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1. Introduction 3

Abstract

Quantum arithmetics provides a possible resolution of a long-lasting challenge of finding a
mathematical justification for the canonical identification mapping p-adics to reals playing a
key role in TGD - in particular in p-adic mass calculations. p-Adic numbers have p-adic pinary
expansions

∑
anp

n satisfying an < p. of powers pn to be products of primes p1 < p satisfying
an < p for ordinary p-adic numbers. One could map this expansion to its quantum counterpart
by replacing an with their counterpart and by canonical identification map p → 1/p the
expansion to real number. This definition might be criticized as being essentially equivalent
with ordinary p-adic numbers since one can argue that the map of coefficients an to their
quantum counterparts takes place only in the canonical identification map to reals.

One could however modify this recipe. Represent integer n as a product of primes l and
allow for l all expansions for which the coefficients an consist of primes p1 < p but give up
the condition an < p. This would give 1-to-many correspondence between ordinary p-adic
numbers and their quantum counterparts.

It took time to realize that l < p condition might be necessary in which case the quanti-
zation in this sense - if present at all - could be associated with the canonical identification
map to reals. It would correspond only to the process taking into account finite measurement
resolution rather than replacement of p-adic number field with something new, hopefully a
field. At this step one might perhaps allow l > p so that one would obtain several real images
under canonical identification.

One can however imagine a third generalization of number concept. One can replace
integer n with n-dimensional Hilbert space and sum + and product × with direct sum ⊕
and tensor product ⊗ and introduce their co-operations, the definition of which is highly
non-trivial. This procedure yields also Hilbert space variants of rationals, algebraic numbers,
p-adic number fields, and even complex, quaternionic and octonionic algebraics. Also adeles
can be replaced with their Hilbert space counterparts. Even more, one can replace the points
of Hilbert spaces with Hilbert spaces and repeat this process, which is very similar to the
construction of infinite primes having interpretation in terms of repeated second quantization.
This process could be the counterpart for construction of nth order logics and one might speak
of Hilbert or quantum mathematics. The construction would also generalize the notion of
algebraic holography and provide self-referential cognitive representation of mathematics.

This vision emerged from the connections with generalized Feynman diagrams, braids,
and with the hierarchy of Planck constants realized in terms of coverings of the embedding
space. Hilbert space generalization of number concept seems to be extremely well suited
for the purposes of TGD. For instance, generalized Feynman diagrams could be identifiable
as arithmetic Feynman diagrams describing sequences of arithmetic operations and their co-
operations. One could interpret ×q and +q and their co-algebra operations as 3-vertices for
number theoretical Feynman diagrams describing algebraic identities X = Y having natural
interpretation in zero energy ontology. The two vertices have direct counterparts as two
kinds of basic topological vertices in quantum TGD (stringy vertices and vertices of Feynman
diagrams). The definition of co-operations would characterize quantum dynamics. Physical
states would correspond to the Hilbert space states assignable to numbers. One prediction
is that all loops can be eliminated from generalized Feynman diagrams and diagrams are in
projective sense invariant under permutations of incoming (outgoing legs).

1 Introduction

Quantum arithmetics [K19] is a notion which emerged as a possible resolution of long-lasting
challenge of finding mathematical justification for the canonical identification mapping p-adics to
reals.

1.1 What quantum p-adics could be?

The basic idea is that p-adic numbers could have quantum counterparts. This idea has developed
through several twists and turns and involved moments of almost despair.

1.1.1 The ”less interesting” but realistic option

There following proposal seems to be the realistic one and was indeed proposed first. I called it
less interesting.
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1. The earlier work with quantum arithmetics [K19, K1] suggests a modification of p-adic inte-
gers numbers by replacing the coefficients an p-adic pinary expansions with their quantum
counterparts (an)q, qm = exp(iπ/m). The non-negativity of quantum p-adics is achieved for
m = p. What is nice is that quantum groups and p-adicity would be very closely related.

2. This definition does not respect the decomposition of integer to prime numbers. One can
achieve this by mapping the primes in prime decomposition to their quantum counterparts
in the same manner. Products are mapped to products but product of images is not image
of product. Sum does not go to sum. Even the pinary coefficients can be decomposed to
primes and mapped to their quantum counterparts.

There are many ways to define quantum integers, and each of them could be seen as carrying
information about the number theoretic anatomy of the integer.

3. One can also map rational numbers to their quantum counterparts by mapping numerator
and demoninators with no common factors in this manner to quantum integers.

4. One can generalize this description to m-adics expressible in powers of general m defining
qm and obtain as special case m = pk case. The field property is now lost.

1.1.2 The replacement of numbers with sequences of arithmetic operations and in-
tegers with Hilbert spaces

The first attempt to solve the problems related to the definition of +q and ×q was inspired by
zero energy ontology and led to a replacement of numbers with sequences of arithmetic operations
describable by analogs of Feyman diagrams. The comparison with generalized Feynman diagrams
allowed to realize how “less-interesting” option could become “interesting”: numbers could be
replaced with Hilbert spaces and all the conditions would be trivially satisfied! Of course, this can
be argued to be mere formal mathematical game but one can also ask whether this might have
something to do with physics.

1. The notion of generalized Feynman diagram suggests that of arithmetic Feynman diagram
describing a sequence of arithmetic operations performed for a set of incoming integers and
producing a set of outgoing integers. The basic 3-vertices of the arithmetic Feynman diagram
would be ×q and +q and their co-operations. The moves of Feynman diagrams leaving
the amplitude invariant would code for associativity and distributivity. All loops could be
eliminated by these moves and diagram transformed to a canonical tree diagram in which
incoming resp. outgoing lines could be permuted.

This kind of reduction to tree diagrams is an old proposal that I gave up as too “romantic”
[K5] but which re-emerged from zero energy ontology where the assumption that also internal
lines (wormhole throats) are massless and on shell although the sign of energy can be negative,
poses extremely powerful kinematical constraints reducing the number of Feynman diagrams.
Incoming lines would correspond to integers decomposing into products of primes and an
attractive interpretation is that these primes correspond to braid strands.

2. The basic vertices in quantum TGD correspond to the stringy 3-vertex and 3-vertex for Feyn-
man graphs. They correspond at Hilbert space level naturally to tensor product and direct
sum. Could ×q and +q correspond to ⊗ and ⊕ obeying also associativity and distributivity
and could quantum arithmetics for Hilbert spaces apply to quantum TGD? If so, the integers
characterizing the lines of arithmetic Feynman diagrams would correspond to Hilbert space
dimensions - or rather, Hilbert spaces and quantum states - and in the vertices the incoming
states fuse to a direct sum ⊕ or tensor product ⊗!

3. One could assign to integer n a multiple covering defined by the state basis of n-dimensional
Hilbert space. This is just what one wants! The quantum Galois group would be subgroup
of the permutation group permuting the elements of this basis. The analogy with covering
spaces suggests cyclic group Zn. The non-trivial quantum Galois group would thus emerge
also for the “less-interesting” but non-risky option so that the conservative approach might
work after all!
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4. The Hilbert spaces in question could represent physical states - in p-adic context one could
speak about cognitive representations. It also turns out possible to relate these Hilbert spaces
directly to the singular coverings of embedding space associated with the hierarchy of Planck
constants assigned with dark matter in TGD Universe. This gives a concrete content for the
quantum Galois group as cyclic permutations of the sheets of the covering of the embedding
space. Hilbert spaces can be identified as function spaces associated with the discrete point
sets of the covering projected to the same point. Also a beautiful connection with infinite
primes defining algebraic extensions of rationals emerges and infinite primes would charac-
terize physical states by characterizing their dimensions of Hilbert spaces assignable to the
incoming and outgoing lines.

5. Quantum arithmetics would be arithmetics of Hilbert spaces and of states assigned to them.
This arithmetics allows also extension to rationals and algebraic numbers, and even the
Hilbert space variants of algebraic complex numbers, quaternions and octonions can be con-
sidered. Also quantum adeles can be defined in terms of Hilbert spaces. These generalization
are expected to be crucial for the understanding of generalized Feynman diagrams.

1.2 Quantum TGD And Hilbert Adeles

Irrespective of whether the isomorphism holds true quantum adeles - if they exist - could provide
a very powerful tool also for the formulation of quantum TGD and realize the old intuition that
AGG is a symmetry group of quantum TGD [K12].

1. The innocent TGD inspired question posed already earlier is whether the fusion of real
and various p-adic physics together could be realized in terms of adeles providing - if not
anything else - an ingenious book keeping device allowing to do real physics and all p-adic
physics simultaneously by replacing the whole stuff by single letter A! Now however replaced
with Aq.

2. The function spaces associated with quantum adeles decompose to tensor products of func-
tion spaces associated with the completions of rationals and one can speak about rational
entanglement between different number fields. Rational entanglement can be generalized to
algebraic entanglement when one replaces rationals with their algebraic extension and primes
with corresponding primes. Could it be that this rational/algebraic entanglement is the ra-
tional/algebraic suggested to characterize living matter and to which one can assign negative
entanglement entropy having interpretation as a measure for genuine information?

3. The basic vision of TGD inspired quantum bio-physics is that life resides in the intersection
of real and p-adic worlds in which rational/algebraic entanglement is natural. One can argue
that rational and algebraic entanglement are unstable and that it cannot be realized in any
system - living or not. The objection is that Negentropy Maximization Principle (NMP [K15]
) favors the generation of negentropic entanglement and once formed between two material
systems described by real numbers is stable. Could it be that the mechanism producing
this kind of entanglement is the necessary rational/algebraic entanglement between different
number fields - between matter and mind one might say - and that quantum jumps transform-
ing p-adic space-time sheets to real ones generates rational/algebraic entanglement between
systems consisting of matter. Intention transforming to action would be the interpretation
for this process.

4. The construction of generalized Feynman diagrams leads to a picture in which propagator
lines give rise to expressions in various p-adic number fields and vertices naturally to multi-
p-adic expressions involving p-adic primes of incoming lines. This picture has also natural
generalization to quantum variants of p-adic numbers and the expressions are eventually
mapped to real numbers by canonical identification induced by p→ 1/p for quantum rationals
appearing in various lines and in vertices of the generalized Feynman diagram. This construct
would naturally to a tensor product of state spaces assignable to different p-adic primes
and also reals so that M-matrix elements would be naturally in this tensor product. Note
that the function space associated with (quantum) adeles is naturally tensor product of
functions spaces associated with Cartesian factors of the adele ring with rationals defining
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the entanglement coefficients. All this of course generalizes by replacing rationals by their
algebraic extensions.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [?].

2 Earlier Attempts To Construct Quantum Arithmetics

Quantum arithmetics [K19] provides a possible resolution of a long-lasting challenge of finding a
mathematical justification for the canonical identification mapping p-adics to reals playing a key
role in TGD - in particular in p-adic mass calculations [K18].

In [K19] two basic options for quantum arithmetics were discussed. For option I products of
integers are mapped to products of quantum integers achieved by mapping primes l to quantum
primes lq = (ql − q−l)/(q − q−1), q = exp(iπ/p). For option II this is not the case.

In this chapter a third and much more general option is discussed. In order to give the needed
context, the options discussed in [K19] are however briefly discussed first.

2.1 Overall View About Variants Of Quantum Integers

The starting point of quantum arithmetics is the map n→ nq taking integers to quantum integers:
nq = (qn− q−n)/(q− q−1). Here q = exp(iπ/n) is quantum phase defined as a root of unity. From
TGD point of view prime roots q = exp(iπ/p) are of special interest. Also prime prime power
roots q = exp(iπ/pn) of unity are of interest. Quantum phase can be also generalized to complex
number with modulus different from unity.

One can consider several variants of quantum arithmetics. One can regard finite integers as
either real or p-adic. In the intersection of “real and p-adic worlds” finite integers can be regarded
both p-adic and real.

1. If one regards the integer n real one can keep some information about the prime decomposition
of n by dividing n to its prime factors and performing the mapping p→ pq. The map takes
prime first to finite field G(p, 1) and then maps it to quantum integer. Powers of p are mapped
to zero unless one modifies the quantum map so that p is mapped to p or 1/p depending on
whether one interprets the outcome as analog of p-adic number or real number. This map
can be seen as a modification of p-adic norm to a map, which keeps some information about
the prime factorization of the integer. Information about both real and p-adic structure of
integer is kept.

2. For p-adic integers the decomposition into prime factors does not make sense. In this case it
is natural to use pinary expansion of integer in powers of p and perform the quantum map
for the coefficients without decomposition to products of primes p1 < p. This map can be
seen as a modification of canonical identification.

3. If one wants to interpret finite integers as both real and p-adic then one can imagine the
definition of quantum integer obtained by de-compositing n to a product of primes, using
pinary expansion and mapping coefficients to quantum integers looks natural. This map
would keep information about both prime factorization and also a bout pinary series of
factors. One can also decompose the coefficients to prime factors but it is not clear whether
this really makes sense since in finite field G(p, 1) there are no primes.

Clearly, many variants of quantum integers can be found and it is difficult to decide which of
them - if any - has interesting from TGD point of view.

1. If one wants to really model something using quantum integers, the second options is perhaps
the realistic one: the reason is that the decomposition into prime factors requires a lot of
computation time.

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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2. A second fictive criterion would be whether the definition is maximally general. Does the
definition makes sense for infinite primes? The simplest infinite primes at the first level
of hierarchy have physical interpretation as many-particle states consisting of bosons and
fermions, whose momentum values correspond to finite primes. The interpretation generalizes
to higher levels of the hierarchy. A simple argument show that the option keeping information
about prime factorization of the p-adic number allowing also infinite primes as factors makes
sense only if prime factors are not expanded in series with respect to the prime p and if p does
not correspond to a fermionic mode. The quantum map using prime root of unity therefore
makes sense for all but fermionic primes. The presence of exceptional primes in number
theory is basic phenomenon: typically they correspond to primes for which factorization is
not unique in algebraic extension.

2.1.1 Two options for quantum integers

Two options for definining quantum arithmetics are discussed on [K19]: Options I and II. These
are not the only one imaginable but represent kind of diametrical opposites. The two options are
defined in the following manner.

1. For option I the prime number decomposition of integer is mapped to its quantum counter-
part by mapping the primes l to l modp (to guarantee positivity of the quantum integer)
decomposed into primes l < p and these in turn to quantum primes lq = (ql− q−l)/(q− q−1),
q = exp(iπ/p) so that image of the product is product of images. Sums are not mapped to
sums as is easy to verify. p is mapped to zero for the standard definition of quantum integer.
Now p is however mapped to itself or 1/p depending on whether one wants to interpret quan-
tum integer as p-adic or real number. Quantum integers generate an algebra with respect to
sum and product.

2. Option II one uses pinary expansion and maps the prime factors of coefficients to quantum
primes. There seems to be no point in decomposing the pinary coefficients to their prime
factors so that they are mapped to standard quantum integers smaller than p.

The quantum primes lq act as generators of Kac-Moody type algebra defined by powers pn

such that sum is completely analogous to that for Kac-Moody algebra: a + b =
∑
n anp

n +∑
bnp

n =
∑
n(an + bn)pn. For p-adic numbers this is not the case.

3. For both options it is natural to consider the variant for which one has expansion n =∑
k nkp

kr, nk < pr, r = 1, 2.... pk would serve as cutoff.

4. Non-negativity of quantum primes is important in the modelling of Shnoll effect by a defor-
mation of probability distribution P (n) by replacing the argument n by quantum integers
and the parameters of the distribution by quantum rationals [K1]. One could also replace
quantum prime by its square without losing the map of products to products.

5. At the limit when the quantum phase approaches to unit, ordinary quantum integers with
p-adic norm 1 approach to ordinary integers in real sense and ordinary arithmetics results.
Ordinary integers in real sense are obtained for option II when the coefficients of the pinary
expansion of n are much smaller than p and p approaches infinity. Same is true for option I
if the prime factors of the integer are much smaller than p.

The notion of quantum matrix group differing from ordinary quantum groups in that matrix
elements are commuting numbers makes sense. This group forms a discrete counterpart of ordinary
quantum group and its existence suggested by quantum classical correspondence. The existence
of this group for matrices with unit determinant is guaranteed by mere ring property since the
inverse matrix involves only arithmetic product and sum.

2.1.2 About the choice of the quantum parameter q

Some comments about the quantum parameter q are in order.
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1. The basic formula for quantum integers in the case of quantum groups is

nq =
qn − qn

q − q
. (2.1)

Here q is any complex number. The generalization respective the notion of primeness is
obtained by mapping only the primes p to their quantum counterparts and defining quantum
integers as products of the quantum primes involved in their prime factorization.

pq =
qp − qp

q − q
nq =

∏
p

pnp
q for n =

∏
p

pnp . (2.2)

2. In the general case quantum phase is complex number with magnitude different from unity:

q = exp(η)exp(iπ/m) . (2.3)

The quantum map is 1-1 for a non-vanishing value of η and the limit m→∞ gives ordinary
integers. It seems that one must include the factor making the modulus of q different from
unity if one wants 1-1 correspondence between ordinary and quantum integers guaranteeing
a unique definition of quantum sum. In the p-adic context with m = p the number exp(η)
exists as an ordinary p-adic number only for η = np. One can of course introduce a finite-
dimensional extension of p-adic numbers generated by e1/k.

