets as carriers of fermion numbers would correspond to twistors as they appear in twistor Grassmann approach and define the analog for the massless sector of string theories. The attempts to understand twistorialization have been restricted to this sector. - 2. The beautiful basic prediction would be that particles massless in 8-D sense can be massive in 4-D sense. Also the infrared cutoff problematic in twistor approach emerges naturally and reduces basically to the dynamical cosmological constant provided by classical twistor lift. One can assign 4-momentum both to the spinor harmonics of the embedding space representing ground states of super-conformal representations and to light-like boundaries of string world sheets at the orbits of partonic 2-surfaces. The two four-momenta should be identical by quantum classical correspondence: this could be seen as a concretization of Equivalence Principle. Also a connection with string model emerges. - 3. As far as symmetries are considered, the picture looks rather clear. Ordinary twistor
Grassmannian approach boils down to the construction of scattering amplitudes in terms of Yangian invariants for conformal group of M^4 . Therefore a generalization of super-symplectic symmetries to their Yangian counterpart seems necessary. These symmetries would be gigantic but how to deduce their implications? - 4. The notion of positive Grassmannian is central in the twistor approach to the scattering amplitudes in calN=4 SUSYs. TGD provides a possible generalization and number theoretic interpretation of this notion. TGD generalizes the observation that scattering amplitudes in twistor Grassmann approach correspond to representations for permutations. Since 2-vertex is the only fermionic vertex in TGD, OZI rules for fermions generalizes, and scattering amplitudes are representations for braidings. - Braid interpretation encourages the conjecture that non-planar diagrams can be reduced to ordinary ones by a procedure analogous to the construction of braid (knot) invariants by gradual un-braiding (un-knotting). This is however not the only vision about a solution of non-planarity. Quantum criticality provides different view leading to a totally unexpected connection with string models, actually with the Veneziano duality, which was the starting point of dual resonance model in turn leading via dual resonance models to super string models. - 1. Quantum criticality in TGD framework means that coupling constant evolution is discrete in the sense that coupling constants are piecewise constant functions of length scale replaced by dynamical cosmological constant. Loop corrections would vanish identically and the recursion formulas for the scattering amplitudes (allowing only planar diagrams) deduced in twistor Grassmann would involve no loop corrections. In particular, cuts would be replaced by sequences of poles mimicking them like sequences of point charge mimic line charges. In momentum discretization this picture follows automatically. - 2. This would make sense in finite measurement resolution realized in number theoretical vision by number-theoretic discretization of the space-time surface (cognitive representation) as points with coordinates in the extension of rationals defining the adele [L1]. Similar discretization would take place for momenta. Loops would vanish at the level of discretization but what would happen at the possibly existing continuum limit: does the sequence of poles integrate to cuts? Or is representation as sum of resonances something much deeper? - 3. Maybe it is! The basic idea of behind the original Veneziano amplitudes (see http://tinyurl.com/yyhwvbqb) was Veneziano duality. This 4-particle amplitude was generalized by Yoshiro Nambu, Holber-Beck Nielsen, and Leonard Susskind to N-particle amplitude (see http://tinyurl.com/yyvkx7as) based on string picture, and the resulting model was called dual resonance model. The model was forgotten as QCD emerged. Later came superstring models and led to M-theory. Now it has become clear that something went wrong, and it seems that one must return to the roots. Could the return to the roots mean a careful reconsideration of the dual resonance model? - 4. Recall that Veneziano duality (1968) was deduced by assuming that scattering amplitude can be described as sum over s-channel resonances or t-channel Regge exchanges and Veneziano duality stated that hadronic scattering amplitudes have representation as sums over s- or t-channel resonance poles identified as excitations of strings. The sum over exchanges defined by t-channel resonances indeed reduces at larger values of s to Regge form. - The resonances had zero width, which was not consistent with unitarity. Further, there were no counterparts for the *sum* of s-, t-, and u-channel diagrams with continuous cuts in the kinematical regions encountered in QFT approach. What puts bells ringing is the uchannel diagrams would be non-planar and non-planarity is the problem of twistor Grassmann approach. 5. Veneziano duality is true only for s- and t- channels but not been s- and u-channel. Stringy description makes t-channel and s-channel pictures equivalent. Could it be that in fundamental description u-channels diagrams cannot be distinguished from s-channel diagrams or t-channel diagrams? Could the stringy representation of the scattering diagrams make u-channel twist somehow trivial if handles of string world sheet representing stringy loops in turn representing the analog of non-planarity of Feynman diagrams are absent? The permutation of external momenta for tree diagram in absence of loops in planar representation would be a twist of π in the representation of planar diagram as string world sheet and would not change the topology of the string world sheet and would not involve non-trivial world sheet topology. For string world sheets loops would correspond to handles. The presence of handle would give an edge with a loop at the level of 3-surface (self energy correction in QFT). Handles are not allowed if the induced metric for the string world sheet has Minkowskian signature. If the stringy counterparts of loops are absent, also the loops in scattering amplitudes should be absent. This argument applies only inside the Minkowskian space-time regions. If string world sheets are present also in Euclidian regions, they might have handles and loop corrections could emerge in this manner. In TGD framework strings (string world sheets) are identified to 1-D edges/folds of 3-surface at which minimal surface property and topological QFT property fails (minimal surfaces as calibrations). Could the interpretation of edge/fold as discontinuity of some partial derivatives exclude loopy edges: perhaps the branching points would be too singular? A reduction to a sum over s-channel resonances is what the vanishing of loops would suggest. Could the presence of string world sheets make possible the vanishing of continuous cuts even at the continuum limit so that continuum cuts would emerge only in the approximation as the density of resonances is high enough? The replacement of continuous cut with a sum of *infinitely* narrow resonances is certainly an approximation. Could it be that the stringy representation as a sum of resonances with *finite* width is an essential aspect of quantum physics allowing to get rid of infinities necessarily accompanying loops? Consider now the arguments against this idea. - 1. How to get rid of the problems with unitarity caused by the zero width of resonances? Could finite resonance widths make unitarity possible? Ordinary twistor Grassmannian approach predicts that the virtual momenta are light-like but complex: obviously, the imaginary part of the energy in rest frame would have interpretation as resonance with. - In TGD framework this generalizes for 8-D momenta. By quantum-classical correspondence (QCC) the classical Noether charges are equal to the eigenvalues of the fermionic charges in Cartan algebrable (maximal set of mutually commuting observables) and classical TGD indeed predicts complex momenta (Kähler coupling strength is naturally complex). QCC thus supports this proposal. - 2. Sum over resonances/exchanges picture is in conflict with QFT picture about scattering of particles. Could finite resonance widths due to the complex momenta give rise to the QFT type scattering amplitudes as one develops the amplitudes in Taylor series with respect to the resonance width? Unitarity condition indeed gives the first estimate for the resonance width. QFT amplitudes should emerge in an approximation obtained by replacing the discrete set of finite width resonances with a cut as the distance between poles is shorter than the resolution for mass squared. In superstring models string tension has single very large value and one cannot obtain QFT type behavior at low energies (for instance, scattering amplitudes in hadronic string model are concentrated in forward direction). TGD however predicts an entire hierarchy of p-adic length scales with varying string tension. The hierarchy of mass scales corresponding roughly to the lengths and thickness of magnetic flux tubes as thickened cosmic strings and characterized by the value of cosmological constant predicted by twistor lift of TGD. Could this give rise to continuous QCT type cuts at the limit when measurement resolution cannot distinguish between resonances? The dominating term in the sum over sums of resonances in t-channel gives near forward direction approximately the lowest mass resonance for strings with the smallest string tension. This gives the behavior $1/(t-m_{min}^2)$, where m_{min} corresponds to the longest mass scale involved (the largest space-time sheet involved), approximating the 1/t-behavior of massless theories. This also brings in IR cutoff, the lack of which is a problem of gauge theories. This should give rise to continuous QFT type cuts at the limit when measurement resolution cannot distinguish between resonances. ## 1.10 Organization of "TGD: an Overview" "TGD: an Overview" tries to give an overall view about quantum TGD as it stands now. The book has $5~\mathrm{parts}$. - 1. In the 1st part of the book I will try to give an overall view about the evolution of TGD and about quantum TGD in its recent form. I cannot avoid the use of various concepts without detailed definitions and my hope is that reader only gets a bird's eye of view about TGD. Two visions about physics are discussed. According to the first vision physical states of the Universe correspond to classical spinor fields in the world of the classical worlds identified as 3-surfaces or equivalently as corresponding 4-surfaces analogous to Bohr orbits and identified as special extrema of Kähler action. TGD as a generalized number theory vision leading naturally also to the emergence of p-adic physics as physics of cognitive representations is the second vision. - 2. The 2nd part of the book is devoted to the vision about physics as
infinite-dimensional configuration space geometry. The basic idea is that classical spinor fields in infinite-dimensional "world of classical worlds", space of 3-surfaces in $M^4 \times CP_2$ describe the quantum states of the Universe. Quantum jump remains the only purely quantal aspect of quantum theory in this approach since there is no quantization at the level of the configuration space. Space-time surfaces correspond to special extremals of the Kähler action analogous to Bohr orbits and define what might be called classical TGD discussed in the first chapter. The construction of the configuration space geometry and spinor structure are discussed in remaining chapters. - 3. The 3rd part of the book describes physics as generalized number theory vision. Number theoretical vision involves three loosely related approaches: fusion of real and various p-adic physics to a larger whole as algebraic continuations of what might be called rational physics; space-time as a hyper-quaternionic surface of hyper-octonion space, and space-time surfaces as a representations of infinite primes. - 4. The first chapter in the 4th part of the book summarizes the basic ideas related to von Neumann algebras known as hyper-finite factors of type II_1 about which configuration space Clifford algebra represents a canonical example. - Second chapter is devoted to the basic ideas related to the hierarchy of Planck constants and related generalization of the notion of imbedding space to a book like structure. Third chapter is about $M^8 H$ duality. - 5. The physical applications of TGD are the topic of the 5th part of the book. The cosmological and astrophysical applications of the many-sheeted space-time are summarized and the applications to elementary particle physics are discussed at the general level. TGD explains particle families in terms of generation genus correspondences (particle families correspond to 2-dimensional topologies labelled by genus). The notion of elementary particle vacuum functional is developed leading to an argument that the number of light particle families is three is discussed. The general theory for particle massivation based on p-adic thermodynamics is discussed at the general level. The detailed calculations of elementary particle masses are not however carried out in this book. 2. Sources 27 ## 2 Sources The eight online books about TGD [K25, K24, K17, K12, K4, K11, K6, K20] and nine online books about TGD inspired theory of consciousness and quantum biology [K22, K3, K13, K2, K5, K7, K8, K19, K21] are warmly recommended for the reader willing to get overall view about what is involved. My homepage (http://tinyurl.com/ybv8dt4n) contains a lot of material about TGD. In particular, a TGD glossary at http://tinyurl.com/yd6jf3o7). I have published articles about TGD and its applications to consciousness and living matter in Journal of Non-Locality (http://tinyurl.com/ycyrxj4o founded by Lian Sidorov and in Prespacetime Journal (http://tinyurl.com/ycvktjhn), Journal of Consciousness Research and Exploration (http://tinyurl.com/yba4f672), and DNA Decipher Journal (http://tinyurl.com/y9z52khg), all of them founded by Huping Hu. One can find the list about the articles published at http://tinyurl.com/ybv8dt4n. I am grateful for these far-sighted people for providing a communication channel, whose importance one cannot overestimate. ## 3 The contents of the book ## 3.1 PART I: GENERAL OVERVIEW ## 3.1.1 Why TGD and What TGD is? This piece of text was written as an attempt to provide a popular summary about TGD. This is of course mission impossible since TGD is something at the top of centuries of evolution which has led from Newton to standard model. This means that there is a background of highly refined conceptual thinking about Universe so that even the best computer graphics and animations fail to help. One can still try to create some inspiring impressions at least. This chapter approaches the challenge by answering the most frequently asked questions. Why TGD? How TGD could help to solve the problems of recent day theoretical physics? What are the basic principles of TGD? What are the basic guidelines in the construction of TGD? These are examples of this kind of questions which I try to answer in using the only language that I can talk. This language is a dialect of the language used by elementary particle physicists, quantum field theorists, and other people applying modern physics. At the level of practice involves technically heavy mathematics but since it relies on very beautiful and simple basic concepts, one can do with a minimum of formulas, and reader can always to to Wikipedia if it seems that more details are needed. I hope that reader could catch the basic principles and concepts: technical details are not important. And I almost forgot: problems! TGD itself and almost every new idea in the development of TGD has been inspired by a problem. ## 3.1.2 Topological Geometrodynamics: Three Visions In this chapter I will discuss three basic visions about quantum Topological Geometrodynamics (TGD). It is somewhat matter of taste which idea one should call a vision and the selection of these three in a special role is what I feel natural just now. - 1. The first vision is generalization of Einstein's geometrization program based on the idea that the Kähler geometry of the world of classical worlds (WCW) with physical states identified as classical spinor fields on this space would provide the ultimate formulation of physics. - 2. Second vision is number theoretical and involves three threads. The first thread relies on the idea that it should be possible to fuse real number based physics and physics associated with various p-adic number fields to single coherent whole by a proper generalization of number concept. Second thread is based on the hypothesis that classical number fields could allow to understand the fundamental symmetries of physics and and imply quantum TGD from purely number theoretical premises with associativity defining the fundamental dynamical principle both classically and quantum mechanically. The third thread relies on the notion of infinite primes whose construction has amazing structural similarities with second quantization of super-symmetric quantum field theories. In particular, the hierarchy of infinite primes and integers allows to generalize the notion of numbers so that given real number has infinitely rich number theoretic anatomy based on the existence of infinite number of real units. 