3. The root of unity must correspond to an element of algebraic extension of p-adic numbers.
Here Fermat’s theorem ap−1 mod p = 1 poses constraints since p−1: th root of unity exists
as ordinary p-adic number. Hence m = p−1: th root of unity is excluded. Also the modulus
of q must exist either as a p-adic number or a number in the extension of p-adic numbers.

4. If q reduces to quantum phase, the n = 0, 1,−1 are fixed points of n → nq for ordinary
integers so that one could say that all these numbers are common to integers and quantum
integers for all values of q = exp(iπ/m). For p-adic integers −1 = (p − 1)(1 + p + p2 + ..
is problematic. Should one use direct formula mapping it to −1 or should one map the
expansion to (p− 1)q(1 + p+ p2 + ....)? This option looks more plausible.

(a) For the first option the images under canonical can have both signs and can form a field.
For the latter option would obtain only non-negative quantum p-adics for ordinary p-
adic numbers. They do not form a field. For algebraic extensions of p-adics by roots
of unity one can obtain more general complex numbers as quantum images. For the
latter option also the quantum p-adic numbers projecting to a given prime l regarded
as p-adic integer form a finite set and correspond to all expansions l =

∑
lkp

k where lk
is product of powers of primes pi < p but one can have also lk > p.

(b) Quantum integers containing only the O(p0) term in the binary expansion for a sub-
ring. Corresponding quantum rationals could form a field defining a kind of covering
for finite field G(p, 1).

(c) The image I(m/n) of the pinary expansion of p-adic rational is different from I(m)/I(n).
The formula m/n→ I(m)/I(n) is the correct manner to define canonical identification
map. In this case the real counterparts of p-adic quantum integers do not form the
analog of function fields since the numbers in question are always non-negative.

5. For p-adic rationals the quantum map reads as m/n→ mq/nq by definition. But what about
p-adic transcendentals such as ep? There is no manner to decompose these numbers to finite
primes and it seems that the only reasonable map is via the mapping of the coefficients xn in
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x =
∑
xnp

n to their quantum adic counterparts. It seems that one must expand all quantum
transcendentals having as a signature non-periodic pinary expansion to quantum p-adics to
achieve uniqueness. Second possibility is to restrict the consideration to rational p-adics. If
one gives up the condition that products are mapped to products, one can map n = nkp

k to
nq =

∑
nkqp

k. Only the products of p-adic integers n < p smaller than p would be mapped
to products.

6. The index characterizing Jones inclusion [A5] [K10] is given by [M : N ] = 4cos2(2π/n) and
corresponds to quantum dimension of 2q × 2q quantum matrices. TGD suggest that a series
of more general quantum matrix dimensions identifiable as indices of inclusions and given by
[M : N ] = l2q , l < p prime and q = exp(iπ/n), corresponding to prime Hilbert spaces and
q = n-adicity. lq < l is in accordance with the idea about finite measurement resolution and
for large values of p one would have lq ' l.

To sum up, one can imagine several options and it is not clear which option is the correct one.
Certainly Option I for which the quantum map is only part of canonical identification is the simpler
one but for this option canonical identification respects discrete symmetries only approximately.
The model for Shnoll effect requires only Option I. The notion of quantum integer as defined for
Opion II imbeds p-adic numbers to a much larger structure and therefore much more general than
that proposed in the model of Shnoll effect [K1] but gives identical predictions when the parameters
characterizing the probability distribution f(n) correspond contain only single term in the p-adic
power expansion. The mysterious dependence of nuclear decay rates on physics of solar system
in the time scale of years reduces to similar dependence for the parameters characterizing f(n).
Could this dependence relate directly to the fact that canonical identification maps long length
scale physics to short length scales physics. Could even microscopic systems such as atomic nuclei
give rise to what might be called “cognitive representations” about the physics in astrophysical
length scales?

2.2 The Third Option For Quantum P-Adics

The definition of quantum p-adics discussed in this chapter replaces integers with Hilbert spaces
of same dimension and + and × with direct sum ⊕ and tensor product ⊗. Also co-product and co-
sum must be introduced and assign to the arithmetics quantum dynamics, which leads to proposal
that sequences of arithmetic operations can be interpreted arithmetic Feynman diagrams having
direct TGD counterparts. This procedure leads to what might be called quantum mathematics
or Hilbert mathematics since the replacement can be made for any structure such as rationals,
algebraic numbers, reals, p-adic numbers, even quaternions and octonions.

Even set theory has this kind of generalization. The replacement can be made also repeatedly so
that one obtains a hierarchy of structures very similar to that obtained in the construction of infinite
primes by a procedure analogous to repeated second quantization. One possible interpretation is
in terms of a hierarchy of logics of various orders. Needless to say this definition is the really deep
one and actually inspired by quantum TGD itself. In this picture the quantum p-adics as they are
defined here would relate to the canonical identification map to reals and this map would apply
also to Hilbert p-adics.

3 The relation between U-Matrix and M-matrices

S-matrix is the key notion in quantum field theories. In Zero Energy Ontology (ZEO) this notion
must be replaced with the triplet U-matrix, M-matrix, and S-matrix. U-matrix realizes unitary
time evolution in the space for zero energy states realized geometrically as dispersion in the moduli
space of causal diamonds (CDs) leaving second boundary (passive boundary) of CD and states at
it fixed.

This process can be seen as the TGD counterpart of repeated state function reductions leaving
the states at passive boundary unaffected and affecting only the member of state pair at active
boundary (Zeno effect) [K15]. In TGD inspired theory of consciousness self corresponds to the
sequence of these state function reductions [K24, K3, K20]. M-matrix describes the entanglement
between positive and negative energy parts of zero energy states and is expressible as a hermitian
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square root H of density matrix multiplied by a unitary matrix S, which corresponds to ordinary S-
matrix, which is universal and depends only the size scale n of CD through the formula S(n) = Sn.
M-matrices and H-matrices form an orthonormal basis at given CD and H-matrices would naturally
correspond to the generators of super-symplectic algebra.

The first state function reduction to the opposite boundary corresponds to what happens in
quantum physics experiments. The relationship between U- and S-matrices has remained poorly
understood.

The original view about the relationship was a purely formal guess: M -matrices would define
the orthonormal rows of U -matrix. This guess is not correct physically and one must consider in
detail what U-matrix really means.

1. First about the geometry of CD [K17]. The boundaries of CD will be called passive and active:
passive boundary correspond to the boundary at which repeated state function reductions
take place and give rise to a sequence of unitary time evolutions U followed by localization in
the moduli of CD each. Active boundary corresponds to the boundary for which U induces
delocalization and modifies the states at it.

The moduli space for the CDs consists of a discrete subgroup of scalings for the size of CD
characterized by the proper time distance between the tips and the sub-group of Lorentz
boosts leaving passive boundary and its tip invariant and acting on the active boundary
only. This group is assumed to be represented unitarily by matrices Λ forming the same
group for all values of n.

The proper time distance between the tips of CDs is quantized as integer multiples of the
minimal distance defined by CP2 time: T = nT0. Also in quantum jump in which the size
scale n of CD increases the increase corresponds to integer multiple of T0. Using the logarithm
of proper time, one can interpret this in terms of a scaling parametrized by an integer. The
possibility to interpret proper time translation as a scaling is essential for having a manifest
Lorentz invariance: the ordinary definition of S-matrix introduces preferred rest system.

2. The physical interpretation would be roughly as follows. M-matrix for a given CD codes
for the physics as we usually understand it. M-matrix is product of square root of density
matrix and S-matrix depending on the size scale of CD and is the analog of thermal S-matrix.
State function at the opposite boundary of CD corresponds to what happens in the state
function reduction in particle physics experiments. The repeated state function reductions
at same boundary of CD correspond to TGD version of Zeno effect crucial for understanding
consciousness. Unitary U-matrix describes the time evolution zero energy states due to the
increase of the size scale of CD (at least in statistical sense). This process is dispersion in
the moduli space of CDs: all possible scalings are allowed and localization in the space of
moduli of CD localizes the active boundary of CD after each unitary evolution.

In the following I will proceed by making questions. One ends up to formulas allowing to
understand the architecture of U-matrix and to reduce its construction to that for S-matrix having
interpretation as exponential of the generator L1 of the Virasoro algebra associated with the super-
symplectic algebra.

3.1 What can one say about M-matrices?

1. The first thing to be kept in mind is that M-matrices act in the space of zero energy states
rather than in the space of positive or negative energy states. For a given CD M-matrices
are products of hermitian square roots of hermitian density matrices acting in the space of
zero energy states and universal unitary S-matrix S(CD) acting on states at the active end
of CD (this is also very important to notice) depending on the scale of CD:

M i = Hi ◦ S(CD) .

Here “◦” emphasizes the fact that S acts on zero energy states at active boundary only. Hi

is hermitian square root of density matrix and the matrices Hi must be orthogonal for given
CD from the orthonormality of zero energy states associated with the same CD. The zero
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energy states associated with different CDs are not orthogonal and this makes the unitary
time evolution operator U non-trivial.

2. Could quantum measurement be seen as a measurement of the observables defined by the
Hermitian generators Hi? This is not quite clear since their action is on zero energy states.
One might actually argue that the action of this kind of observables on zero energy states
does not affect their vanishing net quantum numbers. This suggests that Hi carry no net
quantum numbers and belong to the Cartan algebra. The action of S is restricted at the
active boundary of CD and therefore it does not commute with Hi unless the action is in a
separate tensor factor. Therefore the idea that S would be an exponential of generators Hi

and thus commute with them so that Hi would correspond to sub-spaces remaining invariant
under S acting unitarily inside them does not make sense.

3. In TGD framework symplectic algebraas isometries of WCW is analogous to a Kac-Moody
algebra with finite-dimensional Lie-algebra replaced with the infinite-dimensional symplectic
algebra with elements characterized by conformal weights [K9, K8]. There is a temptation to
think that the Hi could be seen as a representation for this algebra or its sub-algebra. This
algebra allows an infinite fractal hierarchy of sub-algebras of the super-symplectic algebra
isomorphic to the full algebra and with conformal weights coming as n-ples of those for the full
algebra. In the proposed realization of quantum criticality the elements of the sub-algebra
characterized by n act as a gauge algebra. An interesting question is whether this sub-
algebra is involved with the realization of M-matrices for CD with size scale n. The natural
expectation is that n defines a cutoff for conformal weights relating to finite measurement
resolution.

3.2 How does the size scale of CD affect M-matrices?

1. In standard quantum field theory (QFT) S-matrix represents time translation. The obvious
generalization is that now scaling characterized by integer n is represented by a unitary S-
matrix that is as n:th power of some unitary matrix S assignable to a CD with minimal size:
S(CD) = Sn. S(CD) is a discrete analog of the ordinary unitary time evolution operator
with n replacing the continuous time parameter.

2. One can see M-matrices also as a generalization of Kac-Moody type algebra. Also this
suggests S(CD) = Sn, where S is the S-matrix associated with the minimal CD. S becomes
representative of phase exp(iφ). The inner product between CDs of different size scales can
n1 and n2 can be defined as

〈M i(m),M j(n)〉 = Tr(S−m ◦HiHj ◦ Sn)× θ(n−m) ,

θ(n) = 1 for n ≥ 0 , θ(n) = 0 for n < 0 .
(3.1)

Here I have denoted the action of S-matrix at the active end of CD by “◦” in order to
distinguish it from the action of matrices on zero energy states which could be seen as
belonging to the tensor product of states at active and passive boundary.

It turns out that unitarity conditions for U-matrix are invariant under the translations of
n if one assumes that the transitions obey strict arrow of time expressed by nj − ni ≥ 0.
This simplifies dramatically unitarity conditions. This gives orthonormality for M-matrices
associated with identical CDs. This inner product could be used to identify U-matrix.

3. How do the discrete Lorentz boosts affecting the moduli for CD with a fixed passive bound-
ary affect the M-matrices? The natural assumption is that the discrete Lorentz group is
represented by unitary matrices λ: the matrices M i are transformed to M i ◦ λ for a given
Lorentz boost acting on states at active boundary only.

One cannot completely exclude the possibility that S acts unitarily at both ends of zero
energy states. In this case the scaling would be interpreted as acting on zero energy states
rather than those at active boundary only. The zero energy state basis defined by Mi would
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depend on the size scale of CD in more complex manner. This would not affect the above
formulas except by dropping away the “◦”.

Unitary U must characterize the transitions in which the moduli of the active boundary of
causal diamond (CD) change and also states at the active boundary (paired with unchanging
states at the passive boundary) change. The arrow of the experienced flow of time emerges during
the period as state function reductions take place to the fixed (“passive”) boundary of CD and do
not affect the states at it. Note that these states form correlated pairs with the changing states
at the active boundary. The physically motivated question is whether the arrow of time emerges
statistically from the fact that the size of CD tends to increase in average sense in repeated state
function reductions or whether the arrow of geometric time is strict. It turns out that unitarity
conditions simplify dramatically if the arrow of time is strict.

3.3 What Can One Say About U-Matrix?

1. Just from the basic definitions the elements of a unitary matrix, the elements of U are
between zero energy states (M-matrices) between two CDs with possibly different moduli of
the active boundary. Given matrix element of U should be proportional to an inner product
of two M -matrices associated with these CDs. The obvious guess is as the inner product
between M-matrices

U ijm,n = 〈M i(m,λ1),M j(n, λ2)〉

= Tr(λ†1S
−m ◦HiHj ◦ Snλ2)

= Tr(S−m ◦HiHj ◦ Snλ2λ−11 )θ(n−m) .

(3.2)

Here the usual properties of the trace are assumed. The justification is that the operators
acting at the active boundary of CD are special case of operators acting non-trivially at both
boundaries.

2. Unitarity conditions must be satisfied. These conditions relate S and the hermitian generators
Hi serving as square roots of density matrices. Unitarity conditions UU† = U†U = 1 is
defined in the space of zero energy states and read as

∑
j1n1

U ij1mn1
(U†)j1jn1n = δi,jδm,nδλ1,λ2 (3.3)

To simplify the situation let us make the plausible hypothesis contribution of Lorentz boosts
in unitary conditions is trivial by the unitarity of the representation of discrete boosts and
the independence on n.

3. In the remaining degrees of freedom one would have

∑
j1,k≥Max(0,n−m)

Tr(Sk ◦HiHj1)Tr(Hj1Hj ◦ Sn−m−k) = δi,jδm,n . (3.4)

The condition k ≥ Max(0, n −m) reflects the assumption about a strict arrow of time and
implies that unitarity conditions are invariant under the proper time translation (n,m) →
(n+ r,m+ r). Without this condition n back-wards translations (or rather scalings) to the
direction of geometric past would be possible for CDs of size scale n and this would break the
translational invariance and it would be very difficult to see how unitarity could be achieved.
Stating it in a general manner: time translations act as semigroup rather than group.
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4. Irreversibility reduces dramatically the number of the conditions. Despite this their number
is infinite and correlates the Hermitian basis and the unitary matrix S. There is an obvious
analogy with a Kac-Moody algebra at circle with S replacing the phase factor exp(inφ) and
Hi replacing the finite-dimensional Lie-algebra. The conditions could be seen as analogs for
the orthogonality conditions for the inner product. The unitarity condition for the analog
situation would involve phases exp(ikφ1) ↔ Sk and exp(i(n − m − k)φ2) ↔ Sn−m−k and
trace would correspond to integration

∫
dφ1 over φ1 in accordance with the basic idea of

non-commutative geometry that trace corresponds to integral. The integration of φi would
give δk,0 and δm,n. Hence there are hopes that the conditions might be satisfied. There is
however a clear distinction to the Kac-Moody case since Sn does not in general act in the
orthogonal complement of the space spanned by Hi.

5. The idea about reduction of the action of S to a phase multiplication is highly attractive and
one could consider the possibility that the basis of Hi can be chosen in such a way that Hi

are eigenstates of of S. This would reduce the unitarity constraint to a form in which the
summation over k can be separated from the summation over j1.

∑
k≥Max(0,n−m)

exp(iksi − (n−m− k)sj)
∑
j1

Tr(HiHj1)Tr(Hj1Hj) = δi,jδm,n .

(3.5)

The summation over k should gives a factor proportional to δsi,sj . If the correspondence
between Hi and eigenvalues si is one-to-one, one obtains something proportional to δ(i, j)
apart from a normalization factor. Using the orthonormality Tr(HiHj) = δi,j one obtains
for the left hand side of the unitarity condition

exp(isi(n−m))
∑
j1

Tr(HiHj1)Tr(Hj1Hj) = exp(isi(n−m))δi,j .

(3.6)

Clearly, the phase factor exp(isi(n −m)) is the problem. One should have Kronecker delta
δm,n instead. One should obtain behavior resembling Kac-Moody generators. Hi should be
analogs of Kac-Moody generators and include the analog of a phase factor coming visible by
the action of S.

3.4 How to obtain unitarity correctly?

It seems that the simple picture is not quite correct yet. One should obtain somehow an integration
over angle in order to obtain Kronecker delta.

1. A generalization based on replacement of real numbers with function field on circle suggests
itself. The idea is to the identify eigenvalues of generalized Hermitian/unitary operators as
Hermitian/unitary operators with a spectrum of eigenvalues, which can be continuous. In
the recent case S would have as eigenvalues functions λi(φ) = exp(isiφ). For a discretized
version φ would have has discrete spectrum φ(n) = 2πk/n. The spectrum of λi would have
n as cutoff. Trace operation would include integration over φ and one would have analogs of
Kac-Moody generators on circle.