3. The third vision is based on TGD inspired theory of consciousness, which can be regarded as an extension of quantum measurement theory to a theory of consciousness raising observer from an outsider to a key actor of quantum physics. ## 3.1.3 TGD Inspired Theory of Consciousness The basic ideas and implications of TGD inspired theory of consciousness are briefly summarized. The quantum notion of self solved several key problems of TGD inspired theory of consciousness but the precise definition of self has also remained a long standing problem and I have been even ready to identify self with quantum jump. Zero energy ontology allows what looks like a final solution of the problem. Self indeed corresponds to a sequence of quantum jumps integrating to single unit, but these quantum jumps correspond state function reductions to a fixed boundary of CD leaving the corresponding parts of zero energy states invariant. In positive energy ontology these repeated state function reductions would have no effect on the state but in TGD framework there occurs a change for the second boundary and gives rise to the experienced flow of time and its arrow and gives rise to self. The first quantum jump to the opposite boundary corresponds to the act of free will or wake-up of self. p-Adic physics as correlate for cognition and intention leads to the notion of negentropic entanglement possible in the intersection of real and p-adic worlds involves experience about expansion of consciousness. Consistency with standard quantum measurement theory forces negentropic entanglement to correspond to density matrix proportional to unit matrix. Unitary entanglement typical for quantum computing systems gives rise to unitary entanglement. With the advent of the hierarchy of Planck constants realized in terms of generalized embedding space and of zero energy ontology emerged the idea that self hierarchy could be reduced to a fractal hierarchy of quantum jumps within quantum jumps. It seems now clear that the two definitions of self are consistent with each other. The identification of the imbedding space correlate of self as causal diamond (CD) of the embedding space combined with the identification of space-time correlates as space-time sheets inside CD solved also the problems concerning the relationship between geometric and subjective time. A natural conjecture is that the the integer n in $h_{eff} = n \times h$ corresponds to the dimension of the unit matrix associated with negentropic entanglement. Also a connection with quantum criticality made possible by non-determinism of Kähler action and extended conformal invariance emerges so that there is high conceptual coherence between the new concepts inspired by TGD. Negentropy Maximization Principle (NMP) serves as a basic variational principle for the dynamics of quantum jump. The new view about the relation of geometric and subjective time leads to a new view about memory and intentional action. The quantum measurement theory based on finite measurement resolution and realized in terms of hyper-finite factors of type II_1 justifies the notions of sharing of mental images and stereo-consciousness deduced earlier on basis of quantum classical correspondence. Qualia reduce to quantum number increments associated with quantum jump. Self-referentiality of consciousness can be understood from quantum classical correspondence implying a symbolic representation
of contents of consciousness at space-time level updated in each quantum jump. p-Adic physics provides space-time correlates for cognition and intentionality. ## 3.1.4 TGD and M-Theory In this chapter a critical comparison of M-theory and TGD as two competing theories is carried out. Dualities and black hole physics are regarded as basic victories of M-theory. 1. The counterpart of electric magnetic duality plays an important role also in TGD and it has become clear that it might change the sign of Kähler coupling strength rather than leaving it invariant. The different signs would be related to different time orientations of the space-time sheets. This option is favored also by TGD inspired cosmology but unitarity seems to exclude it. - 2. The AdS/CFT duality of Maldacena involved with the quantum gravitational holography has a direct counterpart in TGD with 3-dimensional causal determinants serving as holograms so that the construction of absolute minima of Kähler action reduces to a local problem. - 3. The attempts to develop further the nebulous idea about space-time surfaces as associative (co-associative) sub-manifolds of an octonionic embedding space led to the realization of duality which could be called number theoretical spontaneous compactification. Space-time region can be regarded equivalently as a associative (co-associative) space-time region in M^8 with octonionic structure or as a 4-surface in $M^4 \times CP_2$. If the map taking these surface to each other preserves associtativity in octonionic structure of H then the generalization to H H duality becomes natural and would make preferred extremals a category. - 4. The notion of cotangent bundle of configuration space of 3-surfaces (WCW) suggests the interpretation of the number-theoretical compactification as a wave-particle duality in infinite-dimensional context. These ideas generalize at the formal level also to the M-theory assuming that stringy configuration space is introduced. The existence of Kähler metric very probably does not allow dynamical target space. In TGD framework black holes are possible but putting black holes and particles in the same basket seems to be mixing of apples with oranges. The role of black hole horizons is taken in TGD by 3-D light like causal determinants, which are much more general objects. Black hole-elementary particle correspondence and p-adic length scale hypothesis have already earlier led to a formula for the entropy associated with elementary particle horizon. In TGD framework the interior of blackhole is naturally replaced with a region of Euclidian signature of induced metric and can be seen as analog for the line of Feynman diagram. Blackholes appear only in GRT limit of TGD which lumps together the sheets of many-sheeted space-time to a piece of Minkowski space and provides it with an effective metric determined as sum of Minkowski metric and deviations of the metrics of space-time sheets from Minkowski metric. The recent findings from RHIC have led to the realization that TGD predicts black hole like objects in all length scales. They are identifiable as highly tangled magnetic flux tubes in Hagedorn temperature and containing conformally confined matter with a large Planck constant and behaving like dark matter in a macroscopic quantum phase. The fact that string like structures in macroscopic quantum states are ideal for topological quantum computation modifies dramatically the traditional view about black holes as information destroyers. The discussion of the basic weaknesses of M-theory is motivated by the fact that the few predictions of the theory are wrong which has led to the introduction of anthropic principle to save the theory. The mouse as a tailor history of M-theory, the lack of a precise problem to which M-theory would be a solution, the hard nosed reductionism, and the censorship in Los Alamos archives preventing the interaction with competing theories could be seen as the basic reasons for the recent blind alley in M-theory. ## 3.1.5 Can one apply Occam's razor as a general purpose debunking argument to TGD? Occarm's razor have been used to debunk TGD. The following arguments provide the information needed by the reader to decide himself. Considerations are at three levels. The level of "world of classical worlds" (WCW) defined by the space of 3-surfaces endowed with Kähler structure and spinor structure and with the identification of WCW space spinor fields as quantum states of the Universe: this is nothing but Einstein's geometrization program applied to quantum theory. Second level is space-time level. Space-time surfaces correspond to preferred extremals of Käction in $M^4 \times CP_2$. The number of field like variables is 4 corresponding to 4 dynamically independent embedding space coordinates. Classical gauge fields and gravitational field emerge from the dynamics of 4-surfaces. Strong form of holography reduces this dynamics to the data given at string world sheets and partonic 2-surfaces and preferred extremals are minimal surface extremals of Kähler action so that the classical dynamics in space-time interior does not depend on coupling constants at all which are visible via boundary conditions only. Continuous coupling constant evolution is replaced with a sequence of phase transitions between phases labelled by critical values of coupling constants: loop corrections vanish in given phase. Induced spinor fields are localized at string world sheets to guarantee well-definedness of em charge. At embedding space level the modes of embedding space spinor fields define ground states of super-symplectic representations and appear in QFT-GRT limit. GRT involves post-Newtonian approximation involving the notion of gravitational force. In TGD framework the Newtonian force correspond to a genuine force at embedding space level. I was also asked for a summary about what TGD is and what it predicts. I decided to add this summary to this chapter although it is goes slightly outside of its title. ## 3.2 PART II: PHYSICS AS INFINITE-DIMENSIONAL SPINOR GE-OMETRY ## 3.2.1 The Geometry of the World of Classical Worlds The topics of this chapter are the purely geometric aspects of the vision about physics as an infinite-dimensional Kähler geometry of configuration space or the "world of classical worlds" (WCW), with "classical world" identified either as 3-D surface of the unique Bohr orbit like 4-surface traversing through it. The non-determinism of Kähler action forces to generalize the notion of 3-surfaces so that unions of space-like surfaces with time like separations must be allowed. The considerations are restricted mostly to real context and the problems related to the p-adicization are discussed later. There are two separate tasks involved. - 1. Provide WCW with Kähler geometry which is consistent with 4-dimensional general coordinate invariance so that the metric is Diff⁴ degenerate. General coordinate invariance implies that the definition of metric must assign to a give 3-surface X^3 a 4-surface as a kind of Bohr orbit $X^4(X^3)$. - 2. Provide the WCW with a spinor structure. The great idea is to identify WCW gamma matrices in terms of super algebra generators expressible using second quantized fermionic oscillator operators for induced free spinor fields at the space-time surface assignable to a given 3-surface. The isometry generators and contractions of Killing vectors with gamma matrices would thus form a generalization of Super Kac-Moody algebra. From the experience with loop spaces one can expect that there is no hope about existence of well-defined Riemann connection unless this space is union of infinite-dimensional symmetric spaces with constant curvature metric and simple considerations requires that Einstein equations are satisfied by each component in the union. The coordinates labeling these symmetric spaces are zero modes having interpretation as genuinely classical variables which do not quantum fluctuate since they do not contribute to the line element of the WCW. The construction of WCW Kähler geometry requires also the identification of complex structure and thus complex coordinates of WCW. A natural identification of symplectic coordinates is as classical symplectic Noether charges and their canonical conjugates. There are three approaches to the construction of the Kähler metric. - 1. Direct construction of Kähler function as action associated with a preferred Bohr orbit like extremal for some physically motivated action action leads to a unique result using standard formula once complex coordinates of WCW have been identified. The realiation in practice is not easy- - 2. Second approach is group theoretical and is based on a direct guess of isometries of the infinite-dimensional symmetric space formed by 3-surfaces with fixed values of zero modes. The group of isometries is generalization of Kac-Moody group obtained by replacing finite-dimensional Lie group with the group of symplectic transformations of $\delta M_+^4 \times CP_2$, where δM_+^4 is the boundary of 4-dimensional future light-cone. The guesses for the Kähler metric rely on the symmetry considerations but have suffered from ad hoc character. - 3. The third approach identifies the elements of WCW Kähler metric as anti-commutators of WCW gamma matrices identified as super-symplectic super-generators defined as Noether charges for Kähler- Dirac action. This approach leads to explicit formulas and to a natural generalization of the super-symplectic algebra to Yangian giving additional poly-local contributions to WCW metric. Contributions are expressible as anticommutators of super-charges associated with strings and one ends up to a generalization of AdS/CFT duality stating in the special case that the expression for WCW Kähler metric in terms of Kähler function is equivalent with the expression in terms of fermionic super-charges associated with strings connecting partonic
2-surfaces. #### 3.2.2 Classical TGD In this chapter the classical field equations associated with the Kähler action are studied. ## 1. Are all extremals actually "preferred"? The notion of preferred extremal has been central concept in TGD but is there really compelling need to pose any condition to select preferred extremals in zero energy ontology (ZEO) as there would be in positive energy ontology? In ZEO the union of the space-like ends of space-time surfaces at the boundaries of causal diamond (CD) are the first guess for 3-surface. If one includes to this 3-surface also the light-like partonic orbits at which the signature of the induced metric changes to get analog of Wilson loop, one has good reasons to expect that the preferred extremal is highly unique without any additional conditions apart from non-determinism of Kähler action proposed to correspond to sub-algebra of conformal algebra acting on the light-like 3-surface and respecting light-likeness. One expects that there are finite number n of conformal equivalence classes and n corresponds to n in $h_{eff} = nh$. These objects would allow also to understand the assignment of discrete physical degrees of freedom to the partonic orbits as required by the assignment of hierarchy of Planck constants to the non-determinism of Kähler action. ## 2. Preferred extremals and quantum criticality The identification of preferred extremals of Kähler action defining counterparts of Bohr orbits has been one of the basic challenges of quantum TGD. By quantum classical correspondence the non-deterministic space-time dynamics should mimic the dissipative dynamics of the quantum jump sequence. The space-time representation for dissipation comes from the interpretation of regions of space-time surface with Euclidian signature of induced metric as generalized Feynman diagrams (or equivalently the light-like 3-surfaces defining boundaries between Euclidian and Minkowskian regions). Dissipation would be represented in terms of Feynman graphs representing irreversible dynamics and expressed in the structure of zero energy state in which positive energy part corresponds to the initial state and negative energy part to the final state. Outside Euclidian regions classical dissipation should be absent and this indeed the case for the known extremals. The non-determinism should also give rose to space-time correlate for quantum criticality. The study of Kähler-Dirac equations suggests how to define quantum criticality. Noether currents assignable to the Kähler-Dirac equation are conserved only if the first variation of Kähler-Dirac operator D_K defined by Kähler action vanishes. This is equivalent with the vanishing of the second variation of Kähler action - at least for the variations corresponding to dynamical symmetries having interpretation as dynamical degrees of freedom which are below measurement resolution and therefore effectively gauge symmetries. It became later clear that the well-definedness of em charge forces in the generic case the localization of the spinor modes to 2-D surfaces - string world sheets. This would suggest that the equations stating the vanishing of the second variation of Kähler action hold true only at string world sheets. The vanishing of second variations of preferred extremals suggests a generalization of catastrophe theory of Thom, where the rank of the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix. In zero energy ontology (ZEO) catastrophe theory would be generalized to infinite-dimensional context. Finite number of sheets for catastrophe would be replaced with finite number of conformal equivalence classes of space-time surfaces connecting given space-like 3-surfaces at the boundaries causal diamond (CD). ## 3. Hamilton-Jacobi structure Most known extremals share very general properties. One of them is Hamilton-Jacobi structure meaning the possibility to assign to the extremal so called Hamilton-Jacobi coordinates. This means dual slicings of M^4 by string world sheets and partonic 2-surfaces. Number theoretic compactification led years later to the same condition. This slicing allows a dimensional reduction of quantum TGD to Minkowskian and Euclidian variants of string model. Also holography in the sense that the dynamics of 3-dimensional space-time surfaces reduces to that for 2-D partonic surfaces in a given measurement resolution follows. The construction of quantum TGD relies in essential manner to this property. CP_2 type vacuum extremals do not possess Hamilton-Jaboci structure but have holomorphic structure. 4. Specific extremals of Kähler action The study of extremals of Kähler action represents more than decade old layer in the development of TGD. - 1. The huge vacuum degeneracy is the most characteristic feature of Kähler action (any 4-surface having CP_2 projection which is Legendre sub-manifold is vacuum extremal, Legendre sub-manifolds of CP_2 are in general 2-dimensional). This vacuum degeneracy is behind the spin glass analogy and leads to the p-adic TGD. As found in the second part of the book, various particle like vacuum extremals also play an important role in the understanding of the quantum TGD. - 2. The so called CP_2 type vacuum extremals have finite, negative action and are therefore an excellent candidate for real particles whereas vacuum extremals with vanishing Kähler action are candidates for the virtual particles. These extremals have one dimensional M^4 projection, which is light like curve but not necessarily geodesic and locally the metric of the extremal is that of CP_2 : the quantization of this motion leads to Virasoro algebra. Space-times with topology $CP_2\#CP_2\#...CP_2$ are identified as the generalized Feynmann diagrams with lines thickened to 4-manifolds of "thickness" of the order of CP_2 radius. The quantization of the random motion with light velocity associated with the CP_2 type extremals in fact led to the discovery of Super Virasoro invariance, which through the construction of the WCW geometry, becomes a basic symmetry of quantum TGD. - 3. There are also various non-vacuum extremals. - (a) String like objects, with string tension of same order of magnitude as possessed by the cosmic strings of GUTs, have a crucial role in TGD inspired model for the galaxy formation and in the TGD based cosmology. - (b) The so called massless extremals describe non-linear plane waves propagating with the velocity of light such that the polarization is fixed in given point of the space-time surface. The purely TGD:eish feature is the light like Kähler current: in the ordinary Maxwell theory vacuum gauge currents are not possible. This current serves as a source of coherent photons, which might play an important role in the quantum model of bio-system as a macroscopic quantum system. ## 3.3 PART III: PHYSICS AS GENERALIZED NUMBER THEORY ## 3.3.1 Physics as a Generalized Number Theory There are two basic approaches to the construction of quantum TGD. The first approach relies on the vision of quantum physics as infinite-dimensional Kähler geometry for the "world of classical worlds" identified as the space of 3-surfaces in in certain 8-dimensional space. Essentially a generalization of the Einstein's geometrization of physics program is in question. The second vision identifies physics as a generalized number theory and involves three threads: various p-adic physics and their fusion together with real number based physics to a larger structure, the attempt to understand basic physics in terms of classical number fields (in particular, identifying associativity condition as the basic dynamical principle), and infinite primes whose construction is formally analogous to a repeated second quantization of an arithmetic quantum field theory. 1. p-Adic physics and their fusion with real physics The basic technical problems of the fusion of real physics and various p-adic physics to single coherent whole relate to the notion of definite integral both at space-time level, embedding space level and the level of WCW (the "world of classical worlds"). The expressibility of WCW as a union of symmetric spacesleads to a proposal that harmonic analysis of symmetric spaces can be used to define various integrals as sums over Fourier components. This leads to the proposal the p-adic variant of symmetric space is obtained by a algebraic continuation through a common intersection of these spaces, which basically reduces to an algebraic variant of coset space involving algebraic extension of rationals by roots of unity. This brings in the notion of angle measurement resolution coming as $\Delta \phi = 2\pi/p^n$ for given p-adic prime p. Also a proposal how one can complete the discrete version of symmetric space to a continuous p-adic versions emerges and means that each point is effectively replaced with the p-adic variant of the symmetric space identifiable as a p-adic counterpart of the real discretization volume so that a fractal p-adic variant of symmetric space results. If the Kähler geometry of WCW is expressible in terms of rational or algebraic functions, it can in principle be continued the p-adic context. One can however consider the possibility that that the integrals over partonic 2-surfaces defining flux Hamiltonians exist p-adically as Riemann sums. This requires that the geometries of the partonic 2-surfaces effectively reduce to finite sub-manifold geometries in the discretized version of $\delta M_+^4 \times CP_2$. If Kähler action is required to exist p-adically same kind of condition applies to the space-time surfaces themselves. These strong conditions might make sense in the intersection of the real and p-adic worlds assumed to characterized living matter. ## 2. TGD and classical number fields The basis vision is that the
geometry of the infinite-dimensional WCW ("world of classical worlds") is unique from its mere existence. This leads to its identification as union of symmetric spaces whose Kähler geometries are fixed by generalized conformal symmetries. This fixes space-time dimension and the decomposition $M^4 \times S$ and the idea is that the symmetries of the Kähler manifold S make it somehow unique. The motivating observations are that the dimensions of classical number fields are the dimensions of partonic 2-surfaces, space-time surfaces, and embedding space and M^8 can be identified as hyper-octonions- a sub-space of complexified octonions obtained by adding a commuting imaginary unit. This stimulates some questions. Could one understand $S = CP_2$ number theoretically in the sense that M^8 and $H = M^4 \times CP_2$ be in some deep sense equivalent ("number theoretical compactification" or $M^8 - H$ duality)? Could associativity define the fundamental dynamical principle so that space-time surfaces could be regarded as associative or co-associative (defined properly) sub-manifolds of M^8 or equivalently of H. One can indeed define the associative (co-associative) 4-surfaces using octonionic representation of gamma matrices of 8-D spaces as surfaces for which the Kähler-Dirac gamma matrices span an associate (co-associative) sub-space at each point of space-time surface. In fact, only octonionic structure is needed. Also $M^8 - H$ duality holds true if one assumes that this associative sub-space at each point contains preferred plane of M^8 identifiable as a preferred commutative or co-commutative plane (this condition generalizes to an integral distribution of commutative planes in M^8). These planes are parametrized by CP_2 and this leads to $M^8 - H$ duality. WCW itself can be identified as the space of 4-D local sub-algebras of the local Clifford algebra of M^8 or H which are associative or co-associative. An open conjecture is that this characterization of the space-time surfaces is equivalent with the preferred extremal property of Kähler action with preferred extremal identified as a critical extremal allowing infinite-dimensional algebra of vanishing second variations. ## 3. Infinite primes The construction of infinite primes is formally analogous to a repeated second quantization of an arithmetic quantum field theory by taking the many particle states of previous level elementary particles at the new level. Besides free many particle states also the analogs of bound states appear. In the representation in terms of polynomials the free states correspond to products of first order polynomials with rational zeros. Bound states correspond to n^{th} order polynomials with non-rational but algebraic zeros at the lowest level. At higher levels polynomials depend on several variables. The construction might allow a generalization to algebraic extensions of rational numbers, and also to classical number fields and their complexifications obtained by adding a commuting imaginary unit. Special class corresponds to hyper-octonionic primes for which the imaginary part of ordinary octonion is multiplied by the commuting imaginary unit so that one obtains a sub-space M^8 with Minkowski signature of metric. Also in this case the basic construction reduces to that for rational or complex rational primes and more complex primes are obtained by acting using elements of the octonionic automorphism group which preserve the complex octonionic integer property. Can one map infinite primes/integers/rationals to quantum states? Do they have space-time surfaces as correlates? Quantum classical correspondence suggests that if infinite rationals can be mapped to quantum states then the mapping of quantum states to space-time surfaces automatically gives the map to space-time surfaces. The question is therefore whether the mapping to quantum states defined by WCW spinor fields is possible. A natural hypothesis is that number theoretic fermions can be mapped to real fermions and number theoretic bosons to WCW ("world of classical worlds") Hamiltonians. The crucial observation is that one can construct infinite hierarchy of rational units by forming ratios of infinite integers such that their ratio equals to one in real sense: the integers have interpretation as positive and negative energy parts of zero energy states. One can generalize the construction to quaternionic and octonionic units. One can construct also sums of these units with complex coefficients using commuting imaginary unit and these sums can be normalized to unity and have interpretation as states in Hilbert space. These units can be assumed to possess well defined standard model quantum numbers. It is possible to map the quantum number combinations of WCW spinor fields to these states. Hence the points of M^8 can be said to have infinitely complex number theoretic anatomy so that quantum states of the universe can be mapped to this anatomy. One could talk about algebraic holography or number theoretic Brahman=Atman identity. Also the question how infinite primes might relate to the p-adicization program and to the hierarchy of Planck constants is discussed. #### 3.3.2 Unified Number Theoretical Vision An updated view about M^8-H duality is discussed. M^8-H duality allows to deduce $M^4\times CP_2$ via number theoretical compactification. One important correction is that octonionic spinor structure makes sense only for M^8 whereas for $M^4\times CP_2$ complefixied quaternions characterized the spinor structure. Octonions, quaternions associative and co-associative space-time surfaces, octonionic spinors and twistors and twistor spaces are highly relevant for quantum TGD. In the following some general observations distilled during years are summarized. There is a beautiful pattern present suggesting that $H=M^4\times CP_2$ is completely unique on number theoretical grounds. Consider only the following facts. M^4 and CP_2 are the unique 4-D spaces allowing twistor space with Kähler structure. Octonionic projective space OP_2 appears as octonionic twistor space (there are no higher-dimensional octonionic projective spaces). Octowistors generalise the twistorial construction from M^4 to M^8 and octonionic gamma matrices make sense also for H with quaternionicity condition reducing OP_2 to to 12-D $G_2/U(1)\times U(1)$ having same dimension as the twistor space $CP_3\times SU(3)/U(1)\times U(1)$ of H assignable to complexified quaternionic representation of gamma matrices. A further fascinating structure related to octo-twistors is the non-associated analog of Lie group defined by automorphisms by octonionic imaginary units: this group is topologically six-sphere. Also the analogy of quaternionicity of preferred extremals in TGD with the Majorana condition central in super string models is very thought provoking. All this suggests that associativity indeed could define basic dynamical principle of TGD. Number theoretical vision about quantum TGD involves both p-adic number fields and classical number fields and the challenge is to unify these approaches. The challenge is non-trivial since the p-adic variants of quaternions and octonions are not number fields without additional conditions. The key idea is that TGD reduces to the representations of Galois group of algebraic numbers realized in the spaces of octonionic and quaternionic adeles generalizing the ordinary adeles as Cartesian products of all number fields: this picture relates closely to Langlands program. Associativity would force sub-algebras of the octonionic adeles defining 4-D surfaces in the space of octonionic adeles so that 4-D space-time would emerge naturally. $M^8 - H$ correspondence in turn would map the space-time surface in M^8 to $M^4 \times CP_2$. A long-standing question has been the origin of preferred p-adic primes characterizing elementary particles. I have proposed several explanations and the most convincing hitherto is related to the algebraic extensions of rationals and p-adic numbers selecting naturally preferred primes as those which are ramified for the extension in question. ## 3.4 PART IV: HYPER-FINITE FACTORS OF TYPE II₁, HIERAR-CHY OF PLANCK CONSTANTS, AND $M^8 - H$ duality ## 3.4.1 Evolution of Ideas about Hyper-finite Factors in TGD The work with TGD inspired model for quantum computation led to the realization that von Neumann algebras, in particular hyper-finite factors, could provide the mathematics needed to develop a more explicit view about the construction of M-matrix generalizing the notion of S-matrix in zero energy ontology (ZEO). In this chapter I will discuss various aspects of hyper-finite factors and their possible physical interpretation in TGD framework. 1. Hyper-finite factors in quantum TGD The following argument suggests that von Neumann algebras known as hyper-finite factors (HFFs) of type III₁ appearing in relativistic quantum field theories provide also the proper mathematical framework for quantum TGD. - 1. The Clifford algebra of the infinite-dimensional Hilbert space is a von Neumann algebra known as HFF of type II_1 . Therefore also the Clifford algebra at a given point (light-like 3-surface) of world of classical worlds (WCW) is HFF of type II_1 . If the fermionic Fock algebra defined by the fermionic oscillator operators assignable to the induced spinor fields (this is actually not obvious!) is infinite-dimensional it defines a representation for HFF of type II_1 . Superconformal symmetry suggests that the extension of the Clifford algebra defining the fermionic part of a super-conformal algebra by adding bosonic super-generators representing symmetries of WCW respects the HFF property. It could however occur that HFF of type II_{∞} results. - 2. WCW is a union of sub-WCWs associated with causal diamonds (CD) defined as intersections of future and past directed light-cones. One can allow also unions of