2. One possible interpretation for φ is as an angle parameter associated with a fermionic string
connecting partonic 2-surface. For the super-symplectic generators suitable normalized radial
light-like coordinate rM of the light-cone boundary (containing boundary of CD) would be
the counterpart of angle variable if periodic boundary conditions are assumed.

The eigenvalues could have interpretation as analogs of conformal weights. Usually conformal
weights are real and integer valued and in this case it is necessary to have generalization of the
notion of eigenvalues since otherwise the exponentials exp(isi) would be trivial. In the case
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of super-symplectic algebra I have proposed that the generating elements of the algebra have
conformal weights given by the zeros of Riemann zeta. The spectrum of conformal weights
for the generators would consist of linear combinations of the zeros of zeta with integer
coefficients. The imaginary parts of the conformal weights could appear as eigenvalues of S.

3. It is best to return to the definition of the U-matrix element to check whether the trace
operation appearing in it can already contain the angle integration. If one includes to the
trace operation appearing the integration over φ it gives δm,n factor and U-matrix has ele-
ments only between states assignable to the same causal diamond. Hence one must interpret
U-matrix elements as functions of φ realized factors exp(i(sn − sm)φ). This brings strongly
in mind operators defined as distributions of operators on line encountered in the theory of
representations of non-compact groups such as Lorentz group. In fact, the unitary represen-
tations of discrete Lorentz groups are involved now.

4. The unitarity condition contains besides the trace also the integrations over the two angle
parameters φi associated with the two U-matrix elements involved. The left hand side of the
unitarity condition reads as

∑
k≥Max(0,n−m)

I(ksi)I((n−m− k)sj)×
∑
j1

Tr(HiHj1)Tr(Hj1Hj)

= δi,jδm,n ,

I(s) =
1

2π
×
∫
dφexp(isφ) = δs,0 .

(3.7)

Integrations give the factor δk,0 eliminating the infinite sum obtained otherwise plus the factor
δn,m. Traces give Kronecker deltas since the projectors are orthonormal. The left hand side
equals to the right hand side and one achieves unitarity. It seems that the proposed ansatz
works and the U-matrix can be reduced by a general ansatz to S-matrix.

5. It should be made clear that the use of eigenstates of S is only a technical trick, the physical
states need not be eigenstates. If the active parts of zero energy states where eigenstates of
S, U-matrix would not have matrix elements between different Hi and projection operator
could not change during time evolution.

3.5 What about the identification of S?

1. S should be exponential of time the scaling operator whose action reduces to a time trans-
lation operator along the time axis connecting the tips of CD and realized as scaling. In
other words, the shift t/T0 = m → m + n corresponds to a scaling t/T0 = m → km giv-
ing m + n = km in turn giving k = 1 + n/m. At the limit of large shifts one obtains
k ' n/m → ∞, which corresponds to QFT limit. nS corresponds to (nT0) × (S/T0) = TH
and one can ask whether QFT Hamiltonian could corresponds to H = S/T0.

2. It is natural to assume that the operators Hi are eigenstates of radial scaling generator
L0 = irMd/drM at both boundaries of CD and have thus well-defined conformal weights. As
noticed the spectrum for super-symplectic algebra could also be given in terms of zeros of
Riemann zeta.

3. The boundaries of CD are given by the equations rM = m0 and rM = T − m0, m0 is
Minkowski time coordinate along the line between the tips of CD and T is the distance
between the tips. From the relationship between rM and m0 the action of the infinitesimal
translation H ≡ i∂/∂m0 can be expressed as conformal generator L−1 = i∂/∂rM = r−1M L0.
Hence the action is non-diagonal in the eigenbasis of L0 and multiplies with the conformal
weights and reduces the conformal weight by one unit. Hence the action of U can change
the projection operator. For large values of conformal weight the action is classically near to
that of L0: multiplication by L0 plus small relative change of conformal weight.
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4. Could the spectrum of H be identified as energy spectrum expressible in terms of zeros of zeta
defining a good candidate for the super-symplectic radial conformal weights. This certainly
means maximal complexity since the number of generators of the conformal algebra would
be infinite. This identification might make sense in chaotic or critical systems. The functions
(rM/r0)1/2+iy and (rM/r0)−2n, n > 0, are eigenmodes of rM/drM with eigenvalues (1/2+iy)
and −2n corresponding to non-trivial and trivial zeros of zeta.

There are two options to consider. Either L0 or iL0 could be realized as a hermitian operator.
These options would correspond to the identification of mass squared operator as L0 and
approximation identification of Hamiltonian as iL1 as iL0 making sense for large conformal
weights.

(a) Suppose that L0 = rMd/drM realized as a hermitian operator would give harmonic
oscillator spectrum for conformal confinement. In p-adic mass calculations the string
model mass formula implies that L0 acts essentially as mass squared operator with inte-
ger spectrum. I have proposed conformal confinent for the physical states net conformal
weight is real and integer valued and corresponds to the sum over negative integer val-
ued conformal weights corresponding to the trivial zeros and sum over real parts of
non-trivial zeros with conformal weight equal to 1/2. Imaginary parts of zeta would
sum up to zero.

(b) The counterpart of Hamiltonian as a time translation is represented by H = iL0 =
irMd/drM . Conformal confinement is now realized as the vanishing of the sum for the
real parts of the zeros of zeta: this can be achieved. As a matter fact the integration
measure drM/rM brings implies that the net conformal weight must be 1/2. This is
achieved if the number of non-trivial zeros is odd with a judicious choice of trivial zeros.
The eigenvalues of Hamiltonian acting as time translation operator could correspond to
the linear combination of imaginary part of zeros of zeta with integer coefficients. This
is an attractive hypothesis in critical systems and TGD Universe is indeed quantum
critical.

3.6 What about Quantum Classical Correspondence?

Quantum classical correspondence realized as one-to-one map between quantum states and zero
modes has not been discussed yet.

1. M -matrices would act in the tensor product of quantum fluctuating degrees of freedom and
zero modes. The assumption that zero energy states form an orthogonal basis implies that
the hermitian square roots of the density matrices form an orthonormal basis. This condition
generalizes the usual orthonormality condition.

2. The dependence on zero modes at given boundary of CD would be trivial and induced by
1-1 correspondence |m〉 → z(m) between states and zero modes assignable to the state basis
|m± at the boundaries of CD, and would mean the presence of factors δz+,f(m+) × δz−,f(n−)

multiplying M-matrix M i
m,n.

To sum up, it seems that the architecture of the U-matrix and its relationship to the S-matrix
is now understood and in accordance with the intuitive expectations the construction of U-matrix
reduces to that for S-matrix and one can see S-matrix as discretized counterpart of ordinary unitary
time evolution operator with time translation represented as scaling: this allows to circumvent
problems with loss of manifest Poincare symmetry encountered in quantum field theories and
allows Lorentz invariance although CD has finite size. What came as surprise was the connection
with stringy picture: strings are necessary in order to satisfy the unitary conditions for U-matrix.
Second outcome was that the connection with super-symplectic algebra suggests itself strongly.
The identification of hermitian square roots of density matrices with Hermitian symmetry algebra
is very elegant aspect discovered already earlier. A further unexpected result was that U-matrix
is unitary only for strict arrow of time (which changes in the state function reduction to opposite
boundary of CD).
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4 Hilbert P-Adics, Hilbert Adeles, And TGD

One can imagine also a third generalization of the number concept. One can replace integer n
with n-dimensional Hilbert space and sum and product with direct sum and tensor product and
introduced their co-operations, the definition of which is non-trivial. This procedure yields also
Hilbert space variants of rationals, algebraic numbers, p-adic number fields, and even complex,
quaternionic and octonionic algebraics. Also adeles can be replaced with their Hilbert space coun-
terparts. Even more, one can replace the points of Hilbert spaces with Hilbert spaces and repeat
this process, which is very similar to the construction of infinite primes having interpretation in
terms of repeated second quantization. This process could be the counterpart for construction of
nth order logics and one might speak of Hilbert or quantum mathematics. It would also generalize
the notion of algebraic holography.

This vision emerged from the connections with generalized Feynman diagrams, braids, and
with the hierarchy of Planck constants realized in terms of coverings of the embedding space.
Hilbert space generalization of number concept seems to be extremely well suited for the purposes
of TGD. For instance, generalized Feynman diagrams could be identifiable as arithmetic Feynman
diagrams describing sequences of arithmetic operations and their co-operations. The definition of
co-operations would define quantum dynamics. Physical states would correspond to the Hilbert
space states assignable to numbers.

4.1 Could The Notion Of Hilbert Mathematics Make Sense?

After having worked one month with the iea I found myself in a garden of branching paths and
realized that something must be wrong. Is the idea about quantum p-adics a disgusting fix idee
or is it something deeper?

The successful manner to make progress in this this kind of situation has been the combination
of existing firmly established ideas with the newcomer. Could the attempt to relate quantum
p-adics to generalized Feynman graphs, infinite primes, and hierarchy of Planck constants help?

Second good strategy is maximal simplification. In the recent case this encourages sticking to
the most conservative option for which quantum p-adics are obtained from ordinary p-adics by
mapping the coefficients of powers of p to quantum integers. This option has also a variant for
which one has expansion in powers of pN defining pinary cutoff. At the level of p-adic numbers
different values of N make no difference but at the level of finite measurement resolution situation
is different. Also quantum m-adicity would have natural interpretation in terms of measurement
resolution rather than fundamental algebra.

4.1.1 Replacing integers with Hilbert spaces

Consider now the argument leading to the interpretation of p-adic integers as Hilbert space dimen-
sions and the formulation of quantum p-adics as p-adic Hilbert spaces whose state basis defines a
multiple covering of integer defining the dimension of the Hilbert space.

1. The notion of generalized Feynman diagram and zero energy ontology suggest suggests that
of arithmetic Feynman diagram describing a sequence of arithmetic operations performed for
a set of incoming integers and producing a set of outgoing integers. This approach indeed
led to the discovery that integers could be replaced by Hilbert spaces.

2. The basic 3-vertices of the arithmetic Feynman diagram would be ×q and +q and their co-
operations. The moves of Feynman diagrams leaving the amplitude invariant would code for
associativity and distributivity. All loops could be eliminated by these moves and diagram
transformed to a canonical tree diagram in which incoming resp. outgoing lines could be
permuted.

3. Incoming lines would correspond to integers decomposing into products of primes and an
attractive interpretation is that these primes correspond to braid strands for generalized
Feynman diagrams.

4. The basic vertices in quantum TGD correspond to the stringy 3-vertex and 3-vertex for
Feynman graphs. They correspond at Hilbert space level naturally to tensor product and
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direct sum. Could ×q and +q correspond to tensor product and direct sum obeying also
associativity and distributivity?! If so, the integers characterizing the lines of arithmetic
Feynman diagrams would correspond to Hilbert space dimensions - or rather, Hilbert spaces
- and in vertices the incoming states fuse to direct sum of tensor product!

5. What this would mean is that one could assign to each p-adic integer a multiple covering
defined by the state basis of the corresponding Hilbert space. This is just what one wants!
The quantum Galois group would be subgroup of the permutation group permuting the
elements of this basis. The analogy with covering spaces suggests just cyclic group. The
non-trivial quantum Galois group would emerge also for the “less-interesting” but non-risky
option so that the conservative approach might work!

6. The Hilbert spaces in question could represent physical states - maybe cognitively in the
p-adic context. It also turns out possible to relate these Hilbert spaces directly to the
singular coverings of embedding space associated with the hierarchy of Planck constants
assigned with dark matter in TGD Universe. This gives a concrete content for the quantum
Galois group as cyclic permutations of the sheets of the covering of the embedding space and
Hilbert spaces can be identified as function spaces associated with the discrete point sets
of covering projected to the same point. Also a beautiful connection with infinite primes
defining algebraic extensions of rationals emerges and infinite primes would characterize
physical states by characterizing their dimensions of Hilbert spaces assignable to the incoming
and outgoing lines.

This approach works for the ordinary p-adic integers. There is no need to allow coefficients
an > p (“interesting” option) in the expansion

∑
anp

n of p-adic numbers but still consisting of
primes l < p. “Interesting” option would emerge as one takes finite measurement resolution into
account by mapping the Hilbert spaces defining coefficients of Hilbert space pinary expansion with
their quantum counterparts. More precisely.

1. At Hilbert space level pinary expansion of p-adic Hilbert space becomes direct sum ⊕nan⊗pn.
an = ⊗ipi, pi < p, denotes tensor product of prime Hilbert spaces for which I use the same
label as for p-adic numbers. pn denotes Hilbert space with dimension pn. In real context it
is very natural to decompose real Hilbert spaces to tensor products of prime Hilbert spaces.

2. Quantum p-adic numbers would be obtained by mapping the Hilbert space valued coefficients
an of the to their quantum counterparts (an)q, which are conjectured to allow precise defi-
nition in terms of inclusions of hyper-finite factors with Jones inclusions associated with the
quantum counterpart of 2-D Hilbert space. The quantum map would reduce to the mapping
of the tensor factors p1 of an to (p1)q. Same would apply to quantum states. The map would
be defined as ⊕an ⊗ pn → ⊕(an)q ⊗ pn, (an)q = ⊗p1(p1)q. The map p1 → (p1)q would take
into account finite measurement resolution.

“Interesting” option would be obtained as follows. It is possible to express given p-adic
number in many ways if one only requires that the coefficients an in the direct sum are
tensor products of prime Hilbert spaces with dimension p1 < p but does not assume an < p.
For instance, for p = 3 and n = 8 one has 8 = 2⊕2⊗ or 8 = 2⊗2⊗2. These representations are
p-adically equivalent. Quantum map however spoils this equivalence. 2⊕ 2⊗ 3→ 2q⊕ 2q⊗ 3
and 8 = 2 ⊗ 2 ⊗ 2 → 2q ⊗ 2q ⊗ 2q are not same quantum Hilbert spaces. The “interesting”
option would thus emerge as one takes into account the finite measurement resolution.

4. One could say that the quantum Hilbert spaces associated with a given p-adic Hilbert space
form a covering space like structure. Quantum Galois group identified as a subgroup of
permutations of these quantum Hilbert spaces need not make sense however.

After this lengthy motivating introduction I want to describe some details of the arithmetics of
p-adic Hilbert spaces. This arithmetics is formally identical with the ordinary integer arithmetics.
What is however interesting is that one can generalize it so that one obtains something that one
could call Hilbert spaces of dimension which is negative, rational, algebraic, or even complex, and
even quaternionic or octonionic. It might be necessary to have these generalizations if one wants
full generality.
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1. Consider first what might be called p-adic Hilbert spaces. For brevity I will denote Hilbert
spaces in the same manner as p-adic numbers: reader can replace “n” with “Hn” if this looks
more appropriate. p-Adic Hilbert spaces have direct sum expansions of form

n = ⊕kak ⊗ pk .

All integers appearing in the formula can be also interpreted as Hilbert space dimensions.
In the real context it is very natural to decompose real Hilbert spaces to tensor products of
prime Hilbert spaces.

2. How to define Hilbert spaces with negative dimension? In p-Adic context this is not a
problem. Hilbert space with dimension −1 is given by Hilbert spaces with dimension (p −
1)/(1− p) = (p− 1)(1 + p+ p2 + ...) converging p-adically and given by

−1 = ⊕k(p− 1)⊗ pk .

In real context one must consider pairs of Hilbert spaces (m,n) and define equivalence
(m,n) = (m + k, n + k). In canonical representation Hilbert space with positive dimen-
sion m corresponds to (m, 0) and Hilbert spaces with negative dimension −m to (0,m). This
procedure is familiar from the theory of vector bundles where one subtracts vector bundles
and defines their negatives.

3. In p-adic context one can also define p-adic Hilbert spaces with rational dimension if the p-
adic norm of the rational (m/n) is smaller than 1. This is achieved simply by the expansion

m

n
= ⊕kak ⊗ pk .

In real context tone can define Hilbert spaces with rational valued dimension just as one
defines rational numbers - that is as pairs of Hilbert spaces (m,n) with equivalence (m,n) ≡
(km, kn).

4. One can even define Hilbert spaces with dimensions in algebraic extensions of rationals.

(a) Consider first the real case and the extension defined by Gaussian integers for which
integers are of form m+ in ≡ (m,n). What is needed is just the product rule: (m,n)⊗
(r, s) = (m⊗ r −⊕(−n⊗ s),m⊗ s⊕ r ⊗ n). This expression is completely well-defined
in the p-adic context and also in real context if one accepts the proposed defined of
integer Hilbert spaces as pairs of ordinary Hilbert spaces. For Q(

√
5) one would have

(m,n)×(r, s) = (m⊗r⊕5⊗n⊗s,m⊗s⊕r⊗n). In n-dimensional case one just replaces
Hilbert spaces with n-multiple of ordinary Hilbert spaces and uses the multiplication
rules.

(b) In p-adic context similar approach works when the algebraic extension requires also
extension of p-adic numbers. In p-adic context however many algebraic numbers can
exist as ordinary p-adic numbers. For instance, for p mod 4 = 1

√
−1 exists as well as

its Hilbert space counterpart. For quadratic extensions of p > 2-adic numbers the 4-D
extension involving the addition of two square roots all square roots except that of p
exist -adically.