CDs and the proposal is that CDs within CDs are possible. Whether CDs can intersect is not clear. - 3. The assumption that the M^4 proper distance a between the tips of CD is quantized in powers of 2 reproduces p-adic length scale hypothesis but one must also consider the possibility that a can have all possible values. Since SO(3) is the isotropy group of CD, the CDs associated with a given value of a and with fixed lower tip are parameterized by the Lobatchevski space L(a) = SO(3,1)/SO(3). Therefore the CDs with a free position of lower tip are parameterized by $M^4 \times L(a)$. A possible interpretation is in terms of quantum cosmology with a identified as cosmic time. Since Lorentz boosts define a non-compact group, the generalization of so called crossed product construction strongly suggests that the local Clifford algebra of WCW is HFF of type III₁. If one allows all values of a, one ends up with $M^4 \times M_+^4$ as the space of moduli for WCW. - 4. An interesting special aspect of 8-dimensional Clifford algebra with Minkowski signature is that it allows an octonionic representation of gamma matrices obtained as tensor products of unit matrix 1 and 7-D gamma matrices γ_k and Pauli sigma matrices by replacing 1 and γ_k by octonions. This inspires the idea that it might be possible to end up with quantum TGD from purely number theoretical arguments. One can start from a local octonionic Clifford algebra in M^8 . Associativity (co-associativity) condition is satisfied if one restricts the octonionic algebra to a subalgebra associated with any hyper-quaternionic and thus 4-D sub-manifold of M^8 . This means that the induced gamma matrices associated with the Kähler action span a complex quaternionic (complex co-quaternionic) sub-space at each point of the sub-manifold. This associative (co-associative) sub-algebra can be mapped a matrix algebra. Together with M^8-H duality this leads automatically to quantum TGD and therefore also to the notion of WCW and its Clifford algebra which is however only mappable to an associative (co-associative) algebra and thus to HFF of type II₁. 2. Hyper-finite factors and M-matrix HFFs of type III₁ provide a general vision about M-matrix. - 1. The factors of type III allow unique modular automorphism Δ^{it} (fixed apart from unitary inner automorphism). This raises the question whether the modular automorphism could be used to define the M-matrix of quantum TGD. This is not the case as is obvious already from the fact that unitary time evolution is not a sensible concept in zero energy ontology. - 2. Concerning the identification of M-matrix the notion of state as it is used in theory of factors is a more appropriate starting point than the notion modular automorphism but as a generalization of thermodynamical state is certainly not enough for the purposes of quantum TGD and quantum field theories (algebraic quantum field theorists might disagree!). Zero energy ontology requires that the notion of thermodynamical state should be replaced with its "complex square root" abstracting the idea about M-matrix as a product of positive square root of a diagonal density matrix and a unitary S-matrix. This generalization of thermodynamical state -if it exists- would provide a firm mathematical basis for the notion of M-matrix and for the fuzzy notion of path integral. - 3. The existence of the modular automorphisms relies on Tomita-Takesaki theorem, which assumes that the Hilbert space in which HFF acts allows cyclic and separable vector serving as ground state for both HFF and its commutant. The translation to the language of physicists states that the vacuum is a tensor product of two vacua annihilated by annihilation oscillator type algebra elements of HFF and creation operator type algebra elements of its commutant isomorphic to it. Note however that these algebras commute so that the two algebras are not hermitian conjugates of each other. This kind of situation is exactly what emerges in zero energy ontology (ZEO): the two vacua can be assigned with the positive and negative energy parts of the zero energy states entangled by M-matrix. - 4. There exists infinite number of thermodynamical states related by modular automorphisms. This must be true also for their possibly existing "complex square roots". Physically they would correspond to different measurement interactions meaning the analog of state function collapse in zero modes fixing the classical conserved charges equal to the quantal counterparts. Classical charges would be parameters characterizing zero modes. A concrete construction of M-matrix motivated the recent rather precise view about basic variational principles is proposed. Fundamental fermions localized to string world sheets can be said to propagate as massless particles along their boundaries. The fundamental interaction vertices correspond to two fermion scattering for fermions at opposite throats of wormhole contact and the inverse of the conformal scaling generator L_0 would define the stringy propagator characterizing this interaction. Fundamental bosons correspond to pairs of fermion and antifermion at opposite throats of wormhole contact. Physical particles correspond to pairs of wormhole contacts with monopole Kähler magnetic flux flowing around a loop going through wormhole contacts. 3. Connes tensor product as a realization of finite measurement resolution The inclusions $\mathcal{N} \subset \mathcal{M}$ of factors allow an attractive mathematical description of finite measurement resolution in terms of Connes tensor product but do not fix M-matrix as was the original optimistic belief. - 1. In ZEO \mathcal{N} would create states experimentally indistinguishable from the original one. Therefore \mathcal{N} takes the role of complex numbers in non-commutative quantum theory. The space \mathcal{M}/\mathcal{N} would correspond to the operators creating physical states modulo measurement resolution and has typically fractal dimension given as the index of the inclusion. The corresponding spinor spaces have an identification as quantum spaces with non-commutative \mathcal{N} -valued coordinates. - 2. This leads to an elegant description of finite measurement resolution. Suppose that a universal M-matrix describing the situation for an ideal measurement resolution exists as the idea about square root of state encourages to think. Finite measurement resolution forces to replace the probabilities defined by the M-matrix with their \mathcal{N} "averaged" counterparts. The "averaging" would be in terms of the complex square root of \mathcal{N} -state and a direct analog of functionally - or path integral over the degrees of freedom below measurement resolution defined by (say) length scale cutoff. - 3. One can construct also directly M-matrices satisfying the measurement resolution constraint. The condition that \mathcal{N} acts like complex numbers on M-matrix elements as far as \mathcal{N} -"averaged" probabilities are considered is satisfied if M-matrix is a tensor product of M-matrix in $\mathcal{M}(\mathcal{N})$ interpreted as finite-dimensional space with a projection operator to \mathcal{N} . The condition that \mathcal{N} averaging in terms of a complex square root of \mathcal{N} state produces this kind of M-matrix poses a very strong constraint on M-matrix if it is assumed to be universal (apart from variants corresponding to different measurement interactions). - 4. Analogs of quantum matrix groups from finite measurement resolution? The notion of quantum group replaces ordinary matrices with matrices with non-commutative elements. In TGD framework I have proposed that the notion should relate to the inclusions of von Neumann algebras allowing to describe mathematically the notion of finite measurement resolution. In this article I will consider the notion of quantum matrix inspired by recent view about quantum TGD and it provides a concrete representation and physical interpretation of quantum groups in terms of finite measurement resolution. The basic idea is to replace complex matrix elements with operators expressible as products of non-negative hermitian operators and unitary operators analogous to the products of modulus and phase as a representation for complex numbers. The condition that determinant and sub-determinants exist is crucial for the well-definedness of eigenvalue problem in the generalized sense. The weak definition of determinant meaning its development with respect to a fixed row or column does not pose additional conditions. Strong definition of determinant requires its invariance under permutations of rows and columns. The permutation of rows/columns turns out to have interpretation as braiding for the hermitian operators defined by the moduli of operator valued matrix elements. The commutativity of all sub-determinants is essential for the replacement of eigenvalues with eigenvalue spectra of hermitian operators and sub-determinants define mutually commuting set of operators. The resulting quantum matrices define a more general structure than quantum group but provide a concrete representation and interpretation for quantum group in terms of finite measurement resolution if q is a root of unity. For $q=\pm 1$ (Bose-Einstein or Fermi-Dirac statistics) one obtains quantum matrices for which the determinant is apart from possible change by sign factor invariant under the permutations of both rows and columns. One could also understand the fractal structure of inclusion sequences of hyper-finite factors resulting by recursively replacing operators appearing as matrix elements with quantum matrices. 5. Quantum spinors and fuzzy quantum mechanics The notion of quantum spinor leads to a quantum mechanical description of fuzzy probabilities. For quantum spinors state function reduction cannot be performed unless quantum deformation parameter equals to q=1. The reason is that
the components of quantum spinor do not commute: it is however possible to measure the commuting operators representing moduli squared of the components giving the probabilities associated with "true" and "false". The universal eigenvalue spectrum for probabilities does not in general contain (1,0) so that quantum qbits are inherently fuzzy. State function reduction would occur only after a transition to q=1 phase and decoherence is not a problem as long as it does not induce this transition. #### 3.4.2 Does TGD Predict a Spectrum of Planck Constants? The quantization of Planck constant has been the basic theme of TGD since 2005. The basic idea was stimulated by the suggestion of Nottale that planetary orbits could be seen as Bohr orbits with enormous value of Planck constant given by $\hbar_{gr} = GM_1M_2/v_0$, where the velocity parameter v_0 has the approximate value $v_0 \simeq 2^{-11}$ for the inner planets. This inspired the ideas that quantization is due to a condensation of ordinary matter around dark matter concentrated near Bohr orbits and that dark matter is in macroscopic quantum phase in astrophysical scales. The second crucial empirical input were the anomalies associated with living matter. The recent version of the chapter represents the evolution of ideas about quantization of Planck constants from a perspective given by seven years's work with the idea. A very concise summary about the situation is as follows. #### 1. Basic physical ideas The basic phenomenological rules are simple. - 1. The phases with non-standard values of effective Planck constant are identified as dark matter. The motivation comes from the natural assumption that only the particles with the same value of effective Planck can appear in the same vertex. One can illustrate the situation in terms of the book metaphor. Effective embedding spaces with different values of Planck constant form a book like structure and matter can be transferred between different pages only through the back of the book where the pages are glued together. One important implication is that light exotic charged particles lighter than weak bosons are possible if they have non-standard value of Planck constant. The standard argument excluding them is based on decay widths of weak bosons and has led to a neglect of large number of particle physics anomalies. - 2. Large effective or real value of Planck constant scales up Compton length or at least de Broglie wave length and its geometric correlate at space-time level identified as size scale of the space-time sheet assignable to the particle. This could correspond to the Kähler magnetic flux tube for the particle forming consisting of two flux tubes at parallel space-time sheets and short flux tubes at ends with length of order CP_2 size. This rule has far reaching implications in quantum biology and neuroscience since macroscopic quantum phases become possible as the basic criterion stating that macroscopic quantum phase becomes possible if the density of particles is so high that particles as Compton length sized objects overlap. Dark matter therefore forms macroscopic quantum phases. One implication is the explanation of mysterious looking quantal effects of ELF radiation in EEG frequency range on vertebrate brain: E=hf implies that the energies for the ordinary value of Planck constant are much below the thermal threshold but large value of Planck constant changes the situation. Also the phase transitions modifying the value of Planck constant and changing the lengths of flux tubes (by quantum classical correspondence) are crucial as also reconnections of the flux tubes. The hierarchy of Planck constants suggests also a new interpretation for FQHE (fractional quantum Hall effect) in terms of anyonic phases with non-standard value of effective Planck constant realized in terms of the effective multi-sheeted covering of embedding space: multi-sheeted space-time is to be distinguished from many-sheeted space-time. In astrophysics and cosmology the implications are even more dramatic. The interpretation of \hbar_{gr} introduced by Nottale in TGD framework is as an effective Planck constant associated with space-time sheets mediating gravitational interaction between masses M and m. The huge value of \hbar_{gr} means that the integer \hbar_{gr}/\hbar_0 interpreted as the number of sheets of covering is gigantic and that Universe possesses gravitational quantum coherence in astronomical scales. The gravitational Compton length $GM/v_0 = r_S/2v_0$ does not depend on m so that all particles around say Sun say same gravitational Compton length. By the independence of gravitational acceleration and gravitational Compton length on particle mass, it is enough to assume that only microscopic particles couple to the dark gravitons propagating along flux tubes mediating gravitational interaction. Therefore $h_{gr} = h_{eff}$ could be true in microscopic scales and would predict that cyclotron energies have no dependence on the mass of the charged particle meaning that the spectrum ordinary photons resulting in the transformation of dark photons to ordinary photons is universal. An attractive identification of these photons would be as bio-photons with energies in visible and UV range and thus inducing molecular transitions making control of biochemistry by dark photons. This changes the view about gravitons and suggests that gravitational radiation is emitted as dark gravitons which decay to pulses of ordinary gravitons replacing continuous flow of gravitational radiation. The energy of the graviton is gigantic unless the emission is assume to take place from a microscopic systems with large but not gigantic h_{gr} . 3. Why Nature would like to have large - maybe even gigantic - value of effective value of Planck constant? A possible answer relies on the observation that in perturbation theory the expansion takes in powers of gauge couplings strengths $\alpha = g^2/4\pi\hbar$. If the effective value of \hbar replaces its real value as one might expect to happen for multi-sheeted particles behaving like single particle, α is scaled down and perturbative expansion converges for the new particles. One could say that Mother Nature loves theoreticians and comes in rescue in their attempts to calculate. In quantum gravitation the problem is especially acute since the dimensionless parameter GMm/\hbar has gigantic value. Replacing \hbar with $\hbar_{gr} = GMm/v_0$ the coupling strength becomes $v_0 < 1$. 2. Space-time correlates for the hierarchy of Planck constants The hierarchy of Planck constants was introduced to TGD originally as an additional postulate and formulated as the existence of a hierarchy of embedding spaces defined as Cartesian products of singular coverings of M^4 and CP_2 with numbers of sheets given by integers n_a and n_b and $\hbar = n\hbar_0$. $n = n_a n_b$. With the advent of zero energy ontology (ZEO), it became clear that the notion of singular covering space of the embedding space could be only a convenient auxiliary notion. Singular means that the sheets fuse together at the boundary of multi-sheeted region. In ZEO 3-surfaces are unions of space-like 3-surface at opposite boundaries of CD. The non-determinism of Kähler action due to the huge vacuum degeneracy would naturally explain the existence of several space-time sheets connecting the two 3-surfaces at the opposite boundaries of CD. Quantum criticality suggests strongly conformal invariance and the identification of n as the number of conformal equivalence classes of these space-time sheets. Also a connection with the notion of negentropic entanglement emerges. # 3.4.3 Does M^8-H duality reduce classical TGD to octonionic algebraic geometry?: Part I TGD leads to several proposals for the exact solution of field equations defining space-time surfaces as preferred extremals of twistor lift of Kähler action. So called $M^8 - H$ duality is one of these approaches. The beauty of $M^8 - H$ duality is that it could reduce classical TGD to algebraic geometry and would immediately provide deep insights to cognitive representation identified as sets of rational points of these surfaces. In the sequel I shall consider the following topics. - 1. I will discuss basic notions of algebraic geometry such as algebraic variety, surface, and curve, all rational point of variety central for TGD view about cognitive representation, elliptic curves and surfaces, and rational and potentially rational varieties. Also the notion of Zariski topology and Kodaira dimension are discussed briefly. I am not a mathematician and what hopefully saves me from horrible blunders is physical intuition developed during 4 decades of TGD. - 2. It will be shown how M^8-H duality could reduce TGD at fundamental level to octonionic algebraic geometry. Space-time surfaces in M^8 would be algebraic surfaces identified as zero loci for imaginary part IM(P) or real part RE(P) of octonionic polynomial of complexified octonionic variable o_c decomposing as $o_c = q_c^1 + q_c^2 I^4$ and projected to a Minkowskian subspace M^8 of complexified O. Single real valued polynomial of real variable with algebraic coefficients would determine space-time surface! As proposed already earlier, spacetime surfaces would form commutative and associative algebra with addition, product and functional composition. One can interpret the products of polynomials as correlates for free many-particle states with interactions described by added interaction polynomial, which can vanish at boundaries of CDs thanks to the vanishing in Minkowski signature of the complexified norm $q_c\overline{q_c}$ appearing in RE(P) or IM(P) caused by the quaternionic non-commutativity. This leads to the same picture as the view about preferred extremals reducing to minimal surfaces near boundaries of CD. Also zero zero energy ontology (ZEO) could emerge naturally from the failure
of number field property for for quaternions at light-cone boundaries. The construction and interpretation of the octonionic geometry involves several challenges. 1. The fundamental challenge is to prove that the octonionic polynomials with real coefficients can give rise to associative (co-associative) surfaces as the zero loci of their real part RE(P) (imaginary parts IM(P)). RE(P) and IM(P) are defined in quaternionic sense. Contrary to the first naive working hypothesis, the identification $M^4 \subset O$ as as a co-associative region turns out to be the correct choice making light-cone boundary a counterpart of point-like singularity essential for the emergence of causal diamonds (CDs). The hierarchy of notions involved is well-ordering for 1-D structures, commutativity for complex numbers, and associativity for quaternions. This suggests a generalization of Cauchy-Riemann conditions for complex analytic functions to quaternions and octonions. Cauchy Riemann conditions are linear and constant value manifolds are 1-D and thus well-ordered. Quaternionic polynomials with real coefficients define maps for which the 2-D spaces corresponding to vanishing of real/imaginary parts of the polynomial are complex/co-complex or equivalently commutative/co-commutative. Commutativity is expressed by conditions bilinear in partial derivatives. Octonionic polynomials with real coefficients define maps for which 4-D surfaces for which real/imaginary part are quaternionic/co-quaternionic, or equivalently associative/co-associative. The conditions are now 3-linear. In fact, all algebras obtained by Cayley-Dickson construction adding imaginary units to octonionic algebra are power associative so that polynomials with real coefficients define an associative and commutative algebra. Hence octonion analyticity and M^8-H correspondence could generalize. 2. It turns out that in the generic case associative surfaces are 3-D and are obtained by requiring that one of the coordinates $RE(Y)^i$ or $IM(Y)^i$ in the decomposition $Y^i = RE(Y)^i + IM(Y)^i I_4$ of the gradient of RE(P) = Y = 0 with respect to the complex coordinates z_i^k , k = 1, 2, of O vanishes that is critical as function of quaternionic components z_1^k or z_2^k associated with q_1 and q_2 in the decomposition $o = q_1 + q_2 I_4$, call this component X_i . In the generic case this gives 3-D surface. In this generic case $M^8 - H$ duality can map only the 3-surfaces at the boundaries of CD and light-like partonic orbits to H, and only determines the boundary conditions of the dynamics in H determined by the twistor lift of Kähler action. $M^8 - H$ duality would allow to solve the gauge conditions for SSA (vanishing of infinite number of Noether charges) explicitly. One can also have criticality. 4-dimensionality can be achieved by posing conditions on the coefficients of the octonionic polynomial P so that the criticality conditions do not reduce the dimension: X_i would have possibly degenerate zero at space-time variety. This can allow 4-D associativity with at most 3 critical components X_i . Space-time surface would be analogous to a polynomial with a multiple root. The criticality of X_i conforms with the general vision about quantum criticality of TGD Universe and provides polynomials with universal dynamics of criticality. A generalization of Thom's catastrophe theory emerges. Criticality should be equivalent to the universal dynamics determined by the twistor lift of Kähler action in H in regions, where Kähler action and volume term decouple and dynamics does not depend on coupling constants. One obtains two types of space-time surfaces. Critical and associative (co-associative) surfaces can be mapped by M^8-H duality to preferred critical extremals for the twistor lift of Kähler action obeying universal dynamics with no dependence on coupling constants and due to the decoupling of Kähler action and volume term: these represent external particles. M^8-H duality does not apply to non-associative (non-co-associative) space-time surfaces except at 3-D boundary surfaces. These regions correspond to interaction regions in which Kähler action and volume term couple and coupling constants make themselves visible in the dynamics. M^8-H duality determines boundary conditions. 3. This picture generalizes to the level of complex/co-complex surfaces assigned with fermionic dynamics. Why in some cases 1-D light-like curves at partonic orbits seem to be enough to represent fermions? Why fermionic strings serve as correlates of entanglement for bound states? What selects string world sheets and partonic 2-surfaces from the slicing of space-time surfaces? I have proposed commutativity or co-commutativity of string worlds sheets/partonic 2-surfaces in quaternionic sense as number theoretic explanation (tangent space as a sub-space of quaternionic space is commutative/co-commutative at each point). Why not all string world sheets/partonic 2-surfaces in the slicing are not commutative/co-commutative? The answer to these questions is criticality again: in the generic case commutative varieties are 1-D curves. In critical case one has 2-D string worlds sheets and partonic 2-surfaces. # 3.4.4 Does M^8-H duality reduce classical TGD to octonionic algebraic geometry?: Part II TGD leads to several proposals for the exact solution of field equations defining space-time surfaces as preferred extremals of twistor lift of Kähler action. So called $M^8 - H$ duality is one of these approaches. The beauty of $M^8 - H$ duality is that it could reduce classical TGD to octonionic algebraic geometry and would immediately provide deep insights to cognitive representation identified as sets of rational points of these surfaces. The construction and interpretation of the octonionic geometry involves several challenges. 1. The fundamental challenge is to prove that the octonionic polynomials with real coefficients can give rise to associative (co-associative) surfaces as the zero loci of their real part RE(P) (imaginary parts IM(P)). RE(P) and IM(P) are defined in quaternionic sense. Contrary to the first naive working hypothesis, the identification $M^4 \subset O$ as as a co-associative region turns out to be the correct choice making light-cone boundary a counterpart of point-like singularity essential for the emergence of causal diamonds (CDs). The hierarchy of notions involved is well-ordering for 1-D structures, commutativity for complex numbers, and associativity for quaternions. This suggests a generalization of Cauchy-Riemann conditions for complex analytic functions to quaternions and octonions. Cauchy Riemann conditions are linear and constant value manifolds are 1-D and thus well-ordered. Quaternionic polynomials with real coefficients define maps for which the 2-D spaces corresponding to vanishing of real/imaginary parts of the polynomial are complex/co-complex or equivalently commutative/co-commutative. Commutativity is expressed by conditions bilinear in partial derivatives. Octonionic polynomials with real coefficients define maps for which 4-D surfaces for which real/imaginary part are quaternionic/co-quaternionic, or equivalently associative/co-associative. The conditions are now 3-linear. In fact, all algebras obtained by Cayley-Dickson construction adding imaginary units to octonionic algebra are power associative so that polynomials with real coefficients define an associative and commutative algebra. Hence octonion analyticity and M^8-H correspondence could generalize. 2. It turns out that in the generic case associative surfaces are 3-D and are obtained by requiring that one of the coordinates $RE(Y)^i$ or $IM(Y)^i$ in the decomposition $Y^i = RE(Y)^i + IM(Y)^i I_4$ of the gradient of RE(P) = Y = 0 with respect to the complex coordinates z_i^k , k = 1, 2, of O vanishes that is critical as function of quaternionic components z_1^k or z_2^k associated with q_1 and q_2 in the decomposition $o = q_1 + q_2 I_4$, call this component X_i . In the generic case this gives 3-D surface. In this generic case $M^8 - H$ duality can map only the 3-surfaces at the boundaries of CD and light-like partonic orbits to H, and only determines the boundary conditions of the dynamics in H determined by the twistor lift of Kähler action. $M^8 - H$ duality would allow to solve the gauge conditions for SSA (vanishing of infinite number of Noether charges) explicitly. One can also have criticality. 4-dimensionality can be achieved by posing conditions on the coefficients of the octonionic polynomial P so that the criticality conditions do not reduce the dimension: X_i would have possibly degenerate zero at space-time variety. This can allow 4-D associativity with at most 3 critical components X_i . Space-time surface would be analogous to a polynomial with a multiple root. The criticality of X_i conforms with the general vision about quantum criticality of TGD Universe and provides polynomials with universal dynamics of criticality. A generalization of Thom's catastrophe theory emerges. Criticality should be equivalent to the universal dynamics determined by the twistor lift of Kähler action in H in regions, where Kähler action and volume term decouple and dynamics does not depend on coupling constants. One obtains two types of space-time surfaces. Critical and associative (co-associative) surfaces can be mapped by M^8-H duality to preferred critical extremals for the twistor lift of Kähler action obeying universal dynamics with no dependence on coupling constants and due to the decoupling of Kähler action and volume term: these represent external particles. M^8-H duality does not apply to non-associative (non-co-associative) space-time surfaces except at 3-D boundary surfaces. These regions correspond to interaction regions in which Kähler action - and volume term couple and coupling constants make themselves visible in the dynamics. $M^8 H$ duality
determines boundary conditions. - 3. This picture generalizes to the level of complex/co-complex surfaces assigned with fermionic dynamics. Why in some cases 1-D light-like curves at partonic orbits seem to be enough to represent fermions? Why fermionic strings serve as correlates of entanglement for bound states? What selects string world sheets and partonic 2-surfaces from the slicing of space-time surfaces? - I have proposed commutativity or co-commutativity of string worlds sheets/partonic 2-surfaces in quaternionic sense as number theoretic explanation (tangent space as a sub-space of quaternionic space is commutative/co-commutative at each point). Why not all string world sheets/partonic 2-surfaces in the slicing are not commutative/co-commutative? The answer to these questions is criticality again: in the generic case commutative varieties are 1-D curves. In critical case one has 2-D string worlds sheets and partonic 2-surfaces. - 4. The super variant of the octonionic geometry relying on octonionic triality makes sense and the geometry of the space-time variety correlates with fermion and antifermion numbers assigned with it. This new view about super-geometry involving also automatic SUSY breaking at the level of space-time geometry. Also a sketchy proposal for the description of interactions is discussed. - 1. The surprise that RE(P) = 0 and IM(P) = 0 conditions have as singular solutions light-cone interior and its complement and 6-spheres $S^6(t_n)$ with radii t_n given by the roots of the real P(t), whose octonionic extension defines the space-time variety X^4 . The intersections $X^2 = X^4 \cap S^6(t_n)$ are tentatively identified as partonic 2-varieties defining topological interaction vertices. - The idea about the reduction of zero energy states to discrete cognitive representations suggests that interaction vertices at partonic varieties X^2 are associated with the discrete set of intersection points of the sparticle lines at light-like orbits of partonic 2-surfaces belonging to extension of rationals. - 2. CDs and therefore also ZEO emerge naturally. For CDs with different origins the products of polynomials fail to commute and associate unless the CDs have tips along real (time) axis. The first option is that all CDs under observation satisfy this condition. Second option allows general CDs. - The proposal is that the product $\prod P_i$ of polynomials associated with CDs with tips along real axis the condition $IM(\prod P_i) = 0$ reduces to $IM(P_i) = 0$ and criticality conditions guaranteeing associativity and provides a description of the external particles. Inside these CDs $RE(\prod P_i) = 0$ does not reduce to $RE(\prod P_i) = 0$, which automatically gives rise to geometric interactions. For general CDs the situation is more complex. - 3. The possibility of super octonionic geometry raises the hope that the twistorial construction of scattering amplitudes in $\mathcal{N}=4$ SUSY generalizes to TGD in rather straightforward manner to a purely geometric construction. Functional integral over WCW would reduce to summations over polynomials with coefficients in extension of rationals and criticality conditions on the coefficients could make the summation well-defined by bringing in finite measurement resolution. Scattering diagrams would be determined by points of space-time variety, which are in extension of rationals. In adelic physics the interpretation is as cognitive representations. - 1. Cognitive representations are identified as sets of rational points for algebraic varieties with "active" points containing fermion. The representations are discussed at both M^8 and H level. General conjectures from algebraic geometry support the vision that these sets are concentrated at lower-dimensional algebraic varieties such as string world sheets and partonic 2-surfaces and their 3-D orbits identifiable also as singularities of these surfaces. For the earlier work related to adelic TGD and cognitive representations see [?] - 2. Some aspects related to homology charge (Kähler magnetic charge) and genus-generation correspondence are discussed. Both topological quantum numbers are central in the proposed model of elementary particles and it is interesting to see whether the picture is internally consistent and how algebraic variety property affects the situation. Also possible problems related to $h_{eff}/h = n$ hierarchy []adelicphysics realized in terms of n-fold coverings of spacetime surfaces are discussed from this perspective. # 3.4.5 Does M^8-H duality reduce classical TGD to octonionic algebraic geometry?: Part III Cognitive representations are the basic topic of the third chapter related to M^8-H duality. Cognitive representations are identified as sets of points in extension of rationals for algebraic varieties with "active" points containing fermion. The representations are discussed at both M^8 - and H level. General conjectures from algebraic geometry support the vision that these sets are concentrated at lower-dimensional algebraic varieties such as string world sheets and partonic 2-surfaces and their 3-D orbits identifiable also as singularities of these surfaces. The notion is applied in various cases and the connection with $M^8 - H$ duality is rather loose. - 1. Extensions of rationals are essentially coders of information. There the possible analogy of extensions of rationals with genes deserves discussion. Extensions, which are not extensions of extensions would be analogous to genes. The notion of conserved gene as number theoretical