4.1.2 Quantum Hilbert spaces and generalization to extensions of rationals

The map of p-adic integers to their quantum counterparts generalizes so that it applies to Hilbert
spaces. This means that prime Hilbert spaces are mapped to the quantum counterparts. What
this means is not quite obvious. Quantum groups appearing in the context of Jones inclusions lead
to the emergence of quantum spinors that is quantum counterparts of 2-D Hilbert spaces. This
suggest that more general inclusions lead to prime-dimensional quantum Hilbert spaces. The idea is
simple: quantum matrix algebra M/N with quantum dimension (2q)

2 is defined as a coset space of
hyper-finite factor M and included factor N ⊂M . This quantum matrix algebra acts in quantum
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spinor space of dimension 2q. The generalization would introduce pq-dimensional quantum Hilbert
spaces.

A good test for the proposal is whether it generalizes naturally to algebraic extensions of
rationals.

1. For algebraic extensions some ordinary primes split into products of primes associated with
the extension. The problem is that for these algebraic primes the factors exp(iπ/P ) fail to
be algebraic numbers and finite roots of unity and its is not at all clear whether the näıve
generalization of the notion of quantum p-adic makes sense. This suggests that only the
ordinary primes which do not split into products of primes of extension remain and one
can define quantum p-adics only for these whereas the other primes correspond to ordinary
algebraic extension of p-adic numbers. This would make algebraic extension of rationals the
coefficient group of adele consisting of p-adic numbers fields associated with non-split primes
only. Note that rationals or their extension would naturally appear as tensor factor of adeles
meaning that their action can be thought to affect any of the factors of the adele.

2. For split primes the p-adic Hilbert spaces must be defined for their algebraic prime factors.
The proposed procedure of defining Hilbert space counterparts for algebraic extensions of
rationals provides a recipe for how to achieve this. These Hilbert spaces the quantum map
would be trivial.

3. Hilbert space counterpart for the algebraic extension of rationals and of p-adics makes also
sense. The Hilbert space assigned with integer which splits into primes of extension splits
also to a tensor product of prime Hilbert spaces assignable with the extension. The splitting
of integers and primes is highly analogous to the decomposition of hadron to quarks and
gluons. This decomposition is not seen at the level of rationals representing observed.

4.1.3 What about Hilbert spaces with real number valued dimension?

What Hilbert space variant of a real number could mean? What Hilbert space with dimension
equal to arbitrary real number could mean? One can imagine two approaches.

1. The first approach is based on the map of Hilbert p-adics to real p-adics by a map used to map
p-adic numbers to reals. The formula would be ⊕nan ⊗ pn → ⊕(an)q ⊗ p−n. (an)q = ⊗llelq ,
were lq is quantum Hilbert space of prime dimension. Also the Hilbert space p−n would be
well-defined as a Hilbert rational defined as a pair of Hilbert spaces.

For hyper-finite factors of type II1 Hilbert spaces with continuous dimension emerge natu-
rally. The reason is that the dimension of the Hilbert space is defined as quantum trace of
identity operator characterized by quantum phase this dimension is finite and continuous.
This allows a spectrum of sub-Hilbert spaces with continuously varying real dimension. The
appearance of quantum Hilbert spaces in the canonical identification map conforms with
this and even for dimension 0 < n < p gives rise to quantum Hilbert space with algebraic

quantum dimension given as n =
∏
le

l

q for n =
∏
l l
el .

2. Second approach relies on the mimicry of the completion of ordinary rationals to real numbers.
One can define Hilbert space analogs of rationals and algebraics by defining positive and
negative rationals as pairs of Hilbert spaces with equivalence relation (m,n) ≡ (m ⊕ r, n ⊕
r). Taking pairs of these pairs with equivalence relation (M,N) ≡ (K ⊗M,K ⊗ N) one
obtains Hilbert spaces corresponding to rational numbers. Algebraic extensions are obtained
similarly. By taking limits just in the same manner as for real numbers one would obtain
Hilbert reals with transcendental dimensions. For instance, e could be defined as the limit
of tensor power (1⊕ 1/n)n, n→∞.

Again one must remember that the co-vertices define the hard part of the problem and their
definition means postulate of quantum dynamics. This would be the genuinely new element and
transform mathematics to quantum physics. Every sequences of algebraic operations having a
realization as Feynman diagram involving arithmetic operations as positive energy part of Feynman
diagrams and co-operations as the negative energy part of diagram connected by single line.
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It should not go un-noticed that the direct sum and tensor product decompositions of possibly
infinite-dimensional Hilbert spaces are very essential for the interpretation. For infinite-dimensional
Hilbert spaces these decompositions would be regarded as equivalent for an abstract definition of
Hilbert space. In physical applications tensor product and direct sum representations have also
very concrete physical content.

4.1.4 Hilbert calculus?

What this approach suggests is a generalization of calculus in both real and and p-adic context.
The first thing to do is to define Hilbert functions as Hilbert space valued functions as x→ f(x).
This could be done formally by assigning to Hilbert space associated with point x Hilbert space
associated with the point f(x) for all values of x. Function could have representation as Taylor
series or Laurent series with sum replaced with direct sum and products with tensor products. The
correspondence x→ f(x) would have as a counterpart the analog of Feynman diagram describing
the Taylor series with final line defining the value f(x). Also derivatives and integrals would be at
least formally defined. This would requite separate diagram for every point x. One can consider
also the possibility of more abstract definition of f(x). For instance the set of coefficients {fn} in
the Taylor series of f would defined a collection of Hilbert spaces.

One should be able to define also co-functions in terms of co-vertices. The value of co-function
at point y would give all the values of x for which one has f(x) = y. Co-function would correspond
to a quantum superposition of values of inverse function and to time reversed zero energy states.
The breaking of time reversal would be inherent in the very definition of function as an arrow from
one Hilbert set to another Hilbert set and typically the functions involved would be many-valued
form beginning. Perhaps it would be better to speak from the beginning about relations between
two sets rather than functions. The physical realization of Hilbert calculus would be obtained by
assigning to incoming arguments represented as Hilbert space quantum states.

4.1.5 Quantum mathematics?

Could one transform entire mathematics to quantum mathematics - or would it be better to say
Hilbert mathematics? Reader can decide. Consider first Hilbert set theory. The idea wold be
to replace numbers with Hilbert spaces. This would give Hilbert structure. By replacing Hilbert
spaces with their quantum counterparts characterized by quantum dimensions nq one would obtain
which might be called quantum Hilbert structure.

1. At the level of set theory this would mean replacement of sets with Hilbert sets. A set with
n elements would correspond intuitively to n-dimensional Hilbert space. Therefore Hilbert
sets would provide much more specific realization of set theory than abstract set theory in
which the elements of set can be anything. For n-dimensional Hilbert space however the
ordering of the elements of basis induces automatically the ordering of the elements of the
set. Does the process of counting the elements of set corresponds to this ordering. Direct
sum would be the counterpart of set theoretic union. One could construct natural numbers
inductively as direct sums (n+1) = n⊕1. To be subset would correspond to sub-Hilbert space
property. Intersection of two Hilbert sets would correspond to the direct sum of common
direct summands. Also set difference and symmetric difference could be defined.

2. The set theoretic realization of Boolean logic would have Hilbert variant. This would mean
that logical statements could be formulated using Hilbert variants of basic logical functions.

3. Cartesian product of sets would correspond to a tensor product of Hilbert spaces. This
would bring in the notion of prime since Hilbert integers would have decomposition into
tensor products of Hilbert primes. Note that here one can consider the symmetrization of
tensor product modulo phase factor and this could give rise to bosonic and fermionic statistics
and perhaps also to anyonic statistics when the situation is 2-dimensional as it indeed is for
partonic 2-surfaces.

4. What about sets of sets?
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(a) The elements of n-dimensional Hilbert space consist of numbers in some number field.
By replacing these numbers with corresponding Hilbert spaces one would obtain Hilbert
space of Hilbert spaces as a counterpart for sets of sets. One would have Hilbert space
whose points are Hilbert spaces: Hilbert-Hilbert space!. This process could be continued
indefinitely and would give rise to a hierarchy formed by Hilbertn-spaces. This would
be obviously something new and mean self-referential property. For Hilbertn-spaces one
would the points at n: th level of hierarchy with points of the number field involved and
obtain a concrete realization. The construction of infinite primes involves formations
of sets of rationals and sets of these sets, etc.... and would have also interpretation as
formation of a hierarchy of Hilbert sets of sets of.....

(b) Power set as set of subsets of set would be obtained from direct sum of Hilbert spaces,
by replacing the points of each Hilbert space with corresponding Hilbert spaces.

(c) One could define the analog of set theoretic intersection also for tensor products as the
set of common prime Hilbert factors for two Hilbert sets. For ordinary integers defined
as sets the intersection in this sense would correspond to the common prime factors. In
Cartesian product the intersection would correspond to common Cartesian factors.

5. The completely new and non-trivial element bringing in the quantum dynamics is brought in
by co-operations for union and intersection. The solution to the equation f(x) = y could be
represented as a number theoretic Feynman diagram in zero energy ontology. Positive energy
part would correspond to y and diagram beginning from y would represent co-function of f(x)
identifiable as its inverse. Negative energy state would represent a quantum superposition of
the values of x representing the solutions.

6. One can ask whether a Feynman diagrammatic representation for the statements like ∃x ∈ A
such that f(x) = g(x) and ∀x ∈ Af(x) = g(x) exists. One should be able to construct
quantum state which is superposition of solutions to the condition f(x) = g(x). If this state
is non-vanishing the solution exists.

This kind of statements are statements of first order logic involving existential quantifiers
whereas the statements of predicate logic would correspond simply to a calculation of a
value of function at given point. The hierarchy of Hilbertn spaces brings in mind strongly
the hierarchy of infinite primes assigned already earlier to a hierarchy of logics. Could the
statements of n: th order logic require the use of Hilbertn- spaces. The replacement of
numbers with Hilbert spaces could correspond to formation of statements of first order logic.
The individual quantum states satisfying the statement would represent the statements of
predicate logic.

The construction of infinite primes can be regarded as repeated second quantization in which
the many particle states of the previous level become single particle states of the new level.
Maybe also the hierarchy of Hilbertn-spaces could be seen in terms of a hierarchy of second
quantizations.

Infinite primes lead to the notion of algebraic holography meaning that real point has in-
finitely rich number theoretical anatomy due to the existence of real units expressible as
ratios of infinite integers reducing to real unit in real topology. The possibility to replace
the points of space-time with Hilbert spaces and to continue this process indefinitely would
realize the same idea.

4.1.6 Number theoretic Feynman diagrams

Could one imagine a number theoretical quantum dynamics in which integers are replaced with
sequences of arithmetic operations? If numbers are replaced with Hilbert spaces and if one can
assigns to each number a state of the Hilbert space accompanying it, this seems to be possible.

1. All algebraic functions would be replaced with their algebraic expressions, which would be
interpreted as analogs of zero energy states in which incoming arguments would represent
positive energy part and the result of operation outgoing state. This would also unify algebra
and co-algebra thinking and the information about the values of the arguments of the function
would not be forgotten in the operations.
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2. The natural constraints on the dynamics would be trivial. In +q vertex a direct sum of
incoming states and in ×q gives rise to tensor product. This also at the level of Hilbert spaces
involved. The associativity and commutativity of direct sum and tensor product guarantee
automatically the these properties for the vertices. The associativity and commutativity
conditions are analogous to associativity conditions for 3-point functions of conformal field
theories. Distributivity condition is something new. Co-product and co-sum obey completely
analogous constraints as product and sum.

3. For product the total numbers of prime factors is conserved for each prime appearing in
the product meaning that the total momenta nilog(pi) are conserved separately for each
prime in the process involving only products. This kind of conservation law is natural also
for infinite primes and one can indeed map the simplest infinite primes at the lowest level
analogous to free Fock states of bosons and fermions to ordinary rationals so that the addition
of Galois degrees of freedom tentatively identified as cyclic permutations of the state basis
for Hilbert space associated with given prime would give for a particle labelled by prime p
additional internal degrees of freedom. In fact, one can illustrate infinite prime as in terms of
two braids corresponding to the numerator and denominator of corresponding rational and
the primes appearing in rationals take the role of braid strands. For ×q the conservation
of quantum numbers would correspond to conservation of representations. This guarantees
commutativity and associativity of product. One can also allow co-product and co-sum and
they obey completely analogous constraints as product and sum and they have counterparts
at the level of Hilbert spaces two studied in the theory of quantum groups.

One can represent algebraic operations using the analogs of Feynman diagrams and there is an
intriguing analogy with generalized Feynman diagrams which forces to ask whether the general-
ized Feynman diagrams of quantum TGD could be interpreted in terms of quantum counterparts
algebraic equations transformed if one extends the number field to quaternions and their possibly
existing p-adic counterparts.

1. Multiplicative and additive inverses - in the case that they exist - can be seen as kind of
conjugation operations analogous to C and P which commute with each other. Their product
n→ −1/n could be seen as the analog of T if CPT = 1 is taken as identity. Co-product and
co-sum would would be obtained from product and sum by CP or T.

2. One can represent the integer X = X({nk}) resulting from a sequence of algebraic operations
+q and ×q performed for integers nk appearing as inputs of a Feynman diagram having the
value of X as outgoing line. n+,k represent incoming external lines and intermediate prod-
ucts of algebraic operations appear as internal “off-mass-shell” lines. +q and ×q represent
the basic vertices. This gives only tree diagrams with single outgoing line representing the
(quantum value) of X.

Associativity and commutativity for +q resp. ×q would mean that the lines of diagram
with 3 incoming particles and two vertices can be modified by permuting the incoming lines
in all possible ways. Distributivity a ×q (b +q c) = a ×q b +q a ×q c does not correspond
anything familiar from conformal field theories since the line representing a appears twice on
the right hand side of the identity and there are 3 vertices whereas left hand side involves
2 vertices. In TGD framework the interpretation of the analogs of stringy decay vertices in
terms of propagation along two different paths allows however to interpret these vertices as
counterparts of +q whereas the TGD counterparts of vertices of Feynman diagrams would
correspond to ×q. +q would correspond at state space level to direct sum and ×q to tensor
product.

3. The lines of Feynman diagrams are naturally replaced with braids - just as in quantum TGD.
The decomposition of the incoming quantum rational q = m/n to primes defines a braid with
two colors of braid strands corresponding to the primes appearing in m and n so that a close
connection with braid diagrams emerges. This of course raises the question whether one
could allow non-trivial braiding operation for two braid strands represented by primes. Non-
triviality would mean that p1p2 = p2p1 would not hold true only in projective sense so that
the exchange would induce a phase factor. This would suggest that the commutativity of



4.2 Hilbert p-adics, hierarchy of Planck constants, and finite measurement
resolution 23

the basic operations - or at least multiplication - might hold true only apart from quantum
phase factor. This would not be too surprising since quantum phases are the essence of what
it is to be quantum integer.

4. The diagrammatical counterparts of co-operations are obtained by time reversal transforming
incoming to outgoing lines and vice versa. If one adds co-products and sums to the algebraic
operations producing X one obtains diagrams with loops. If ordinary algebraic rules gener-
alizes the diagrams with loops must be transformable to diagrams without them by algebraic
“moves”. The simplification of arithmetic formulas that we learn in elementary school would
correspond to a sequence of “moves” leading to a tree diagram with single internal line at
the middle and representing X = Y . One can form also diagrams of form X = Y = Z = ...
just as in zero energy ontology.

5. In zero energy ontology a convenient manner to represent a identity X = Y - call it a “quan-
tum correlate for mathematical thought” - involving only sums and products and therefore
no loops is as a tree diagram involving only two kinds of 3-vertices, namely +q and ×q and
their co-algebra vertices representing time reversed processes. In zero energy ontology this
kind of representation would correspond to either the condition X/Y = 1 or as X − Y = 0.
In both cases one can say that the total quantum numbers would be conserved - that is net
quantum numbers assignable to prime factors of X vanish for zero energy state. The dia-
gram involves always single integral line representing the identical values of X and Y . Line
representing X would be preceded by a tree diagram involving only product and sum vertices
and Y would involve only co-product and co-sum. For ordinary arithmetics every algebraic
operation is representable in this kind of diagram, which suggests that infinite number of
different diagrams involving loops are equivalent to this diagram with single internal line.

6. The resulting braid Feynman diagrammatics would obey extremely powerful rules due to the
possibility of the “moves”. All possible independent equations X = Y would define the basis
of zero energy states. In quantum TGD the breaking of time reversal invariance is unavoidable
and means that only the positive or negative energy parts of the diagram can have well defined
quantum numbers. The direct translation would be that the zero energy states correspond
to sums over all diagrams for which either positive/negative energy part corresponds to
given rationals and the negative/positive energy part of the state is superposition of states
consisting of rationals. This would mean non-trivial U-matrix dictated by the coefficients of
the superpositions and genuine arithmetic quantum dynamics. The general architecture of
U-matrix is discussed in [K17].

4.2 Hilbert p-adics, hierarchy of Planck constants, and finite measure-
ment resolution

The hierarchy of Planck constants assigns to the N -fold coverings of the embedding space points N -
dimensional Hilbert spaces. The natural identification of these Hilbert spaces would be as Hilbert
spaces assignable to space-time points or with points of partonic 2-surfaces. There is however an
objection against this identification.