analogy for Galois extensions as the Galois group of extension which is normal subgroup of Galois extension. - 2. The possible physical meaning of the notion of perfectoid introduced by Peter Scholze is discussed in the framework of p-adic physics. Extensions of p-adic numbers involving roots of the prime defining the extension are involved and are not considered previously in TGD framework. There there possible physical meaning deserves discussion. - 3. The construction of cognitive representation reduces to a well-known mathematical problem of finding the points of space-time surface with embedding space coordinates in given extension of rationals. The work of Kim and Coates represents new ideas in this respect and there is a natural connection with TGD. - 4. One expects that large cognitive representations are winners in the number theoretical fight for survival. Strong form of holography suggests that it is enough to consider cognitive representations restricted to string world sheets and partonic 2-surfaces. If the 2-surface possesses large group of symmetries acting in extension of rationals, one can have large cognitive representations as orbit of point in extension. Examples of highly symmetric 2-D surfaces are geodesic spheres assignable to partonic 2-surfaces and cosmic strings and elliptic curves assignable with string world sheets and cosmic strings. - 5. Rationals and their extensions give rise to a unique discretizations of space-time surface (for instance) cognitive representation having interpretation in terms of finite measurement resolution. There are however many open questions. Should one allow only octonionic polynomials defined as algebraic continuations of real polynomials or should one allow also analytic functions and regard polynomials as approximations. Zeta functions are especially interesting analytic functions and Defekind zetas characterize extensions of rationals and one can pose physically motivated questions about them. #### 3.4.6 Could quantum randomness have something to do with classical chaos? Tim Palmer has proposed that classical chaos and quantum randomness might be related. It came as a surprise to me that these to notions could a have deep relationship in TGD framework. - 1. Strong form of Palmer's idea stating that quantum randomness reduces to classical chaos certainly fails but one can consider weaker forms of the idea. Even these variants fail in Copenhagen interpretation since strictly speaking there is no classical reality, only wave function coding for the knowledge about the system. Bohr orbits should be more than approximation and in TGD framework space-time surface as preferred extremal of action is analogous to Bohr orbit and classical physics defined by Bohr orbits is an exact part of quantum theory. - 2. In the zero energy ontology (ZEO) of TGD the idea works in weaker form and has very strong implications for the more detailed understanding of ZEO and $M^8 M^4 \times CP_2$ duality. Ordinary ("big") state functions (BSFRs) meaning the death of the system in a universal sense and re-incarnation with opposite arrow of time would involve quantum criticality accompanied by classical chaos assignable to the correspondence between geometric time and subjective time identified as sequence of "small" state function reductions (SSFRs) as analogs of weak measurements. The findings of Minev et al. give strong support for this view and Libet's findings about active aspects of consciousness can be understood if the act of free will corresponds to BSFR. M^8 picture identifies 4-D space-time surfaces X^4 as roots for "imaginary" or "real" part of octonionic polynomial P_2P_1 obtained as a continuation of real polynomial $P_2(L-r)P_1(r)$, whose arguments have origin at the tips of B and A and roots a the light-cone boundaries associated with tips. Causal diamond (CD) is identified intersection of future and past directed light-cones light-cones A and B. In the sequences of SSFRs $P_2(L-r)$ assigned to B varies and $P_1(r)$ assigned to A is unaffected. E defines the size of CD as distance E as E between its tips. Besides 4-D space-time surfaces there are also brane-like 6-surfaces corresponding to roots $r_{i,k}$ of $P_i(r)$ and defining "special moments in the life of self" having $t_i = r_{i,k}$ ball as M_+^4 projection. The number of roots and their density increases rapidly
in the sequence of SSFRs. The condition that the largest root belongs to CD gives a lower bound to it size L as largest root. Note that L increases. Concerning the approach to chaos, one can consider three options. **Option I**: The sequence of steps consisting of unitary evolutions followed by SSFR corresponds to a functional factorization at the level of polynomials as sequence $P_2 = Q_1 \circ Q_2 \circ ... Q_n$. If the size of CD is assumed to increase, also the tip of active boundary of CD must shift so that the argument of P_2 r-L is replaced in each iteration step to with updated argument with larger value of L. **Option II**: A completely unexpected connection with the iteration of analytic functions and Julia sets, which are fractals assigned also with chaos interpreted as complexity emerges. In a reasonable approximation quantum time evolution by SSFRs could be induced by an iteration of a polynomial or even an analytic function: $P_2 = P_2 \rightarrow P_2^{\circ 2} \rightarrow \dots$ For $P_2(0) = 0$ the roots of the iterate consists of inverse images of roots of P_2 by $P_2^{\circ -k}$ for k = 0, ..., N-1. Suppose that M^8 and X^4 are complexified and thus also t=r and "real" X^4 is the projection of X_c^4 to real M^8 . Complexify also the coefficients of polynomials P. If so, the Mandelbrot and Julia sets (http://tinyurl.com/cplj9pe and http://tinyurl.com/cvmr83g) characterizing fractals would have a physical interpretation in ZEO. One approaches chaos in the sense that the N-1:th inverse images of the roots of P_2 belonging to filled Julia set approach to points of Julia set of P_2 as the number N of iterations increases. Minimal L would increase with N if CD is assumed to contain all roots. The density of the roots in Julia set increases near L since the size of CD is bounded by the size Julia set. One could perhaps say that near the t=L in the middle of CD the life of self when the size of CD has become almost stationary, is the most intensive. **Option III**: A conservative option is to consider also real polynomials $P_2(r)$ with real argument r. Only non-negative real roots r_n are of interest whereas in the general case one considers all values of r. For a large N the new roots with possibly one exception would approach to the real Julia set obtained as a real projection of Julia set for complex iteration. How the size L of CD is determined and when can BSFR occur? **Option I**: If L is minimal and thus given by the largest (non-exceptional) root of iterate of P_2 in Julia set, it is bound to increase in the iteration (this option is perhaps too deterministic). L should smaller than the sizes of Julia sets of both A and B since the iteration gives no roots outside Julia sets. Could BSFR become probable when L as the largest allowed root for iterate P_2 is larger than the size of Julia set of A? There would be no more new "special moments in the life of self" and this would make death (in universal sense) and re-incarnation with opposite arrow of time probable. The size of CD could decrease dramatically in the first iteration for P_1 if it is determined as the largest allowed root of P_1 : the re-incarnated self would have childhood. **Option II**: The size of CD could be determined in SSFR statistically as an allowed root of P_2 . Since the density of roots increases, one would have a lot of choices and quantum criticality and fluctuations of the order of clock time $\tau = 2L$: the order of subjective time would not anymore correspond to that for clock time. BSFR would occur for the same reason as for the first option. # 3.4.7 TGD view about McKay Correspondence, ADE Hierarchy, Inclusions of Hyperfinite Factors, $M^8 - H$ Duality, SUSY, and Twistors In this chapter 4 topics are discussed. McKay correspondence, SUSY, and twistors are discussed from TGD point of view, and new aspects of $M^8 - H$ duality are considered. #### 1. McKay correspondence in TGD framework There are two mysterious looking correspondences involving ADE groups. McKay correspondence between McKay graphs characterizing tensor products for finite subgroups of SU(2) and Dynkin diagrams of affine ADE groups is the first one. The correspondence between principal diagrams characterizing inclusions of hyper-finite factors of type II_1 (HFFs) with Dynkin diagrams for a subset of ADE groups and Dynkin diagrams for affine ADE groups is the second one. These correspondences are discussed from number theoretic point of view suggested by TGD and based on the interpretation of discrete subgroups of SU(2) as subgroups of the covering group of quaternionic automorphisms SO(3) (analog of Galois group) and generalization of these groups to semi-direct products $Gal(K) \triangleleft SU(2)_K$ of Galois group for extension K of rationals with the discrete subgroup $SU(2)_K$ of SU(2) with representation matrix elements in K. The identification of the inclusion hierarchy of HFFs with the hierarchy of extensions of rationals and their Galois groups is proposed. A further mystery whether $Gal(K) \triangleleft SU(2)_K$ could give rise to quantum groups or affine algebras. In TGD framework the infinite-D group of isometries of "world of classical worlds" (WCW) is identified as an infinite-D symplectic group for which the discrete subgroups characterized by K have infinite-D representations so that hyper-finite factors are natural for their representations. Symplectic algebra SSA allows hierarchy of isomorphic sub-algebras SSA_n . The gauge conditions for SSA_n and $[SSA_n, SSA]$ would define measurement resolution giving rise to hierarchies of inclusions and ADE type Kac-Moody type algebras or quantum algebras representing symmetries modulo measurement resolution. A concrete realization of ADE type Kac-Moody algebras is proposed. It relies on the group algebra of $Gal(K) \triangleleft SU(2)_K$ and free field representation of ADE type Kac-Moody algebra identifying the free scalar fields in Kac-Moody Cartan algebra as group algebra elements defined by the traces of representation matrices (characters). #### 2. New aspects of $M^8 - H$ duality M^8-H duality is now a central part of TGD and leads to new findings. M^8-H duality can be formulated both at the level of space-time surfaces and light-like 8-momenta. Since the choice of M^4 in the decomposition of momentum space $M^8=M^4\times E^4$ is rather free, it is always possible to find a choice for which light-like 8-momentum reduces to light-like 4-momentum in M^4 - the notion of 4-D mass is relative. This leads to what might be called SO(4)-SU(3) duality corresponding to the hadronic and partonic views about hadron physics. Particles, which are eigenstates of mass squared are massless in $M^4\times CP_2$ picture and massive in M^8 picture. The massivation in this picture is a universal mechanism having nothing to do with dynamics and results in zero energy ontology automatically if the zero energy states are superpositions of states with different masses. p-Adic thermodynamics describes this massivation. Also a proposal for the realization of ADE hierarchy emerges. 4-D space-time surfaces correspond to roots of octonionic polynomials P(o) with real coefficients corresponding to the vanishing of the real or imaginary part of P(o). These polynomials however allow universal roots, which are not 4-D but analogs of 6-D branes and having topology of S^6 . Their M^4 projections are time =constant snapshots $t = r_n, r_M \leq r_n$ 3-balls of M^4 light-cone (r_n) is root of P(x). At each point the ball there is a sphere S^3 shrinking to a point about boundaries of the 3-ball. These special values of M^4 time lead to a deeper understanding of ZEO based quantum measurement theory and consciousness theory. ### 3. Is the identification of twistor space of M^4 really correct? The critical questions concerning the identification of twistor space of M^4 as $M^4 \times S^2$ led to consider a more conservative identification as CP_3 with hyperbolic signature (3,-3) and replacement of H with $H = cd_{conf} \times CP_2$, where cd_{conf} is CP_2 with hyperbolic signature (1,-3). This approach reproduces the nice results of the earlier picture but means that the hierarchy of CDs in M^8 is mapped to a hierarchy of spaces cd_{conf} with sizes of CDs. This conforms with Poincare symmetry from which everything started since Poincare group acts in the moduli space of octonionic structures of M^8 . Note that also the original form of $M^8 - H$ duality continues to make sense and results from the modification by projection from $CP_{3,h}$ to M^4 rather than $CP_{2,h}$. The outcome of octo-twistor approach applied at level of M^8 together with modified $M^8 - H$ duality leads to a nice picture view about twistorial description of massive states based on quaternionic generalization of twistor (super-)Grassmannian approach. A radically new view is that descriptions in terms of massive and massless states are alternative options, and correspond to two different alternative twistorial descriptions and leads to the interpretation of p-adic thermodynamics as completely universal massivation mechanism having nothing to do with dynamics. As a side product emerges a deeper understanding of ZEO based quantum measurement theory and consciousness theory relying on the universal roots of octonionic polynomials of M^8 , which are not 4-D but analogs of 6-D branes. This part of article is not a mere side track since by $M^8 - H$ duality the finite sub-groups of SU(2) of McKay correspondence appear quite concretely in the description of the measurement resolution of 8-momentum. #### 3.4.8 The Recent View about SUSY in TGD Universe The progress in understanding of M^8-H duality throws also light to the problem whether SUSY is realized in TGD and what SUSY breaking does mean. It is now rather clear that sparticles are predicted and SUSY remains exact but
that p-adic thermodynamics causes thermal massivation: unlike Higgs mechanism, this massivation mechanism is universal and has nothing to do with dynamics. This is due to the fact that zero energy states are superpositions of states with different masses. The selection of p-adic prime characterizing the sparticle causes the mass splitting between members of super-multiplets although the mass formula is same for all of them. The question how to realize super-field formalism at the level of $H = M^4 \times CP_2$ led to a dramatic progress in the identification of elementary particles and SUSY dynamics. The most surprising outcome was the possibility to interpret leptons and corresponding neutrinos as local 3-quark composites with quantum numbers of anti-proton and anti-neutron. Leptons belong to the same super-multiplet as quarks and are antiparticles of neutron and proton as far quantum numbers are consided. One implication is the understanding of matter-antimatter asymmetry. Also bosons can be interpreted as local composites of quark and anti-quark. Hadrons and hadronic gluons would still correspond to the analog of monopole phase in QFTs. Homology charge would appear as space-time correlate for color at space-time level and explain color confinement. Also color octet variants of weak bosons, Higgs, and Higgs like particle and the predicted new pseudo-scalar are predicted. They could explain the successes of conserved vector current hypothesis (CVC) and partially conserved axial current hypothesis (PCAC). One ends up with the precise understanding of quantum criticality and understand the relation between its descriptions at M^8 level and H-level. Polynomials describing a hierarchy of dark matters describe also a hierarchy of criticalities and one can identify inclusion hierarchies as subhierarchies formed by functional composition of polynomials. The Wick contractions of quark-antiquark monomials appearing in the expansion of super-coordinate of H could define the analog of radiative corrections in discrete approach. M^8-H duality and number theoretic vision require that the number of non-vanishing Wick contractions is finite. The number of contractions is indeed bounded by the finite number of points in cognitive representation and increases with the degree of the octonionic polynomial and gives rise to a discrete coupling constant evolution parameterized by the extensions of rationals. Quark oscillator operators in cognitive representation correspond to quark field q. Only terms with quark number 1 appear in q and leptons emerge in Kähler action as local 3-quark composites. Internal consistency requires that q must be the super-spinor field satisfying super Dirac equation. This leads to a self-referential condition $q_s = q$ identifying q and its super-counterpart q_s . Also super-coordinate h_s must satisfy analogous condition $(h_s)_s = h_s$, where $h_s \to (h_s)_s$ means