1. The dimension of the local covering of embedding space for the hierarchy of Planck constants
is constant for a given region of the space-time surface. The dimensions of the Hilbert space
assignable to the coordinate values of a given point of the embedding space are defined by
the points themselves. The values of the 8 coordinates define the algebraic Hilbert space
dimensions for the factors of an 8-fold Cartesian product, which can be integer, rational,
algebraic numbers or even transcendentals and therefore they vary as one moves along space-
time surface.

2. This dimension can correspond to the locally constant dimension for the hierarchy of Planck
constants only if one brings in finite measurement resolution as a pinary cutoff to the pinary
expansion of the coordinate so that one obtains ordinary integer-dimensional Hilbert space.
Space-time surface decomposes into regions for which the points have same pinary digits up
to pN in the p-adic case and down to p−N in the real context. The points for which the



4.2 Hilbert p-adics, hierarchy of Planck constants, and finite measurement
resolution 24

cutoff is equal to the point itself would naturally define the ends of braid strands at partonic
2-surfaces at the boundaries of CD: s.

3. At the level of quantum states pinary cutoff means that quantum states have vanishing
projections to the direct summands of the Hilbert spaces assigned with pinary digits pn,
n > N . For this interpretation the hierarchy of Planck constants would realize physically
pinary digit representations for number with pinary cutoff and would relate to the physics of
cognition.

One of the basic challenges of quantum TGD is to find an elegant realization for the notion of
finite measurement resolution. The notion of resolution involves observer in an essential manner
and this suggests that cognition is involved. If p-adic physics is indeed physics of cognition, the
natural guess is that p-adic physics should provide the primary realization of this notion.

The simplest realization of finite measurement resolution would be just what one would expect
it to be except that this realization is most natural in the p-adic context. One can however define
this notion also in real context by using canonical identification to map p-adic geometric objets to
real ones.

4.2.1 Does discretization define an analog of homology theory?

Discretization in dimension D in terms of pinary cutoff means division of the manifold to cube-like
objects. What suggests itself is homology theory defined by the measurement resolution and by
the fluxes assigned to the induced Kähler form.

1. One can introduce the decomposition of n-D sub-manifold of the embedding space to n-cubes
by n−1-planes for which one of the coordinates equals to its pinary cutoff. The construction
works in both real and p-adic context. The hyperplanes in turn can be decomposed to n−1-
cubes by n−2-planes assuming that an additional coordinate equals to its pinary cutoff. One
can continue this decomposition until one obtains only points as those points for which all
coordinates are their own pinary cutoffs. In the case of partonic 2-surfaces these points define
in a natural manner the ends of braid strands. Braid strands themselves could correspond
to the curves for which two coordinates of a light-like 3-surface are their own pinary cutoffs.

2. The analogy of homology theory defined by the decomposition of the space-time surface
to cells of various dimensions is suggestive. In the p-adic context the identification of the
boundaries of the regions corresponding to given pinary digits is not possible in purely topo-
logical sense since p-adic numbers do not allow well-ordering. One could however identify the
boundaries sub-manifolds for which some number of coordinates are equal to their pinary
cutoffs or as inverse images of real boundaries. This might allow to formulate homology
theory to the p-adic context.

3. The construction is especially interesting for the partonic 2-surfaces. There is hierarchy in
the sense that a square like region with given first values of pinary digits decompose to p
square like regions labelled by the value 0, ..., p−1 of the next pinary digit. The lines defining
the boundaries of the 2-D square like regions with fixed pinary digits in a given resolution
correspond to the situation in which either coordinate equals to its pinary cutoff. These lines
define naturally edges of a graph having as its nodes the points for which pinary cutoff for
both coordinates equals to the actual point.

4. I have proposed earlier [K6] what I have called symplectic QFT involving a triangulation
of the partonic 2-surface. The fluxes of the induced Kähler form over the triangles of the
triangulation and the areas of these triangles define symplectic invariants, which are zero
modes in the sense that they do not contribute to the line element of WCW although the
WCW metric depends on these zero modes as parameters. The physical interpretation is
as non-quantum fluctuating classical variables. The triangulation generalizes in an obvious
manner to quadrangulation defined by the pinary digits. This quadrangulation is fixed once
internal coordinates and measurement accuracy are fixed. If one can identify physically
preferred coordinates - say by requiring that coordinates transform in simple manner under
isometries - the quadrangulation is highly unique.
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5. For 3-surfaces one obtains a decomposition to cube like regions bounded by regions consisting
of square like regions and Kähler magnetic fluxes over the squares define symplectic invariants.
Also Kähler Chern-Simons invariant for the 3-cube defines an interesting almost symplectic
invariant. 4-surface decomposes in a similar manner to 4-cube like regions and now instanton
density for the 4-cube reducing to Chern-Simons term at the boundaries of the 4-cube defines
symplectic invariant. For 4-surfaces symplectic invariants reduce to Chern-Simons terms over
3-cubes so that in this sense one would have holography. The resulting structure brings in
mind lattice gauge theory and effective 2-dimensionality suggests that partonic 2-surfaces are
enough.

The simplest realization of this homology theory in p-adic context could be induced by canonical
identification from real homology. The homology of p-adic object would the homology of its
canonical image.

1. Ordering of the points is essential in homology theory. In p-adic context canonical iden-
tification x =

∑
xnp

n →
∑
xnp

−n map to reals induces this ordering and also boundary
operation for p-adic homology can be induced. The points of p-adic space would be repre-
sented by n-tuples of sequences of pinary digits for n coordinates. p-Adic numbers decom-
pose to disconnected sets characterized by the norm p−n of points in given set. Canoni-
cal identification allows to glue these sets together by inducing real topology. The points
pn and (p − 1)(1 + p + p2 + ...)pn+1 having p-adic norms p−n and p−n−1 are mapped to
the same real point p−n under canonical identification and therefore the points pn and
(p − 1)(1 + p + p2 + ...)pn+1 can be said to define the endpoints of a continuous interval
in the induced topology although they have different p-adic norms. Canonical identification
induces real homology to the p-adic realm. This suggests that one should include canonical
identification to the boundary operation so that boundary operation would be map from
p-adicity to reality.

2. Interior points of p-adic simplices would be p-adic points not equal to their pinary cutoffs
defined by the dropping of the pinary digits corresponding pn, n > N . At the boundaries
of simplices at least one coordinate would have vanishing pinary digits for pn, n > N . The
analogs of n − 1 simplices would be the p-adic points sets for which one of the coordinates
would have vanishing pinary digits for pn, n > N . n−k-simplices would correspond to points
sets for which k coordinates satisfy this condition. The formal sums and differences of these
sets are assumed to make sense and there is natural grading.

3. Could one identify the end points of braid strands in some natural manner in this cohomology?
Points with n ≤ N pinary digits are closed elements of the cohomology and homologically
equivalent with each other if the canonical image of the p-adic geometric object is connected
so that there is no manner to identify the ends of braid strands as some special points unless
the zeroth homology is non-trivial. In [K2] it was proposed that strand ends correspond to
singular points for a covering of sphere or more general Riemann surface. At the singular
point the branches of the covering would co-incide.

The obvious guess is that the singular points are associated with the covering characterized
by the value of Planck constant. As a matter fact, the original assumption was that all points
of the partonic 2-surface are singular in this sense. It would be however enough to make this
assumption for the ends of braid strands only. The orbits of braid strands and string world
sheet having braid strands as its boundaries would be the singular loci of the covering.

4.2.2 Does the notion of manifold in finite measurement resolution make sense?

A modification of the notion of manifold taking into account finite measurement resolution might
be useful for the purposes of TGD.

1. The chart pages of the manifold would be characterized by a finite measurement resolution
and effectively reduce to discrete point sets. Discretization using a finite pinary cutoff would
be the basic notion. Notions like topology, differential structure, complex structure, and
metric should be defined only modulo finite measurement resolution. The precise realization
of this notion is not quite obvious.
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2. Should one assume metric and introduce geodesic coordinates as preferred local coordinates
in order to achieve general coordinate invariance? Pinary cutoff would be posed for the
geodesic coordinates. Or could one use a subset of geodesic coordinates for δCD × CP2

as preferred coordinates for partonic 2-surfaces? Should one require that isometries leave
distances invariant only in the resolution used?

3. A rather natural approach to the notion of manifold is suggested by the p-adic variants of
symplectic spaces based on the discretization of angle variables by phases in an algebraic
extension of p-adic numbers containing nth root of unity and its powers. One can also
assign p-adic continuum to each root of unity [K25]. This approach is natural for compact
symmetric Kähler manifolds such as S2 and CP2. For instance, CP2 allows a coordinatization

in terms of two pairs (P k, Qk) of Darboux coordinates or using two pairs (ξk, ξ
k
), k = 1, 2,

of complex coordinates. The magnitudes of complex coordinates would be treated in the
manner already described and their phases would be described as roots of unity. In the
natural quadrangulation defined by the pinary cutoff for |ξk| and by roots of unity assigned
with their phases, Kähler fluxes would be well-defined within measurement resolution. For
light-cone boundary metrically equivalent with S2 similar coordinatization using complex
coordinates (z, z) is possible. Light-like radial coordinate r would appear only as a parameter
in the induced metric and pinary cutoff would apply to it.

4.2.3 Hierachy of finite measurement resolutions and hierarchy of p-adic normal Lie
groups

The formulation of quantum TGD is almost completely in terms of various symmetry group and
it would be highly desirable to formulate the notion of finite measurement resolution in terms of
symmetries.

1. In p-adic context any Lie-algebra gG with p-adic integers as coefficients has a natural grading
based on the p-adic norm of the coefficient just like p-adic numbers have grading in terms of
their norm. The sub-algebra gN with the norm of coefficients not larger than p−N is an ideal
of the algebra since one has [gM , gN ] ⊂ gM+N : this has of course direct counterpart at the
level of p-adic integers. gN is a normal sub-algebra in the sense that one has [g, gN ] ⊂ gN . The
standard expansion of the adjoint action ggNg

−1 in terms of exponentials and commutators
gives that the p-adic Lie group GN = exp(tpgN ), where t is p-adic integer, is a normal
subgroup of G = exp(tpg). If indeed so then also G/GN is group, and could perhaps be
interpreted as a Lie group of symmetries in finite measurement resolution. GN in turn would
represent the degrees of freedom not visible in the measurement resolution used and would
have the role of a gauge group.

2. The notion of finite measurement resolution would have rather elegant and universal repre-
sentation in terms of various symmetries such as isometries of embedding space, Kac-Moody
symmetries assignable to light-like wormhole throats, symplectic symmetries of δCD×CP2,
the non-local Yangian symmetry, and also general coordinate transformations. This repre-
sentation would have a counterpart in real context via canonical identification I in the sense
that A→ B for p-adic geometric objects would correspond to I(A)→ I(B) for their images
under canonical identification. It is rather remarkable that in purely real context this kind
of hierarchy of symmetries modulo finite measurement resolution does not exist. The inter-
pretation would be that finite measurement resolution relates to cognition and therefore to
p-adic physics.

3. Matrix group G contains only elements of form g = 1+O(pm), m ≥ 1 and does not therefore
involve matrices with elements expressible in terms roots of unity. These can be included by
writing the elements of the p-adic Lie-group as products of elements of above mentioned G
with the elements of a discrete group for which the elements are expressible in terms of roots
of unity in an algebraic extension of p-adic numbers. For p-adic prime p p: th roots of unity
are natural and suggested strongly by quantum arithmetics [K19].
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4.3 Quantum Adeles

Before saying anything about Hilbert space adeles it is better to consider ordinary adeles.

1. Fusing reals and quantum p-adic integers for various values of prime p to Cartesian product
AZ = R× (

∏
p Zp) gives the ring of integer adeles. The tensor product Q⊗Z AZ gives rise to

rational adeles. Z means the equivalence (nq, a) ≡ (q, na). This definition generalization to
any number field including algebraic extensions of rationals. It is not quite clear to me how
essential the presence of R as Cartesian factor is. One can define ideles as invertible adeles
by inverting individual p-adic numbers and real number in the product. If the component in
the Cartesian product vanishes, the component of inverse also vanishes.

2. The definition of a norm of adele is not quite straightforward.

(a) The norm of quantum adeles defined as product of real and p-adic norms is motivated by
the formula for the norm of rational numbers as the product of its p-adic norms. This
definition of norm however looks non-physical and non-mathematical. For instance,
it requires that all p-adic components of quantum adele are non-vanishing and most
of them have norm equal to one and are therefore p-adic integers of norm one. This
condition would also break general coordinate invariance at the level of quantum adelic
embedding space very strongly. Also for adelic spinors and adelic Hilbert space this
condition is definitely non-sensical.

(b) The physically acceptable norm for adeles should reflect the basic properties of p-adic
norm for a given p-adic field in the product but should also have the characteristic
property of Hilbert space norm that the norm squared is sum of the norms squared for
the factors of the adele. The solution to these demands seems to be simple: map the
p-adic number to its quantum counterpart in each factor and map this number to real
number by canonical identification. After this form the real Hilbert space norm of the
resulting element of infinite-dimensional real Hilbert space. This norm generalizes in a
natural manner to linear spaces possessing adeles as components. Most importantly, for
this norm the elements of adele having finite number of components have a non-vanishing
norm and field property is possible.

Consider now what happens when one replaces p-adic integers with p-adic Hilbert spaces and
p-adic numbers as components of the vectors of the Hilbert space.

1. As far as arithmetics is considered, the definition of Hilbert space adeles for p-adic number
fields is formally the same as that of ordinary adeles. It of course takes time to get accustomed
to think that rationals correspond to a pair of Hilbert spaces and their product is formulated
for this pair.

2. p-Adic Hilbert spaces would be linear spaces with p-adic coefficients that is vectors with
p-adic valued components. Inner product and norm would be defined by mapping the com-
ponents of vectors to real/complex numbers by mapping them first to quantum p-adics and
them to reals by canonical identification. Note that the attempts to define p-adic Hilbert
spaces using p-adic norm or formal p-adic valued norm mapped to real number by canoni-
cal identification lead to difficulties since already in 2-D case the equation x2 + y2 = 0 has
solution y =

√
−1x for p mod 4 = 1 since in this case

√
−1 exists p-adically.

3. A possible problem relates to the fact that all p-adic numbers are mapped to non-negative
real numbers under canonical identification if the coefficients an in the expansion

∑
n anp

n

consists of primes l < p for which quantum counterpart is non-negative. For ordinary p-
adic numbers orthogonal vectors in a given basis would be simply vectors with no common
non-vanishing components. Does this mean the existence of a preferred basis with elements
(0, .., 0, 1, 0...) so that any other unitarily related basis would be impossible. Or should one
introduce cyclic algebraic extension of p-adic numbers with n-elements exp(i2πk/n) for which
one obtains linear superposition and can form new unitarily related basis taking into account
the restrictions posed by p-adicity. This option is suggested also by the identification of
the Hilbert space as wave functions in the local singular covering of embedding space. The
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phases form also in a natural manner cyclic group Zn identifiable as quantum Galois group
assignable to integer n and decomposing to a product of cyclic groups Zpi , pi|n.

Also real numbers form a Cartesian factor of adeles. The question what Hilbert spaces with
dimension equal to arbitrary real number could mean has been already discussed and there are
two approaches to the problem: one based on canonical identification and quantum counterparts
of p-adic numbers and one to a completion of Hilbert rationals.

5 Generalized Feynman Diagrams As Quantum Arithmetic
Feynman Diagrams?

The idea that the generalized Feynman diagrams of TGD could have interpretation in terms of
arithmetic QFT is not new but the quantum arithmetic Feynman diagrams give much more precise
content to this idea.

1. The possibility to eliminate all loops is by “moves” is an old idea (briefly discussed in [K5] ),
which I introduced as a generalization of the old fashioned s-t duality of string models. One
motivation was of course the resulting cancellation of diverges. I however gave up this idea
as too romantic [K5]. The properties of the counterparts of twistor diagrams in zero energy
ontology re-inspires this idea.

2. The basic question concerns the possible physical interpretation of the two kinds of 3-vertices
and their co-vertices, which are also included and mean decomposition of incoming particle
characterized by integer m to quantum superposition of two particle states characterized
by integers n, p satisfying m = n + p for the co-sum and m = n × p for co-product. The
amplitudes of different state pairs n, p in fact determine the quantum dynamics and typically
the irreversible dynamics leading from state with well-defined quantum number characterized
by integers would be due to the presence of co-vertices meaning de-localization.

3. If quantum p-adic integers correspond to Hilbert spaces then the identifications +q = ⊕ and
×q = ⊗ become possible. The challenge is to fix uniquely their co-vertices and this procedure
fixes completely number theoretic Feynman amplitudes. Quantum dynamics would reduce
to co-arithmetics. Or should one say that mathematics could reduce to quantum dynamics?