replacement of h in the argument of h_s with h_s . The conditions have an interpretation in terms of a fixed point of iteration and expression of quantum criticality. The coefficients of various terms in q_s and h_s are analogous to coupling constants can be fixed from this condition so that one obtains discrete number theoretical coupling constant evolution. The basic equations are quantum criticality condition $h_s = (h_s)_s$, $q = q_s$, $D_{\alpha,s}\Gamma_s^{\alpha}=0$ coming from Kähler action, and the super-Dirac equation $D_sq=0$. One also ends up to the first completely concrete proposal for how to construct S-matrix directly from the solutions of super-Dirac equations and super-field equations for space-time super-surfaces. The idea inspired by WKB approximation is that the exponent of the super variant of Kähler function including also super-variant of Dirac action defines S-matrix elements as its matrix elements between the positive and negative energy parts of the zero energy states formed from the corresponding vacua at the two boundaries of CD annihilated by annihilation operators and resp. creation operators. The states would be created by the monomials appearing in the super-coordinates and super-spinor. Super-Dirac action vanishes on-mass-shell. The proposed construction relying on ZEO allows however to get scattering amplitudes between all possible states using the exponential of super-Kähler action. Super-Dirac equation is however needed and makes possible to express the derivatives of the quark oscillator operators (values of quark field at points of cognitive representation) so that one can use only the points of cognitive representation without introducing lattice discretization. Discrete coupling constant evolution conforms with the fact that the contractions of oscillator operators occur at the boundary of CD and their number is limited by the finite number of points of cognitive representation. #### 3.5 PART V: APPLICATIONS #### 3.5.1 Cosmology and Astrophysics in Many-Sheeted Space-Time This chapter is devoted to the applications of TGD to astrophysics and cosmology. #### 1. Many-sheeted cosmology The many-sheeted space-time concept, the new view about the relationship between inertial and gravitational four-momenta, the basic properties of the paired cosmic strings, the existence of the limiting temperature, the assumption about the existence of the vapor phase dominated by cosmic strings, and quantum criticality imply a rather detailed picture of the cosmic evolution, which differs from that provided by the standard cosmology in several respects but has also strong resemblances with inflationary scenario. It should be made clear that many-sheeted cosmology involves a vulnerable assumption. It is assumed that single-sheeted space-time surface is enough to model the cosmology. This need not to be the case. GRT limit of TGD is obtained by lumping together the sheets of many-sheeted space-time to a piece of Minkowski space and endowing it with an effective metric, which is sum of Minkowski metric and deviations of the induced metrics of space-time sheets from Minkowski metric. Hence the proposed models make sense only if GRT limits allowing imbedding as a vacuum extremal of Kähler action have special physical role. The most important differences are following. - 1. Many-sheetedness implies cosmologies inside cosmologies Russian doll like structure with a spectrum of Hubble constants. - 2. TGD cosmology is also genuinely quantal: each quantum jump in principle recreates each sub-cosmology in 4-dimensional sense: this makes possible a genuine evolution in cosmological length scales so that the use of anthropic principle to explain why fundamental constants are tuned for life is not necessary. - 3. The new view about energy means provided by zero energy ontology (ZEO) means that the notion of energy and also other quantum numbers is length scale dependent. This allows to understand the apparent non-conservation of energy in cosmological scales although Poincare invariance is exact symmetry. In ZEO any cosmology is in principle creatable from vacuum and the problem of initial values of cosmology disappears. The density of matter near the initial moment is dominated by cosmic strings approaches to zero so that big bang is transformed to a silent whisper amplified to a relatively big bang. - 4. Dark matter hierarchy with dynamical quantized Planck constant implies the presence of dark space-time sheets which differ from non-dark ones in that they define multiple coverings of M^4 . Quantum coherence of dark matter in the length scale of space-time sheet involved implies that even in cosmological length scales Universe is more like a living organism than a thermal soup of particles. 5. Sub-critical and over-critical Robertson-Walker cosmologies are fixed completely from the imbeddability requirement apart from a single parameter characterizing the duration of the period after which transition to sub-critical cosmology necessarily occurs. The fluctuations of the microwave background reflect the quantum criticality of the critical period rather than amplification of primordial fluctuations by exponential expansion. This and also the finite size of the space-time sheets predicts deviations from the standard cosmology. #### 2. Cosmic strings Cosmic strings belong to the basic extremals of the Kähler action. The string tension of the cosmic strings is $T \simeq .2 \times 10^{-6}/G$ and slightly smaller than the string tension of the GUT strings and this makes them very interesting cosmologically. Concerning the understanding of cosmic strings a decisive breakthrough came through the identification of gravitational four-momentum as the difference of inertial momenta associated with matter and antimatter and the realization that the net inertial energy of the Universe vanishes. This forced to conclude cosmological constant in TGD Universe is non-vanishing. p-Adic length fractality predicts that Λ scales as $1/L^2(k)$ as a function of the p-adic scale characterizing the space-time sheet. The recent value of the cosmological constant comes out correctly. The gravitational energy density described by the cosmological constant is identifiable as that associated with topologically condensed cosmic strings and of magnetic flux tubes to which they are gradually transformed during cosmological evolution. p-Adic fractality and simple quantitative observations lead to the hypothesis that pairs of cosmic strings are responsible for the evolution of astrophysical structures in a very wide length scale range. Large voids with size of order 10⁸ light years can be seen as structures containing knotted and linked cosmic string pairs wound around the boundaries of the void. Galaxies correspond to same structure with smaller size and linked around the supra-galactic strings. This conforms with the finding that galaxies tend to be grouped along linear structures. Simple quantitative estimates show that even stars
and planets could be seen as structures formed around cosmic strings of appropriate size. Thus Universe could be seen as fractal cosmic necklace consisting of cosmic strings linked like pearls around longer cosmic strings linked like... #### 3. Dark matter and quantization of gravitational Planck constant The notion of gravitational Planck constant having possibly gigantic values is perhaps the most radical idea related to the astrophysical applications of TGD. D. Da Rocha and Laurent Nottale have proposed that Schrödinger equation with Planck constant \hbar replaced with what might be called gravitational Planck constant $\hbar_{gr} = \frac{GmM}{v_0}$ ($\hbar = c = 1$). v_0 is a velocity parameter having the value $v_0 = 144.7 \pm .7$ km/s giving $v_0/c = 4.6 \times 10^{-4}$. This is rather near to the peak orbital velocity of stars in galactic halos. Also subharmonics and harmonics of v_0 seem to appear. The support for the hypothesis comes from empirical data. By Equivalence Principle and independence of the gravitational Compton length on particle mass m it is enough to assume g_{gr} only for flux tubes mediating interactions of microscopic objects with central mass M. In TGD framework h_{gr} relates to the hierarchy of Planck constants $h_{eff} = n \times h$ assumed to relate directly to the non-determinism and to the quantum criticality of Kähler action Dark matter can be identified as large h_{eff} phases at Kähler magnetic flux tubes and dark energy as the Kähler magnetic energy of these flux tubes carrying monopole magnetic fluxes. No currents are needed to create these magnetic fields, which explains the presence of magnetic fields in cosmological scales. ### 3.5.2 Overall View About TGD from Particle Physics Perspective Topological Geometrodynamics is able to make rather precise and often testable predictions. In this and two other articles I want to describe the recent over all view about the aspects of quantum TGD relevant for particle physics. In the first chapter I concentrate the heuristic picture about TGD with emphasis on particle physics. - First I represent briefly the basic ontology: the motivations for TGD and the notion of many-sheeted space-time, the concept of zero energy ontology, the identification of dark matter in terms of hierarchy of Planck constant which now seems to follow as a prediction of quantum TGD, the motivations for p-adic physics and its basic implications, and the identification of space-time surfaces as generalized Feynman diagrams and the basic implications of this identification. - Symmetries of quantum TGD are discussed. Besides the basic symmetries of the embedding space geometry allowing to geometrize standard model quantum numbers and classical fields there are many other symmetries. General Coordinate Invariance is especially powerful in TGD framework allowing to realize quantum classical correspondence and implies effective 2-dimensionality realizing strong form of holography. Super-conformal symmetries of super string models generalize to conformal symmetries of 3-D light-like 3-surfaces. What GRT limit of TGD and Equivalence Principle mean in TGD framework have are problems which found a solution only quite recently (2014). GRT space-time is obtained by lumping together the sheets of many-sheeted space-time to single piece of M^4 provided by an effective metric defined by the sum of Minkowski metric and the deviations of the induced metrics of space-time sheets from Minkowski metric. Same description applies to gauge potentials of gauge theory limit. Equivalence Principle as expressed by Einstein's equations reflects Poincare invariance of TGD. Super-conformal symmetries imply generalization of the space-time supersymmetry in TGD framework consistent with the supersymmetries of minimal supersymmetric variant of the standard model. Twistorial approach to gauge theories has gradually become part of quantum TGD and the natural generalization of the Yangian symmetry identified originally as symmetry of $\mathcal{N}=4$ SYMs is postulated as basic symmetry of quantum TGD. - The so called weak form of electric-magnetic duality has turned out to have extremely far reaching consequences and is responsible for the recent progress in the understanding of the physics predicted by TGD. The duality leads to a detailed identification of elementary particles as composite objects of massless particles and predicts new electro-weak physics at LHC. Together with a simple postulate about the properties of preferred extremals of Kähler action the duality allows also to realized quantum TGD as almost topological quantum field theory giving excellent hopes about integrability of quantum TGD. - There are two basic visions about the construction of quantum TGD. Physics as infinite-dimensional Kähler geometry of world of classical worlds (WCW) endowed with spinor structure and physics as generalized number theory. These visions are briefly summarized as also the practical constructing involving the concept of Dirac operator. As a matter fact, the construction of TGD involves four Dirac operators. - 1. The Kähler Dirac equation holds true in the interior of space-time surface: the well-definedness of em charge as quantum number of zero modes implies localization of the modes of the induced spinor field to 2-surfaces. It is quite possible that this localization is consistent with Kähler-Dirac equation only in the Minkowskian regions where the effective metric defined by Kähler-Dirac gamma matrices can be effectively 2-dimensional and parallel to string world sheet. - 2. Assuming measurement interaction term for four-momentum, the boundary condition for Kähler-Dirac operator gives essentially massless M^4 Dirac equation in algebraic form coupled to what looks like Higgs term but gives a space-time correlate for the stringy mass formula at stringy curves at the space-like ends of space-time surface. - 3. The ground states of the Super-Virasoro representations are constructed in terms of the modes of embedding space spinor fields which are massless in 8-D sense. - 4. The fourth Dirac operator is associated with super Virasoro generators and super Virasoro conditions defining Dirac equation in WCW. These conditions characterize zero energy states as modes of WCW spinor fields and code for the generalization of S-matrix to a collection of what I call M-matrices defining the rows of unitary U-matrix defining unitary process. - Twistor approach has inspired several ideas in quantum TGD during the last years. The basic finding is that M^4 resp. CP_2 is in a well-defined sense the only 4-D manifold with Minkowskian resp. Euclidian signature of metric allowing twistor space with Kähler structure. It seems that the Yangian symmetry and the construction of scattering amplitudes in terms of Grassmannian integrals generalizes to TGD framework. This is due to ZEO allowing to assume that all particles have massless fermions as basic building blocks. ZEO inspires the hypothesis that incoming and outgoing particles are bound states of fundamental fermions associated with wormhole throats. Virtual particles would also consist of on mass shell massless particles but without bound state constraint. This implies very powerful constraints on loop diagrams and there are excellent hopes about their finiteness: contrary to original expectations the stringy character of the amplitudes seems necessary to guarantee finiteness. #### 3.5.3 Particle Massivation in TGD Universe This chapter represents the most recent (2014) view about particle massivation in TGD framework. This topic is necessarily quite extended since many several notions and new mathematics is involved. Therefore the calculation of particle masses involves five chapters. In this chapter my goal is to provide an up-to-date summary whereas the chapters are unavoidably a story about evolution of ideas. The identification of the spectrum of light particles reduces to two tasks: the construction of massless states and the identification of the states which remain light in p-adic thermodynamics. The latter task is relatively straightforward. The thorough understanding of the massless spectrum requires however a real understanding of quantum TGD. It would be also highly desirable to understand why p-adic thermodynamics combined with p-adic length scale hypothesis works. A lot of progress has taken place in these respects during last years. #### 1. Physical states as representations of super-symplectic and Super Kac-Moody algebras The basic constraint is that the super-conformal algebra involved must have five tensor factors. The precise identification of the Kac-Moody type algebra has however turned out to be a difficult task. The recent view is as follows. Electroweak algebra $U(2)_{ew} = SU(2)_L \times U(1)$ and symplectic isometries of light-cone boundary $(SU(2)_{rot} \times SU(3)_c)$ give 2+2 factors and full supersymplectic algebra involving only covariantly constant right-handed neutrino mode would give 1 factor. This algebra could be associated with the 2-D surfaces X^2 defined by the intersections of light-like 3-surfaces with $\delta M_{\pm}^4 \times CP_2$. These 2-surfaces have interpretation as partons. For conformal algebra there are several candidates. For symplectic algebra radial light-like coordinate of light-cone boundary replaces complex coordinate. Light-cone boundary $S^2 \times R_+$ allows extended conformal symmetries which can be interpreted as conformal transformations of S^2 depending parametrically on the light-like coordinate of R_+ . There is infinite-D subgroup of conformal isometries with S^2 dependent radial scaling compensating for the conformal scaling in S^2 . Kähler-Dirac equation allows ordinary conformal symmetry very probably liftable to embedding space. The light-like orbits of partonic 2-surface are expected to allow super-conformal symmetries presumably assignable to quantum