4. ×q and +q alone look very quantal and the generalization of string model duality means that
besides cyclic permutations arbitrary permutations of incoming resp. outgoing lines act as
symmetries. The natural question is whether this symmetry generalizes to permutations of all
lines. This of course if commutativity in strict sense holds true also for quantum arithmetics:
it could be that it holds true only in projective sense. Distributivity has however no obvious
interpretation in terms of standard quantum field theory. The arithmetics for integers would
naturally reflect the arithmetics of Hilbert spaces dimensions induced by direct sum and
tensor product

5.1 Quantum TGD Predicts Counterparts For ×Q And +Q Vertices

Also quantum TGD allows two kinds of vertices identifiable in terms of the arithmetic vertices and
this gives strong physical constraints on +q vertices.

1. First kind of vertices are the direct topological analogs of vertices of ordinary Feynman
diagrams and there are good arguments suggesting that only 3-vertices are possible and
would mean joining of 3 light-like 3-surfaces representing lines of generalized Feyman diagram
along their 2-dimensional ends. At the these vertices space-time fails to be a manifold but
3-surface and partonic 2-surface are manifolds. These vertices correspond naturally to ×q or
equivalently ⊗.

2. The vertices of second kind correspond to the stringy vertices, in particular the analog of
stringy trouser vertices. The TGD based interpretation - different from stringy interpretation-
is that no decay takes place for a particle: rather the same particles travels along different
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routes. These vertices correspond to four-surfaces, which are manifolds but 3-surfaces and
partonic 2-surface fail to be manifolds at the vertex. There is a strong temptation to interpret
+q - or equivalently ⊕ - as the counterpart of stringy vertices so that the two lines entering
to +q would represent same incoming particle and should have in some sense same quantum
numbers in the situation when the particle is an eigenstate of the quantum numbers in
question? This would allow to understand the strange looking quantum distributivity and
also to deduce what can happen in +q vertex.

3. What does the conservation of quantum numbers mean for quantum Galois quantum numbers
identified in the proposed manner as quantum number associated with the cyclic groups
assignable to the integers appearing in the vertex? For ×q vertex the answer is simple since
tensor product is formed. This means that the number theoretic momentum is conserved.
For direct sum one obtains direct sum of the incoming states and one cannot speak about
conservation of quantum numbers since the final state does not possess well-defined quantum
numbers.

5.2 How Could Quantum Numbers Of Physical States Relate To The
Number Theoretic Quantum Numbers?

Quite generally, the above proposal would allow to represent all n-plets of rationals as zero energy
states with either positive or negative arrow of time and one could assign to these states M -matrices
as entanglement coefficients and define quantum jump as a sequence of two state function reductions
occurring to states with opposite arrow of time. This kind of strong structural similarities with
quantum TGD are hardly not a accident when one takes into account the connection with infinite
primes and one could hope that zero energy states and generalized Feynman graphs could represent
the arithmetics of Hilbert adeles with very dramatic consequences due to the arithmetic moves
allowing to eliminate loops and permuted incoming lines without affecting the diagram except by
a phase factor. The hierarchy of infinite primes suggests strongly the generalization of this picture
since the resulting states would correspond only to the infinite integers at the lowest level of the
hierarchy and identifiable in terms of free Fock states of super-symmetric arithmetic QFT.

The possible reduction of generalized Feynman diagrams to Hilbert adelic arithmetics raises
several questions and one can try to proceed by requiring consistency with the earlier speculations.

1. How the quantum numbers like momentum, spin and various internal quantum numbers
relate to the number theoretic quantum numbers k = n2π/p defined only modulo p? The
natural idea is that they find a representation in the number theoretical anatomy of the
state so that these quantum numbers corresponds to waves with these momenta at the
orbits of quantum Galois group. Momentum UV cutoff would have interpretation in terms of
finite measurement resolution completely analogous to that encountered in condensed matter
physics for lattice like systems. This would realize self-reference in the sense that cognitive
part of the quantum state would represent quantum numbers characterizing the real part of
the quantum state.

2. What about the quantum p-adics themselves characterizing incoming and out-going states
in number theoretic vertices? There would be a conservation of number theoretical “mo-
mentum” characterized by logarithm of a rational in ×q vertex. Does this momentum have
any concrete physical counterpart? Perhaps not since it would be associated with quantum
p-adic degrees of freedom serving as correlates for cognition. In fact, the following argument
suggest interpretation in terms of a finite dimension (finite by finite measurement resolution)
of a Hilbert space associated with the orbit of a partonic 2-surface.

(a) The prime factors of integer characterizing the orbit of a partonic 2-surface correspond
naturally to braid strands for generalized Feynman diagrams. This suggests that the
primes in question can be assigned with braid strands and would be indeed something
new. The product of the primes associated with the particles entering ×q vertex would
be same as the product of primes leaving this vertex. In the case of +q vertex the
integer associated with each line would be same. One cannot identify these primes as
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p-adic primes since entire orbit of partonic 2-surface and therefore all braid strands are
characterized by single common p-adic prime p.

(b) Hilbert spaces with prime dimension are in a well-defined sense primes for tensor prod-
uct, and any finite-dimensional Hilbert space decomposes into a product of prime Hilbert
spaces. Hence the integer n associated with the line of a generalized Feynman diagram
could characterize the dimension of the finite-dimensional Hilbert space (by finite mea-
surement resolution) associated with it. The decomposition of n to prime factors would
correspond to a decomposition of this Hilbert space to a tensor product of prime factors
assignable to braid strands. This would define a direct Hilbert space counterpart for
the decomposition of braid into braid strands and would be very natural physically and
actually define the notion of elementarity. The basic selection rule for ×q vertex would
be that the prime factors of incoming Hilbert spaces recombining to form Hilbert spaces
of outgoing particles. For the +q incoming Hilbert spaces of dimensions n1 and nb would
fuse to n1 + n2 dimensional direct sum. a(b+ c) = ab+ ac would state that the tensor
product with direct sum is sum of tensor products with direct summands. Therefore
the two kind of vertices as well as corresponding vertices of quantum TGD would cor-
respond to basic algebraic operations for finite-dimensional Hilbert spaces very natural
for finite measurement resolution.

(c) Could the different quantum versions of p-adic prime l > p correspond to different
direct sum decompositions of a Hilbert space with prime dimension to Hilbert spaces
with prime dimensions appearing in the quantum pinary expansion in powers of p?
The coefficients of powers of p defined as products of quantum primes l < p would be
quantum dimensions and reflect effects caused by finite measurement resolution whereas
the powers of p would correspond to ordinary dimensions. This decomposition would
correspond to a natural decomposition to a direct sum by some natural criterion related
to finite measurement resolution. For instance, power pn could correspond to n-ary
p-adic length scale. The decomposition would take place for every strand of braid.

The objection is that for algebraic extensions of rationals the primes of the extension
can be algebraic number so that the corresponding Hilbert space dimension would be
complex algebraic number. It seems that only the primes l > p which do not split for the
algebraic extension used (and thus label quantum p-adic number fields in the adele) can
be considered as prime dimensions for the Hilbert spaces associated with braid strands.
The latter option is more natural and would mean that the number theoretic evolution
generating increasingly higher-dimensional algebraic extensions implies selection of both
preferred p-adic primes and preferred prime dimensions for state spaces. One implication
would be that the quantum Galois group assignable to given p-adic integer would in
general be smaller for an algebraic extension of rationals than for rationals since only
the non-splittable primes in its factorization would contribute to the quantum Galois
group.

(d) As already discussed, the most plausible interpretation is that the pair of co-prime
integers defining the quantum rational defines a pair of Hilbert space dimensions possibly
assignable to fermions and bosons respectively. Interestingly, for the simplest infinite
primes representing Fock states and mappable to rationals m/n the integers m and n
could be formally associated with many-boson and many-fermion states.

(e) Because of multiplicative conservation law in ×q vertex quantum p-adic numbers does
not have a natural interpretation as ordinary quantum numbers - say momentum com-
ponents. The problem is that the momentum defined as logarithm of multiplicatively
conserved number theoretic momentum would not be p-adic number without the intro-
duction of an infinite-dimensional transcendental extension to guarantee the existence
of logarithms of primes.

(f) If this vision is correct, the representation of ordinary quantum numbers as quantum
Galois quantum numbers would be a representation in a state space formed by (quan-
tum) state spaces of various quantum dimensions and thus rather abstract but quite
possible in TGD framework. This is of course a huge generalization from the sim-
ple wave mechanical picture based on single Hilbert space but in spirit with abstract
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category-theoretical thinking about what integers are category-theoretically. The in-
tegers appearing as integers in the Cartesian factors of adeles would represent Hilbert
space dimensions in the case of generalized Feynman diagrams. The arithmetic Feyn-
man rules would be only a part of story: as such very abstract but made concrete by
braid representation.

3. Note that the interpretation of + and × vertices in terms of Hilbert space dimensions makes
sense also in the real context whereas the further decomposition into direct sum in powers
of pn does not make sense anymore.

5.3 Number Theoretical Quantum Numbers And Hierarchy Of Planck
Constants

What could be the TGD inspired physical interpretation of these mysterious looking Hilbert spaces
possessing prime dimensions and having no obvious identification in standard physics context?

5.3.1 How the Hilbert space dimension relates to the value of Planck constant?

The first question is how the Hilbert space dimension assigned to a given line of a generalized
Feynman diagram relates to the value of Planck constant.

1. As already noticed, the decomposition of integer to primes would naturally correspond to
its decomposition to braid strands to which one can assign Hilbert spaces of prime-valued
dimension D = l appearing as factors of integer n. This suggests a Hilbert space is defined
by wave functions in a set Bn with n points, . This Hilbert space naturally decomposes into a
tensor product of Hilbert spaces with Hilbert spaces associated with point sets Bl containing
l of points with l|n.

2. The only space of this kind that comes in mind relates to the proposed hierarchy of (effective)
Planck constants coming as integer multiples of ordinary Planck constant. For the simplest
option Planck constant ~n = n~0 would correspond to a local (singular) covering of the
embedding space due to the n-valuedness of the time derivatives of the embedding space
coordinates as function of canonical momentum densities which is due to the huge vacuum
degeneracy of Kähler action.

3. The discrete group Zn would act as a natural symmetry of the covering and would decomposes
a Zn =

∏
l|n Z

el
l and the orbits of Zl in the covering would define naturally the sets Bl. Given

prime l in the decomposition would correspond to an l-fold covering of a braid strand and to
a wave function in this space.

4. The proposal for the hierarchy of Planck constants assumes that different sheets of this singu-
lar covering degenerate to single sheet at partonic 2-surfaces at the ends of CD. Furthermore,
the integers n would decompose to products n = n1n2 corresponding to directions of time-like
braids along wormhole throat and along the space-like 3-surface at the end of CD defining
by effective 2-dimensionality (strong form of holography) two space-time coordinates playing
the role of time coordinate in the field equations for preferred extremals. Note that the
information about the presence of covering would be carried at partonic 2-surfaces by the
tangent space data characterized by the ni-valued normal derivatives.

5. The simplest option is that Hilbert space dimension corresponds to Planck constant for a
given line of generalized Feynman diagram. This would predict that in the multiplicative ver-
tex also the values of Planck constants characterizing the numbers of sheets for many-sheeted
coverings would satisfy the condition n3 = n1n2. The assumption that the multiplicative
vertex corresponds to the gluing of incoming lines of generalized Feynman diagram together
along their ends seems however to require n1 = n2 = n3. Furthermore, the identification of
Hilbert space dimension as Planck constant is also inconsistent with the vision about book
like structure of the embedding space explaining the darkness as relative darkness due to
the fact that only particles with the same value of Planck constant can appear in the same
vertex [K10].
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The way out of the difficulty is to assume that the value of Planck constant ~ = n~0 corre-
sponds to n = n3 = n1n2 or has n3 as a factor. For n = n3 the states with Hilbert space
dimensions n1 and n2 are invariant under cyclic groups Zn2 and Zn1 respectively. For n
containing n3 as a genuine divisor analogous conditions would hold true.

6. p-Adic prime p would make itself manifest in the further decomposition of the l-dimensional
Hilbert spaces to a direct sum of sub-Hilbert spaces with dimensions given by the terms
ln,qp

n in the expression of l as quantum integer. The fact that the only prime ideal for p-adic
integers is pQp should relate to this. It is quite possible that this decomposition occurs only
for the p-adic sectors of the Hilbert adelic embedding space.

What suggests itself is symmetry breaking implying the decomposition of the covering An
of braid strand to subsets An,m with numbers of elements given by #n,m = lmp

m with lm
divisible only by primes p1 < p. Wave functions would be localized to the sets An,m, and
inside An,m one would have tensor product of wave functions localized into the sets Al with
l < p and l|lm.

Hilbert space dimensions would be now quantum dimensions associated with the quantum
phase exp(iπ/l): this should be due to the finite measurement resolution and relate to the
fact that one has divided away the hyper-finite factor N from the factor M ⊃ N .

The index characterizing Jones inclusion [A5] [K10] is given by [M : N ] = 4cos2(2π/n) and
corresponds to quantum dimension of 2q × 2q quantum matrices. TGD suggest that a series
of more general quantum matrix dimensions identifiable as indices of inclusions and given
by [M : N ] = l2q , l < p prime and q = exp(iπ/n), corresponding to prime Hilbert spaces
and q = n-adicity. Note that lq < l is in accordance with the idea about finite measurement
resolution and for large values of p one would have lq ' l.

If the above identification is correct, the conservation laws in ×q and +q vertices would give
rather precise information about what can happen for the values of Planck constants in thes
vertices. In ×q co-vertices Hilbert space-timensions would combine multiplicatively to give the
common value of Planck constant and in ⊕q co-vertices additively. The phase transitions changing
Planck constant, for instance for photons, are central for quantum TGD and the selection rules
would not allow them only if they correspond to a formation of a Bose-Einstein condensate like
state or its decay by ×q- or +q-vertex.

5.3.2 Could one identify the Hilbert space dimension as value of Planck constant?

It has been already seen that the identification of Hilbert space dimension with Planci constant it
is not consistent with the idea that product vertex means that the lines of generalized Feynman
graph are glued along their 2-D ends together. I did not however realize this when I wrote the
first version of this section and I decided to keep the earlier discussion about the option for which
Planck constants correspond to Hilbert space dimensions so that n3 = n1n2 holds true for Planck
constants. The question was whether it could be consistent with the idea of dark matter as matter
with non-standard value of Planck constant. By replacing “Planck constant” with “Hilbert space
dimension” below one obtains a discussion giving information about the selection rules for Hilbert
space dimensions.

1. In ×q-vertex the Planck constants for the outgoing particles would be smaller and factors of
incoming Planck constant. In ×q co-vertex Planck constant would increase. I have considered
analogous selection rules already earlier. ×q vertex does not allow the fusion of photons with
the ordinary value of Planck constant to fuse to photons with larger value of Planck constant.

By conservation of energy the frequency of a photon like state resulting in the fusion is given
by f =

∑
nkfk/Nout

∏
k nk for ~k = nk~0, where Nin and Nout are the numbers of quanta

in the initial and final state. For a common incoming frequency fk = f0 this gives f/f0 =∑
k nk/(Nout

∏
k nk). If one assumes that spin unit for photon increases to

∏
k nk~0 and

spins are parallel one obtains from angular momentum conservation Nout
∏
k nk = Nin

∑
nk

giving Nout =
∏
k nkNin/

∑
nk = nNin/Ninn, which in turn gives f/f0 = 1/Nin. This looks

rather natural.



5.4 What is the relation to infinite primes? 33

In the presence of a feed of r = ~/~0¿1 particles ×q vertex could lead to a phase transition
generating particles with large values of Planck constant. Large values of Planck constant
are in a key role in TGD based model of living matter since Compton lengths and other
quantum scales are proportional to ~ so that large values of ~ make possible macroscopic
quantum phases. The phase transition leading to living matter could be this kind of phase
transition in presence of feed of r > 1 particles.

2. For +q co-vertex r = ~/~0 could be additive and for incoming photons with same frequency
and Planck constants ~k the outgoing state with Planck constant

∑
k ~k energy conservation

is guaranteed if the frequency stays same. This vertex would allow the transformation of
ordinary photons to photons with large Planck constant, and one could say that effectively
the photons fuse to form single photon. This is consistent with the quantization of spin since
the unit of spin increases. For this option the presence of particles with ordinary value of
Planck constant would be enough to generate particles with r > 1 and this in turn could lead
to a the phase transition generation living matter.

3. One can of course ask whether it should be r − 1 = ~/~0 + 1, which corresponds to the
integer n. For this option the third particle of +q vertex with two incoming particles with
ordinary Planck constant would have ordinary Planck constant. For ×q vertex containing
two incoming particles with r = n, n = 1 (n = 2), also the third particle would have n = 1
(n = 2). ×q and +q vertices could not generate n > 1 particles from particles with ordinary
Planck constant. The phase transition leading from inanimate to living matter would require
n > 1 states as a seed (one has 2 + 2→ 3 for +q vertex). A quantum jump generating a CD
containing this kind of particles could lead to this kind of situation.

4. These selection rules would mean a deviation of the earlier proposal that only particles with
same values of Planck constant can appear in a given vertex [K10]. This assumption explains
nicely why dark matter identified as phases with non-standard value of Planck constant
decouples from ordinary matter at vertices. Now this explanation would be modified. If ×q
vertex contains two particles with r = n + 1 for r = n option (r = 1 or 2 for r = n + 1
option), also the third particle has ordinary value of Planck constant so that ordinary matter
effectively decouples from dark matter. For +q vertex the decoupling of the ordinary from
dark matter occurs for r = n + 1 option but not for r = n option. Hence r = n + 1 could
explain the virtual decoupling of dark and ordinary matter from each other. The assumption
that Planck constant is same for all incoming lines and corresponds to n3 = n1n2 defines
however much more plausible option.