criticality and hierarchy of Planck constants. How these conformal symmetries integrate to what is expected to be 4-D analog of 2-D conformal symmetries remains to be understood. Yangian algebras associated with the super-conformal algebras and motivated by twistorial approach generalize the super-conformal symmetry and make it multi-local in the sense that generators can act on several partonic 2-surfaces simultaneously. These partonic 2-surfaces generalize the vertices for the external massless particles in twistor Grassmann diagrams [?] The implications of this symmetry are yet to be deduced but one thing is clear: Yangians are tailor made for the description of massive bound states formed from several partons identified as partonic 2-surfaces. The preliminary discussion of what is involved can be found in [?] #### 2. Particle massivation Particle massivation can be regarded as a generation of thermal mass squared and due to a thermal mixing of a state with vanishing conformal weight with those having higher conformal weights. The obvious objection is that Poincare invariance is lost. One could argue that one calculates just the vacuum expectation of conformal weight so that this is not case. If this is not assumed, one would have in positive energy ontology superposition of ordinary quantum states with different four-momenta and breaking of Poincare invariance since eigenstates of four-momentum are not in question. In Zero Energy Ontology this is not the case since all states have vanishing net quantum numbers and one has superposition of time evolutions with well-defined four-momenta. Lorentz invariance with respect to the either boundary of CD is achieved but there is small breaking of Poincare invariance characterized by the inverse of p-adic prime p characterizing the particle. For electron one has $1/p = 1/M_{127} \sim 10^{-38}$. One can imagine several microscopic mechanisms of massivation. The following proposal is the winner in the fight for survival between several competing scenarios. - 1. Instead of energy, the Super Kac-Moody Virasoro (or equivalently super-symplectic) generator L_0 (essentially mass squared) is thermalized in p-adic thermodynamics (and also in its real version assuming it exists). The fact that mass squared is thermal expectation of conformal weight guarantees Lorentz invariance. That mass squared, rather than energy, is a fundamental quantity at CP_2 length scale is also suggested by a simple dimensional argument (Planck mass squared is proportional to \hbar so that it should correspond to a generator of some Lie-algebra (Virasoro generator L_0 !)). What basically matters is the number of tensor factors involved and five is the favored number. - 2. There is also a modular contribution to the mass squared, which can be estimated using elementary particle vacuum functionals in the conformal modular degrees of freedom of the partonic 2-surface. It dominates for higher genus partonic 2-surfaces. For bosons both Virasoro and modular contributions seem to be negligible and could be due to the smallness of the p-adic temperature. - 3. A natural identification of the non-integer contribution to the mass squared is as stringy contribution to the vacuum conformal weight (strings are now "weak strings"). TGD predicts Higgs particle and Higgs is necessary to give longitudinal polarizations for gauge bosons. The notion of Higgs vacuum expectation is replaced by a formal analog of Higgs vacuum expectation giving a space-time correlate for the stringy mass formula in case of fundamental fermions. Also gauge bosons usually regarded as exactly massless particles would naturally receive a small mass from p-adic thermodynamics. The theoretetical motivation for a small mass would be exact Yangian symmetry which broken at the QFT limit of the theory using GRT limit of many-sheeted space-time. - 4. Hadron massivation requires the understanding of the CKM mixing of quarks reducing to different topological mixing of U and D type quarks. Number theoretic vision suggests that the mixing matrices are rational or algebraic and this together with other constraints gives strong constraints on both mixing and masses of the mixed quarks. p-Adic thermodynamics is what gives to this approach its predictive power. - 1. p-Adic temperature is quantized by purely number theoretical constraints (Boltzmann weight exp(-E/kT) is replaced with p^{L_0/T_p} , $1/T_p$ integer) and fermions correspond to $T_p = 1$ whereas $T_p = 1/n$, n > 1, seems to be the only reasonable choice for gauge bosons. - 2. p-Adic thermodynamics forces to conclude that CP_2 radius is essentially the p-adic length scale $R \sim L$ and thus of order $R \simeq 10^{3.5} \sqrt{\hbar G}$ and therefore roughly $10^{3.5}$ times larger than the naive guess. Hence p-adic thermodynamics describes the mixing of states with vanishing conformal weights with their Super Kac-Moody Virasoro excitations having masses of order $10^{-3.5}$ Planck mass. #### 3.5.4 New Physics Predicted by TGD TGD predicts a lot of new physics and it is quite possible that this new physics becomes visible at LHC. Although the calculational formalism is still lacking, p-adic length scale hypothesis allows to make precise quantitative predictions for particle masses by using simple scaling arguments. The basic elements of quantum TGD responsible for new physics are following. 1. The new view about particles relies on their identification as partonic 2-surfaces (plus 4-D tangent space data to be precise). This effective metric 2-dimensionality implies generalization of the notion of Feynman diagram and holography in strong sense. One implication is the notion of field identity or field body making sense also for elementary particles and the Lamb shift anomaly of muonic hydrogen could be explained in terms of field bodies of quarks. - 4-D tangent space data must relate to the presence of strings connecting partonic 2-surfaces and defining the ends of string world sheets at which the modes of induced spinor fields are localized in the generic case in order to achieve conservation of em charge. The integer characterizing the spinor mode should charactize the tangent space data. Quantum criticality suggests strongly and super-conformal invariance acting as a gauge symmetry at the light-like partonic orbits and leaving the partonic 2-surfaces at their ends invariant. Without the fermionic strings effective 2-dmensionality would degenerate to genuine 2-dimensionality. - 2. The topological explanation for family replication phenomenon implies genus generation correspondence and predicts in principle infinite number of fermion families. One can however develop a rather general argument based on the notion of conformal symmetry known as hyper-ellipticity stating that only the genera g = 0,1,2 are light. What "light" means is however an open question. If light means something below CP₂ mass there is no hope of observing new fermion families at LHC. If it means weak mass scale situation changes. For bosons the implications of family replication phenomenon can be understood from the fact that they can be regarded as pairs of fermion and antifermion assignable to the opposite wormhole throats of wormhole throat. This means that bosons formally belong to octet and singlet representations of dynamical SU(3) for which 3 fermion families define 3-D representation. Singlet would correspond to ordinary gauge bosons. Also interacting fermions suffer topological condensation and correspond to wormhole contact. One can either assume that the resulting wormhole throat has the topology of sphere or that the genus is same for both throats. - 3. The view about space-time supersymmetry differs from the standard view in many respects. First of all, the super symmetries are not associated with Majorana spinors. Super generators correspond to the fermionic oscillator operators assignable to leptonic and quark-like induced spinors and there is in principle infinite number of them so that formally one would have $\mathcal{N} = \infty$ SUSY. I have discussed the required modification of the formalism of SUSY theories and it turns out that effectively one obtains just $\mathcal{N} = 1$ SUSY required by experimental constraints. The reason is that the fermion states with higher fermion number define only short range interactions analogous to van der Waals forces. Right handed neutrino generates this super-symmetry broken by the mixing of the M^4 chiralities implied by the mixing of M^4 and CP_2 gamma matrices for induced gamma matrices. The simplest assumption is that particles and their superpartners obey the same mass formula but that the p-adic length scale can be different for them. - 4. The new view about particle massivation involves besides p-adic thermodynamics also Higgs particle but there is no need to assume that Higgs vacuum expectation plays any role. All particles could be seen as pairs of wormhole contacts whose throats at the two space-time sheets are connected by flux tubes carrying monopole flux: closed monopole flux tube involving two space-time sheets would be ion question. The contribution of the flux tube to particle mass would dominate for weak bosons whereas for fermions second wormhole contact would dominate. - 5. One of the basic distinctions between TGD and standard model is the new view about color. - (a) The first implication is separate conservation of quark and lepton quantum numbers implying the stability of proton against the decay via the channels predicted by GUTs. This does not mean that proton would be absolutely stable. p-Adic and dark length scale hierarchies indeed predict the existence of scale variants of quarks and leptons and proton could decay to hadons of some zoomed up copy of hadrons physics. These decays should be slow and presumably they would involve phase transition changing the value of Planck constant characterizing proton. It might be that the
simultaneous increase of Planck constant for all quarks occurs with very low rate. - (b) Also color excitations of leptons and quarks are in principle possible. Detailed calculations would be required to see whether their mass scale is given by CP_2 mass scale. The so called leptohadron physics proposed to explain certain anomalies associated with both electron, muon, and τ lepton could be understood in terms of color octet excitations of leptons. MATHEMATICS 53 6. Fractal hierarchies of weak and hadronic physics labelled by p-adic primes and by the levels of dark matter hierarchy are highly suggestive. Ordinary hadron physics corresponds to $M_{107} = 2^{107} - 1$ One especially interesting candidate would be scaled up hadronic physics which would correspond to $M_{89} = 2^{89} - 1$ defining the p-adic prime of weak bosons. The corresponding string tension is about 512 GeV and it might be possible to see the first signatures of this physics at LHC. Nuclear string model in turn predicts that nuclei correspond to nuclear strings of nucleons connected by colored flux tubes having light quarks at their ends. The interpretation might be in terms of M_{127} hadron physics. In biologically most interesting length scale range 10 nm-2.5 μ m there are four Gaussian Mersennes and the conjecture is that these and other Gaussian Mersennes are associated with zoomed up variants of hadron physics relevant for living matter. Cosmic rays might also reveal copies of hadron physics corresponding to M_{61} and M_{31} 7. Weak form of electric magnetic duality implies that the fermions and antifermions associated with both leptons and bosons are Kähler magnetic monopoles accompanied by monopoles of opposite magnetic charge and with opposite weak isospin. For quarks Kähler magnetic charge need not cancel and cancellation might occur only in hadronic length scale. The magnetic flux tubes behave like string like objects and if the string tension is determined by weak length scale, these string aspects should become visible at LHC. If the string tension is 512 GeV the situation becomes less promising. In this chapter the predicted new physics and possible indications for it are discussed. ## REFERENCES ### Mathematics - [A1] Yangian symmetry. Available at: https://en.wikipedia.org/wiki/Yangian. - [A2] Pope CN. Eigenfunctions and $Spin^c$ Structures on CP_2 , 1980. - [A3] Hanson J Eguchi T, Gilkey B. Phys Rep, 66, 1980. - [A4] Eisenhart. Riemannian Geometry. Princeton University Press, 1964. - [A5] Pope CN Gibbons GW. CP_2 as gravitational instanton. Comm Math Phys, 55, 1977. - [A6] Pope CN Hawking SW. Generalized Spin Structures in Quantum Gravity. *Phys Lett*, (1), 1978. - [A7] N. Hitchin. Kählerian twistor spaces. *Proc London Math Soc*, 8(43):133–151, 1981.. Available at: https://tinyurl.com/pb8zpqo. - [A8] Milnor J. Topology form Differential Point of View. The University Press of Virginia, Virginia, 1965. - [A9] Spivak M. Differential Geometry I, II, III, IV. Publish or Perish, Boston, 1970. - [A10] Thom R. Comm Math Helvet, 28, 1954. - [A11] Wallace. Differential Topology. W. A. Benjamin, New York, 1968. ## Cosmology and Astro-Physics [E1] Nottale L Da Rocha D. Gravitational Structure Formation in Scale Relativity, 2003. Available at: https://arxiv.org/abs/astro-ph/0310036. ### Books related to TGD - [K1] Pitkänen M. Topological Geometrodynamics. 1983. Thesis in Helsinki University 1983. - [K2] Pitkänen M. Bio-Systems as Conscious Holograms. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/holography.html., 2023. - [K3] Pitkänen M. Bio-Systems as Self-Organizing Quantum Systems. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/bioselforg.html., 2023. - [K4] Pitkänen M. Classical TGD. In Topological Geometrodynamics: Overview: Part I:https://tgdtheory.fi/tgdhtml/Btgdview1.html. Available at: https://tgdtheory.fi/pdfpool/tgdclass.pdf, 2023. - [K5] Pitkänen M. Genes and Memes. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/genememe.html., 2023. - [K6] Pitkänen M. Hyper-finite Factors and Dark Matter Hierarchy. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/neuplanck.html., 2023. - [K7] Pitkänen M. Magnetospheric Consciousness. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/magnconsc.html., 2023. - [K8] Pitkänen M. Mathematical Aspects of Consciousness Theory. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/mathconsc.html, 2023. - [K9] Pitkänen M. Negentropy Maximization Principle. In TGD Inspired Theory of Consciousness: Part I. https://tgdtheory.fi/tgdhtml/Btgdconsc1.html. Available at: https://tgdtheory.fi/pdfpool/nmpc.pdf, 2023. - [K10] Pitkänen M. Number theoretic vision, Hyper-finite Factors and S-matrix. In Quantum TGD: Part I. https://tgdtheory.fi/tgdhtml/Btgdquantum1.html. Available at: https://tgdtheory.fi/pdfpool/UandM.pdf, 2023. - [K11] Pitkänen M. p-Adic length Scale Hypothesis. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/padphys.html., 2023. - [K12] Pitkänen M. Physics as a Generalized Number Theory. In *Topological Geometrodynamics: Overview: Part I. https://tgdtheory.fi/tgdhtml/Btgdview1.html*. Available at: https://tgdtheory.fi/pdfpool/tgdnumber.pdf, 2023. - [K13] Pitkänen M. Quantum Hardware of Living Matter. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/bioware.html., 2023. - [K14] Pitkänen M. Quantum Mind and Neuroscience. In TGD and EEG: Part I. https://tgdtheory.fi/tgdhtml/Btgdeeg1.html. Available at: https://tgdtheory.fi/pdfpool/lianPN.pdf, 2023. - [K15] Pitkänen M. Quantum Model for Bio-Superconductivity: I. In TGD and Quantum Biology: Part I. https://tgdtheory.fi/tgdhtml/Bqbio1.html. Available at: https://tgdtheory.fi/pdfpool/biosupercondI.pdf, 2023. - [K16] Pitkänen M. Quantum Model for Bio-Superconductivity: II. In TGD and Quantum Biology: Part I. https://tgdtheory.fi/tgdhtml/Bqbio1.html. Available at: https://tgdtheory.fi/pdfpool/biosupercondII.pdf, 2023. - [K17] Pitkänen M. Quantum TGD. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/tgdquantum.html., 2023. - [K18] Pitkänen M. TGD and Astrophysics. In *Physics in Many-Sheeted Space-Time: Part II.* https://tgdtheory.fi/tgdhtml/Btgdclass2.html. Available at: https://tgdtheory.fi/pdfpool/astro.pdf, 2023. - [K19] Pitkänen M. TGD and EEG. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/tgdeeg.html, 2023. - [K20] Pitkänen M. TGD and Fringe Physics. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/freenergy.html., 2023. - [K21] Pitkänen M. TGD Based View About Living Matter and Remote Mental Interactions. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/tgdlian.html, 2023. - [K22] Pitkänen M. TGD Inspired Theory of Consciousness. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/tgdconsc.html., 2023. - [K23] Pitkänen M. The classical part of the twistor story. In Quantum TGD: Part III. https://tgdtheory.fi/tgdtheory.fi/tgdtheory.fi/pdfpool/twistorstory.pdf, 2023. - [K24] Pitkänen M. The Geometry of the World of the Classical Worlds. In *Topological Geometrodynamics: Overview: Part I:https://tgdtheory.fi/tgdtheo* - [K25] Pitkänen M. Topological Geometrodynamics: an Overview. Online book. Available at: https://www.tgdtheory.fi/tgdhtml/tgdview.html., 2023. ### Articles about TGD - [L1] Pitkänen M. Philosophy of Adelic Physics. Available at: https://tgdtheory.fi/public_html/articles/adelephysics.pdf., 2017. - [L2] Pitkänen M. TGD view about coupling constant evolution. Available at: https://tgdtheory.fi/public_html/articles/ccevolution.pdf., 2018.