5.3.3 What happens in phase transitions changing the value of Planck constant?

The phase transitions changing the value of Planck constant are in a central role in TGD inspired
quantum biology. The typical phase transition of this kind would change the Planck constant
of photon. This phase transition would formally correspond to a 2-vertex changing the value of
Planck constant. Can one pose selection rules to the change of Planck constant? By the above
assumptions both the incoming and outgoing line correspond to Hilbert space dimension which is
a factor of the integer defining Planck constant. If the value of the Hilbert space dimension is not
changed in the process, the incoming and outgoing Planck constants must have this dimension as
a common factor.

5.4 What is the relation to infinite primes?

Already quantum p-adics would mean a dramatic generalization of number concept by assigning to
rationals ane even algebraic numbers Hilbert spaces and their states. Quantum adeles would mean
a further generalization of number concept by gluing together reals and Hilbert space variants of
p-adic number fields.

TGD leads also to another generalization of number concept based on the hierarchy of infinite
primes [K21]. This generalization also leads to a generalization of real number in the sense that
one can construct infinite number of real units as infinite rationals which reduce to units in real
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sense. This would mean that space-time point has infinitely complex number theoretic anatomy
not visible at the level of real physics [K22].

The possibly existing relationship between these speculative generalizations is of course inter-
esting. Galois groups for extensions of rationals would be central symmetry of quantum TGD and
would permute the sheets space-time surfaces regarded as covering spaces. Infinite primes can be
mapped to polynomial primes and this means that one can assign to them algebraic extensions
of rationals and corresponding Galois groups and in [K14]. I discussed a conjecture that the ele-
ments of these Galois groups could be represented as symplectic flows assignable to braids which
emerge naturally as counterparts of partonic 2-surfaces in finite measurement resolution. This
would suggest a possible relationship.

The construction of infinite primes relies on the product X =
∏
p p of finite primes interpreted

physical as analog of Dirac vacuum with all negative energy states filled. Simplest infinite primes
are constructed by kicking away fermions from this vacuum and by adding also bosons labeled by
primes. One obtains also the analogs of bound states as infinite primes which can be mapped to
irreducible polynomials. The roots of the polynomial code for the infinite prime and the algebraic
extension. The infinite primes corresponding to nth order polynomials decompose to products of
n simplest infinite primes of algebraic extension so that the corresponding Galois group emerges
naturally.

The construction can be repeated endlessly by taking the infinite primes of the existing highest
level and forming the product X of them and repeating the process. What these means that the
many-particle states of the previous level define single particle states of the new level. One can
map these infinite primes to polynomial primes for polynomials of several variables. Also this
hierarchy might allow generalization obtained by assigning to infinite primes the orbits of their
Galois groups. The earlier considerations [K16] suggest strongly a reduction of the description to
the lowest level and involving only algebraic numbers.

A possible physical interpretation for this repeated second quantization would be as a construc-
tion of polynomials of single variable at first level, polynomials of two variables as polynomials of
second variable having the polynomials of first variable as as coefficients at second level, and so
on. These polynomials could be realized as spinor harmonics of world of classical worlds (WCW).

5.4.1 What do we understand about infinite primes?

Let us first try to summarize what we understand about infinite primes. What seems very natural is
the postulate that arithmetic QFT associated with infinite primes conserves multiplicative number
theoretic momenta defined by ordinary primes with separate conservation law for each prime. This
law would hold for ×q vertices very naturally whereas for +q vertices it would be broken. Recall
that these two vertices correspond to the TGD counterparts of 3-vertices for Feynman diagrams
and stringy diagrams respectively and also to tensor product and direct sum.

1. What seems clear is that infinite prime characterizes an algebraic extension of rationals (or of
its extension) in the case that infinite primes is defined in terms of finite primes of extension.
Infinite prime dictates also the p-adic primes which are possible and appear in the quantum
adele assignable to infinite prime.

2. The integer exponents of ordinary primes appearing in the infinite and finite part of the
simplest lowest level infinite prime could define infinite number of conserved number theoretic
momenta, one for each prime p and having log(p), p prime, as a unit. Separate conservation
follows from the algebraic independence. These number theoretic momenta do not make sense
p-adically, which means that in p-adic context the multiplicative form of the conservation
law is the appropriate one. Therefore it is appropriate to speak of multiplicative momenta.
Therefore the relationship with ordinary additively conserved momenta does not lok plausible.

Arithmetic QFT interpretation allows also to interpret the numbers np in pnp as particle num-
bers assignable to bosonic quanta and fermionic quanta in the case of the simplest infinite
primes with “small part” representing fermions kicked out from the Dirac sea possibly ac-
companied by bosonic quanta. The conservation law at ×q vertices would mean conservation
of total particle numbers assignable to primes p.
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3. For the simplest primes at the lowest level identifiable as linear polynomials with integer
coefficients there are two separate integers defining number theoretic momenta. The first
integer corresponds to the finite part of infinite prime and the second one to the finite part
of the infinite prime to which one assigns number theoretic fermions. These two parts are
separately conserved. Since the integers have no common prime factors, one can also speak
about rational valued multiplicative number theoretic momentum. The physical interpre-
tation for the absence of common factors would be that given mode cannot simultaneously
containing and not contain fermionic excitation. For higher irreducible polynomials of order
n interpreted in terms of bound states there are n+1 integers defining a collection of number
theoretic momenta. For the representation as a monic polynomial one has a collection of n
rational valued number theoretic momenta.

4. The notion of multiplicative number theoretic momentum generalizes.

(a) At the second level of the hierarchy ordinary primes are replaced with prime polynomials
Pn(x) of single variable. At the nth level they are prime polynomials Pn(x1, ..., xn−1)
of n− 1 variables. The value of the number theoretic momentum at nth s level can be
said to be a polynomial Pn(x1, ..., xn−1) rather than integer.

(b) This looks very abstract but can be concretized. For instance, each coefficient of Pn(x, y)
at second level as polynomial of y defines a polynomial Pk(x) at the first level and Pk(x)
is characterized by a collection of number theoretic momenta defined by its integer coef-
ficients in the representation as a polynomial with integer coefficients. Therefore Pk(x)
can be identified as the collection of k + 1 integer coefficients or k rational coefficients
in the monic representation identified as number theoretic momenta for a k-particle
state. Pn(x, y) in turn corresponds to a collection of n many-particles states with ith

one containing ki particles, i = 1, ...n. The interpretation in terms of n-braid with braid
strands decomposing to ki braid strands is natural and conforms with the fractality of
TGD Universe.

(c) This example allows to deduce the number theoretic interpretation of the polynomial
at the nth level and one can continue this abstraction hierarchy ad infinitum. Eventu-
ally each prime at a given level of hierarchy reduces to a collection of number theoretic
momenta defined by ordinary integers grouped in a way characterized by the infinite
prime. Physically this would characterize how these number theoretic elementary par-
ticles group to particles at the first level, these to particles at second level, and so
on.

(d) The possibility to express the irreducible polynomial as a product of first order poly-
nomials with zeros which algebraic numbers gives for the bound state a representation
as free many-particle state but with number theoretic momenta which are algebraic
rationals in algebraic extension of rationals. These number theoretic momenta can be
also complex and therefore do not allow interpretation as Hilbert space dimensions.
This decomposition is analogous to a decomposition of hadron to quarks. The rational
coefficients expressible in terms of the roots of the polynomial code for Galois invariants
analogous to the observables assignable to hadrons and accessible to the experimenter.

5. The basic conservation law of arithmetic QFT and of TGD would be that the multiplicative
number theoretic momenta labelled by finite primes are separately conserved in ×q vertices
but not in +q vertices. The conservation number theoretic quantum numbers allows the
interpretation of Hilbert space dimensions in terms of the hierarchy of Planck constants, and
this leads to a proposal that infinite primes code the pairs of finite integers with no common
factors assignable to the pairs of time-like and space-like braid strands.

If one takes seriously the notion of number theoretic fermion, one could assign to space-like
braid strands only bosonic excitations and to time-like braid strands fermion and possibly
also bosonic excitations. The interpretation could be in terms of the super-conformal algebras
containing both fermionic and bosonic generators. The hierarchy of infinite primes would
correspond to a hierarchy of braids containing lower level braids as their strands as suggested
already earlier (see http://tinyurl.com/yc2pu5wd) [K14]. What would be new would be a

http://tinyurl.com/yc2pu5wd
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concrete assignment of primes to braid strands and detailed identification in terms of time-like
and space-like braids.

This kind of assignment would mean a rather dramatic step of progress in the understanding
of the complexities of generalized Feynman diagrams. One not completely settled old question
is what selects the p-adic prime assignable to given partonic 2-surface.

This is the stable looking part of the vision about infinite primes, and any attempt to relate it
to quantum p-adics and quantum adeles should respect this picture.

5.4.2 Hyper-octonionic primes correspond to p-adic primes in extension of rationals

The earlier interpretation hyper-complex and appropriately defined quaternionic and octonionic
generalizations is in terms of standard model quantum numbers [K25]. It seems that also this
identification survives under the selective pressures by new ideas but that one cannot replace
hyper-complex primes with their infinite counterparts. Rather, hyper-complex prime generalizes
p-adic prime as a preferred prime by replacing ordinary integers with hyper-complex integers. The
definition of infinite primes in quaternionic and octonionic context is plagued by the problems
caused by non-commutativity and associativity so that the conclusion is well-come.

1. The solutions of Kähler-Dirac equation (see http://tinyurl.com/ycb247qp and http:

//tinyurl.com/ycc9qe95) suggest the interpretation of the M2 projections of four-momenta
as “hyper-complex” primes or perhaps more realistically, their integer multiples. These mo-
menta are conserved additively rather than multiplicatively at vertices to which ×q is assigned
and only their exponents - naturally phase factors - would be conserved multiplicatively.

2. Could this identification generalize from hyper-octonionic primes to hyper-octonionic infinite
primes? This does not seem to be the case. The multiplicative conservation in ×q vertices
for number theoretic momenta is in conflict with additive conservation for ordinary quantum
numbers. Additive conservation is also in conflict with interpretation in terms Hilbert space
dimensions allowing concretization in terms of the hierarchy of Planck constants. Of course,
hyper-complex Hilbert space dimension does not make sense either.

3. One must remember that there are many kinds of primes involved and a little list helps to
see what the correct interpretation for hyper-complex primes could be.

(a) There are the primes l appearing in the decomposition of infinite primes and having
interpretation in terms of Hilbert space dimensions. The conservation of multiplicative
number theoretical momenta is natural at ×q vertices.

(b) There are the p-adic primes p, and on basis of p-adic mass calculations it is this prime to
which it is natural to assign additively conserved momenta. p characterizes the “active”
sector of adeles and therefore also the various quantum variants of the prime l in which
quantum primes p1 < p appear as factors. p characterizes partonic 2-surface.

(c) The Abelizanization of the quantum Galois group assignable to prime l decomposes into
prime factors Zp2 and the phases exp(iπ/p1) might provide cognitive representations in
finite measurement resolution for various standard model quantum numbers.

4. The only reasonable interpretation seems to be that the hyper-complex momenta and possible
other quantum numbers assignable to them correspond to p-adic prime p for rationals or for
an algebraic extension of rationals to the ring hyper-complex rationals. The failure of field
property implies that the inverse of hyper-complex number fails to exist when it defines a
light-like vector of M2. This has however a concrete physical interpretation and light-like
hyper-complex momentum for a massless state is massless only when the momentum of the
state transverse to M2 vanishes so that also propagator defined by M2 momentum diverges.

What the identification of M2 momenta as hyper-complex integers really means, deserves some
comments.

http://tinyurl.com/ycb247qp
http://tinyurl.com/ycc9qe95
http://tinyurl.com/ycc9qe95
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1. Suppose that particle’s p-adic mass squared is of form m2 = np as predicted by p-adic mass
calculations. Assume that m2 corresponds to M2 momentum squared with preferred M2

characterizing given causal diamond CD. Assume also that total M4 mass squared vanishes
in accordance with the idea that all states - even those representing virtual particles - carried
by wormhole throats are massless. In accordance with the adelic vision, assume that the
prime p does not split in the algebraic extension of rationals used (simplest extension would
be Q[

√
−1]). This requires p mod 4 = 3 in accordance with Mersenne prime hypothesis.

The idea is that p does not split for ordinary algebraic extension but splits in the ring of
hyper-complex numbers.

2. The preferred plane M2 ⊂ M4 corresponds to a preferred hyper-complex plane of com-
plexified (by commuting imaginary unit i) hyper-octonionic space M8. M2-momentum has
therefore purely number theoretic interpretation being due to the slitting of M2 = np to a
product of hypercomplex integer N = N0 + eNz and its conjugate N0 − eNz). The hyper-
complex imaginary unit e = iI satisfying e2 = 1 and I2 = −i2 = −1 would correspond to
z-axes of M2. Here is I is the preferred octonionic imaginary unit and i an imaginary unit
commuting with it. One could say that 2-D particle momentum emerges via the emergence
of hyper-complex extension of rationals of their extension. This would also generalize to
quaternions and one could say that M4 momentum emerges via extension of rationals to
hyper-quaternions.

3. M2 momentum squared would satisfy P 2
0−P 2

z = (P0−ePz)(P0+ePz) = np. The prime p does
not split in the algebraic extension of rationals used but splits in the ring of hyper-complex
numbers. Assume first n = 1. In this case the splitting of p mod = 3 (p mod = 1) to
p = (p0 + epz)(p0 − epz) implies p0 is even (odd) and pz is odd (even). For n > 1 one must
have (n0 − en1)(n0 + en1) = n and similar conditions apply to n so that one would have for
M2 momentum P0 + ePz = (n0 ± enz)(p0 ± epz).

4. Momentum components are hyper-complex integer multiples of hyper-complex prime so that
the allowed momenta would form an ideal of hyper-complex numbers. This is mathemati-
cally very nice but might be quite too strong a condition physically although it is typically
encountered in systems in which particle is enclosed in box. Now the box would correspond
to CD with periodic boundary conditions at the ends of CD for the Kähler-Dirac equation.
One could consider also a weaker condition for with the integer n is replaced with a rational
(m/n) such that neither m nor n contains p as a prime factor.

5. The peculiar looking prediction would be that M2 momentum cannot be purely time-like.
In other words, the particle cannot be at rest M2. Observer for which CD defines the rest
system could not perform a state function reduction leading to a situation in which the
particle is at rest with respect to the observer! In fact, this kind of situation is encountered
also for particle in box since boundary conditions do not allow constant mode. If one recalls
that all particles would be massless in M4 sense, this condition does not look so strange.

5.4.3 Infinite primes and Hilbert space dimensions

Arithmetic QFT picture would strongly suggests that the number theoretic momenta at the lowest
level are conserved in ×q vertices at least. For +q vertices the conservation cannot hold true.
The conservation could mean that the total number of powers of given prime in state is same for
positive and negative energy states.

Of course, much richer spectrum of conservation laws can be imagined since one could require
similar conservation laws also at the higher levels of hierarchy, where various number theoretic
momenta correspond to numbers prime polynomials at lower level present in the state. The physical
interpretation would be that the numbers of bound states particles are conserved meaning that
these particles can be regarded as stable. On physical grounds this kind of conservation laws can
be only approximate.

1. Infinite primes mean that infinite numbers have detailed number theoretical anatomy. Could
infinite primes label infinite-dimensional prime Hilbert spaces as finite primes do? Could
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the interpretation for the object X =
∏
p p be in terms of a tensor product of all prime-

dimensional Hilbert spaces. Infinite primes with positive finite part would have interpretation
as direct sums of this space and finite integer-dimensional Hilbert space. When the finite
part of the infinite prime is negative the interpretation would not be so straightforward, and
this option does not look attractive.

2. A much more plausible option is that infinite prime at the first level defines an algebraic
extension of rationals (or of its extension) and that this gives rise to a collection of norm for
algebraic extension induced by complex norm. As a matter fact, these points at which this
norm vanishes might have interpretation as complex coordinates for a corresponding braid
strand in n-strand bound state braid in preferred complex coordinates for the partonic 2-
surface. A possible geometric interpretation for these points inspired by the notion of dessins
d’enfant is that the partonic 2-surface as an abstract Riemann surface representable as a
covering of sphere becomes singular at these points as several sheets of covering co-incide.

3. The infinite primes of the lowest level of the hierarchy formally representing Fock states of
free bosons and fermions can be mapped to rationals. These rationals could define pairs of
Hilbert space dimensions assignable to bosonic and fermionic parts of the state and could this
allow identification as quantum p-adic integer in each sector of the adele and the identification
in terms of integer dimension in the real sector of quantum adeles. The fact that the two
integers have no common factors would only mean that given mode cannot both contain and
not contain fermionic excitation.

One could even consider the possibility of concrete assignment of the first dimension in terms
of fermionic braid strands with bosonic excitations and second dimension in terms of purely
bosonic braid strands. This interpretation is very natural since the super-conformal algebras
creating states have both purely bosonic and purely fermionic generators. These braids could
correspond to space-like and time-like (actually light-like) braids having their ends at partonic
2-surfaces.

The Galois groups associated with primes appearing as factors of the primes would corre-
spond naturally to additional internal degrees of freedom. This identification makes sense
also for the infinite primes represented by irreducible polynomials since the coefficients of the
polynomial representable in terms of the roots of polynomials define rationals having interpre-
tation as number theoretic momenta. Therefore the interpretation in terms of Hilbert space
dimensions makes sense when rationals are interpreted as pairs of dimensions for Hilbert
spaces.

4. What about the infinite primes representing bound states and mappable to irreducible poly-
nomials with rational coefficients and defining polynomial primes characterized by a collection
of roots (see http://tinyurl.com/yag8tvpx) [K16]. These roots define an algebraic exten-
sion of rationals and this suggests that the quantum adele associated with the infinite prime
in question is defined accordingly. The infinite primes mappable to nth order monic poly-
nomials would have interpretation as many particle states consisting of single particle states
which correspond to algebraic number rather than rational. The rational coefficients of the
monic polynomial would define the rationals defining pairs of Hilbert space dimensions.

5. The natural identification for the Hilbert spaces in question would be in terms of the singular
local coverings of embedding space associated with the hierarchy of Planck constants sug-
gested to emerge from the vacuum degeneracy of Kähler action. The integer n decomposing
to primes would correspond to sub-braids labeled by prime factors l of n and consisting of l
strands in the l-fold sub-covering.

The consistency with the quantum adeles would force the following highly speculative picture.
Main justification comes from its internal consistency and consistency with generalize Feynman
graphs.

1. Infinite prime (integer, rational) defines the algebraic extension used and the allowed quan-
tum p-adic number fields contributing as factors to the corresponding quantum adele. p-Adic

http://tinyurl.com/yag8tvpx
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primes, which can be also algebraic primes if one starts from extension of rationals, by defini-
tion do not split in the algebraic extension. Infinite primes assignable to particle states obey
the conservation of multiplicative number theoretic momenta and define naturally collections
of pairs if Hilbert space dimensions assignable to the particles and decomposing to primes l
assignable to braid strands. The integers characterizing the rational defining number theo-
retic momentum correspond to time-like and space-like braid strands and only the time- or
space-like strand carries fermionic quantum numbers.

2. These Hilbert spaces have a natural interpretation in terms of the hierarchy of Planck con-
stants realizable in terms of local singular coverings of the embedding space forced by the
enormous vacuum degeneracy of Kähler action.

3. Hyper-complex primes are identifiable as generalizations of p-adic primes and have nothing
to do with infinite primes. They could code for standard model quantum number.

4. The quantum Galois quantum numbers assignable to primes l for given p-adic prime p and
appearing in the infinite prime characterizing the state would provide a cognitive represen-
tation of the standard model quantum numbers.

5. Mersenne primes and primes near powers of 2 and p = 2 also should be selected as a p-adic
prime in this manner.

6. The basic uncertain aspect of the scenario is whether the notion of quantum p-adic with
coefficients in quantum pinary expansion satisfying only the condition xn < pN for N >
1, with N dictated by the pinary cutoff, makes sense. Physically N > 1 is very natural
generalization. Most of the preceding considerations remain intact even if N = 1 is the
only internally consistent option. What is lost is the representation of quantum numbers
using quantum Galois group and the crazy proposal that quantum Galois group could be
isomorphic to AGG.

This is only the simplest possibility that I can imagine now and reader is encouraged to imagine
something better!

5.4.4 The relationship between the infinite primes of TGD and of algebraic number
theory

While preparing this chapter I experienced quite a surprise as I learned that something called infi-
nite primes emerges in algebraic number theory (see http://tinyurl.com/pw7cr5c) [A1]. Infinite
primes in this sense looked first to me like a heuristic concept characterizing norms for algebraic
extensions of rationals induced by the complex norm for the embeddings of the extension to com-
plex plane. The nomenclature is motivated by the analogy with p-adic norms defined by algebraic
primes. It however turns out that there is a close connection with infinite primes at the first level
of the hierarchy.

1. The embeddings (ring homomorphisms) of Galois extension to complex plane induce a col-
lection of norms induced by the complex norm. The analogy with p-adic norms labelled
by primes serves as a partial motivation for calling these norms infinite primes. The em-
beddings are induced by the embeddings of the roots of an irreducible monic polynomials
Pn(x) = xn + ... with rational coefficients, which defines a polynomial prime so that infinite
primes in the sense of algebraic number theory correspond to a polynomial primes.

2. The embeddings (ring homomorphisms) of the extension of K in C an be defined to those
reducing to embeddings in R and those not. The embeddings to R correspond in one-one
manner to real roots and complex embeddings come in pairs corresponding to complex root
and its conjugate. The norm is defined as |z − zk|, where zk is the root. The number of
embeddings and therefore of norms is r = r1 + 2r2, where r is the degree of the extension
K/Q and also the degree of its Galois group for Galois extensions (defined by polynomials
with rational coefficients).

http://tinyurl.com/pw7cr5c
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3. Also in TGD framework the infinite primes at the lowest level of hierarchy can be mapped
to irreducible monic polynomials of single variable: at nth level polynomials of n variables is
required. Now however also polynomials P1(x), whose roots are rationals and have interpre-
tation in terms of free Fock states, are included. Note that the replacement of the variable
z with z − m/n shifts the roots of a monic polynomial by m/n so that the corresponding
algebraic extension is not modified. For the simplest infinite primes the norm would cor-
respond to |z −m/n|. Therefore infinite prime indeed characterizes the algebraic extension
and its embeddings and the “real” factor of quantum adeles is identifiable with this algebraic
extension endowed with any of these norms.

5.5 What selects preferred primes in number theoretical evolution?

Preferred p-adic length scales seem to correspond to primes near powers of two, in particular
Mersenne primes. The proposed explanation is that number theoretic evolution as emergence of
higher-dimensional extensions of rationals and also of p-adics somehow selects Mersenne primes as
fittest. But what fitness could mean? Could it mean stability in some sense or perhaps criticality
- living systems are indeed critical and in TGD inspired quantum biology quantum criticality is
central aspect.

The primes p of the field K split into primes of extension L of K as p =
∏g
i=1 P

ei
i . One has∑g

i=1 eifi = n, where n is the dimension of L as extension of K and fi is so called inertia degree
of Pi over p equal to [OL/Pj : OK/p], OK denotes algebraic integers of K.

For maximally splitting primes one has ei = 1, g = 1, f = n. For ei > 1 for some i one has
ramification. For g = 1, e1 = 1, f = n one has inert prime. Inert primes are stable and one can
ask whether they could be special. As will be found below, for quadratic extensions the number
inert primes is infinite so that stability does not seem to be an attractive criterion for fitness.

For ramified primes there is an analogy with the multiple roots of a polynomial assignable to
criticality. Since TGD Universe is quantum critical, one can ask whether the fittest primes could
be ramified. One could of course argue that its maximally splitting primes that are the most stable
ones. However, the fact that the number of ramified primes is finite suggests that preferred p-adic
primes correspond to the ramified ones.

Ramified prime divides discriminant D(P ) of the irreducible polynomial P (monic polynomial
with rational coefficients) defining the extension (see http://tinyurl.com/oyumsnk).

1. Discriminant D(P ) of polynomial whose, roots give rise to extension of rationals, is essen-
tially the resultant Res(P, P ′) for P and its derivative P ′ defined as the determinant of so
called Sylvester polynomial (see http://tinyurl.com/p67rdgb). D(P ) is proportional to
the product of differences ri − rj , i 6= j the roots of p and vanishes if there are two identical
roots. Therefore ramified primes divides the differences ri−rj for the roots of the polynomial.
In particular, all polynomials having pair of complex conjugate roots have p = 2 as ramified
prime.

Remark: For second order polynomials P (x) = x2 + bx+ c one has D = b2 − 4c.

2. Ramified primes divide D. Since the matrix defining Res(P, P ′) is a polynomial of coefficients
of p of order 2n − 1, the size of ramified primes is bounded and their number is finite. The
larger coefficients P (x) has, the larger the value of ramified prime can be. Small discriminant
means small ramified primes so that polynomials having nearly degenerate roots have also
small ramifying primes. Galois ramification is of special interest: for them all primes of
extension in the decomposition of p appear as same power. For instance, the polynomial
P (x) = x2 + p has discriminant D = −4p so that primes 2 and p are ramified primes.

For Galois extensions one has ei = e, which is factor of n. Maximimal ramification corresponds
to p = P e, e = n. If the dimension of extension is prime n = p1, p1 prime, one has maximal
ramification e = p1 for Galois extensions. This makes extensions with prime dimension interesting.
Cyclic extensions with prime dimension generated by expi2π/p1 are an example of this kind of
extensions. Cyclic extensions with prime dimension equal to Mersenne prime Mn could be of
special importance physically p = 2 divides the discriminant and P = 21/Mn would define prime
of extension.

http://tinyurl.com/oyumsnk
http://tinyurl.com/p67rdgb
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Could the following statement catch something about reality? The ramified primes are not
stable but the criticality of the ramified primes is stable in the process of generation of algebraic
extensions. The ramified primes would be conserved for extensions of extensions constructible as
polynomials of polynomials and would be analogous to conserved genes. I have checked the con-
servation for quadratic extensions of quadratic extensions representable as quadratic polynomials
P2(y), where y = Q2(x) is also quadratic polynomial. If ramified primes like Mersennes are present
for the simplest extensions, which are quadratic, they characterize also the extensions of these.

Why should Mersenne primes be ramified? Why should quadratic polynomials have Mersenne
primes as ramified primes? P2(x) = x2 − Mn with discriminant D = 4Mn is example of this
kind of polynomial? Are these polynomials especially stable against transformation to different
second order polynomials physically? If Mersennes are special, also the infinite primes defining
these special algebraic extensions via corresponding polynomials are in a special physical role. A
possible physical interpretation for these infinite primes would be in terms of bound states. Could
the criticality of Mersenne primes translate to the criticality of the bound state represented by
corresponding infinite prime.

The splitting to primes need not be unique (if it is one speaks of principal ideal domain). For
instance, in Q[

√
−5] for which factorization to algebraic primes is not unique (but is unique to

prime ideals): 6 = 2×3 = (1+
√
−5)(1−

√
−5). In this kind of situation it is better to speak about

prime ideals since this makes the splitting unique for what is known as Dedekind domains. The
ideal class group characterizes the non-uniqueness of splitting to primes and consists of equivalence
classes of fractional ideals (essentially integers defined by some fixed integer) under equivalence
defined by multiplication by a rational of extension. The non-uniqueness of the factorization is
characterized by so called ideal class group (see http://tinyurl.com/cbxkhge) [A4].

Quadratic fields (see http://tinyurl.com/35w4jkv) Q[
√
d] are the simplest algebraic exten-

sions of rationals since they correspond to second order prime polynomials and are also relatively
well-studied so that one can look them at first. For Q[

√
d] there are general results about the

splitting of primes.

1. Quite generally, given prime p can be inert, split to a product of two distinct prime ideals, or
can be ramified. The so called discriminant D characterizes the situation: for d mod 4 = 1
equals to D = d and otherwise to D = 4d.

2. If p - say Mk - is an odd prime not dividing d, p splits only if one has

D mod p = x2

In this case one has (D/p) = 1, where (D/p) is Legendre symbol (see http://tinyurl.

com/ykfudjq) having values in the set {0, 1,−1}. (D/p) = −1 means stability of p against
slitting.

Legendre symbol is a multiplicative function in the set of integers D meaning that if p splits
under D1 and D2 it splits also under D1D2, and if p does not split under D1 nor under D2 it
splits under D1D2. The multiplicative property implies (4p1/p) = (2/p)2 × (p1/p) = (p1/p).
It is obviously enough to check whether the splitting occurs for primes p1. Non-splitting
prime p1 gives rise to a set of non-splitting integers obtained by multiplying p1 with any
splitting prime. Also odd powers of non-splitting p1 define this kind of sets.

3. Also the following properties of Legendre symbol are useful. One has (D/p) = (p/D) if
either D mod 4 = 1 or p mod 4 = 1 holds true. D mod 4 = 3 and p mod 4 = 3 one has
(D/p) = −(p/D). One has also (−1/p) = (−1)(p−1)/2 and (2/p) = (−1)(p

2−1)/8.

4. If the p-adic number fields, which do not allow
√
−1 as ordinary p-adic number are in special

role then there might be hopes about the understanding of the special role of Mersenne primes.
Mersenne primes are also stable for Gaussian integers and quadratic extensions Q[

√
±d] of

rationals defined by positive integers d, which are products d = d1d2 of two integers. d1
factorizes to a product of primes p1 mod 4 = 1 splitting Mk, and d2 is a product of an odd
number of primes p1 mod 4 = 1 not splitting Mk.

http://tinyurl.com/cbxkhge
http://tinyurl.com/35w4jkv
http://tinyurl.com/ykfudjq
http://tinyurl.com/ykfudjq
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5. One must also distinguish between the algebraic extensions of rationals and finite dimensional
extensions of p-adic numbers (also powers ek, k < p define finite-dimensional extension).
For instance, one can consider a quadratic extension Q[

√
−1] for rationals defining similar

extension for the allowed p-adic primes p mod 4 = 3 and fuse it with a quadratic extension
Q[
√
d] for which d mod 4 = 1 holds true. For adeles the extension of rationals and the

extensions of p-adic numbers can be said to separate.

Some special examples are in order to make the situation more concrete.

1. A good example about physically very relevant quadratic extension is provided by Gaussian
integers, which correspond to Galois extension (see http://tinyurl.com/h9528pl) Q[

√
−1]

[A3]. p = 2 splits as 2 = (1 + i)(1− i) = −i(1 + i)2 = i(1− i)2 and the splitting to primes is
non-unique. The splitting to prime ideals is however unique so that p = 2 is not ramified.

The primes p mod 4 = 1 split also as stated by Fermat’s theorem of two squares. Mersenne
primes satisfy p mod 4 = 3 but some additional criterion is needed to select them. Primes
p mod 4 = 3 do not and cannot define p-adic primes appearing in quantum adele for Gaus-
sian rationals. Note that for p mod 4 = 1

√
−1 exists as p-adic number, which might cause

problems in the p-adic formulation of quantum mechanics. These observations suggest that
p-adic primes p mod4 = 1 suffer extinction when

√
−1 emerges in the number theoretic

evolution and only the primes p mod4 = 3 remain. One could also start from the extension
Q[
√
−1] rather than rationals as the role of

√
−1 in quantum theory suggests so that the

primes p mod4 = 3 would be the only allowed quantum p-adic primes.

2. for Q[
√

2] for which 2-adicity would not be possible. What happens for Mersenne primes?
One can write M3 = 7 = (

√
2+3)(−

√
2+3) where 3±

√
2 is an algebraic integer as a root of a

monic polynomial P (x) = x2− 6x+ 7 so that the splitting of M3 occurs in Q[
√

2]. Therefore
it seems that the absence of

√
2 and allowance of 2-adicity is necessary for Mersenne-adicity.

This conforms with the näıve physical picture that the p-adic scales defined by Mersennes
are in excellent approximation n-ary 2-adic length scales.

One should check whether the extension defined by
√

2 is somehow special as compared to
the extensions defined by odd primes. Certainly the fact that this prime is the only even
prime makes it rather special. It allows extension with

√
−1 and p-adic extension allowing

all square roots except those of 2 is spanned by four square roots unlike similar extensions
for other p-adic numbers fields which require only two square roots.

3. Suppose D = p1 with p1 mod 4 = 1. For p = Mk quadratic resiprocity (see http://

tinyurl.com/yz2okpf) implies that the condition is equivalent with Mk mod p1 = x2.
Neither the extensions Q[

√
p1] nor Q[

√
−p1] induce splitting of Mk for p1 mod 4 = 1. For

M3 = 7 and p1 ∈ {5, 13, 17} no splitting of M3 takes place but for p1 = 29 splitting occurs.
This suggests that there is no general rule guaranteeing the stability of Mersenne primes in
this case.

4. Suppose D = p1 mod 4 = 3. One has (4p1,Mk) = (p1,Mk) by the multiplicative character
of the Legendre symbol. Quadratic resiprocity gives now (p1,Mk) = −(Mk, p1) so that
splitting occurs for Mk only if it does not occur for p1. If splitting occurs for p1 it does
not occur for −p1 and vice versa. p1 = 7 and M2 = 3 serve as a testing sample. One has
(3, 7) = 1 so that the splitting of M2 = 3 takes place for Q[

√
7] but not for Q(

√
−7) and the

splitting of M3 = 7 takes place for Q[
√
−3] but not for Q(

√
3).No obvious general rule seems

to hold.

5.6 Generalized Feynman Diagrams And Adeles

The notion of Hilbert adeles seems to fit nicely with the recent view about generalized Feynman
diagrams. The basic heuristic idea is the idea about fusion of physics in various number fields.
p-Adic mass calculations lead to the conclusion that elementary particles are characterize by p-adic
primes and inside hadron quarks obeying different effective or real p-adic topologies are present.
One can speak about real and p-adic space-time sheets and real and p-adic spinors and also WCW
has real and p-adic sectors. There is a hierarchy of algebraic extensions of rationals and presumably

http://tinyurl.com/h9528pl
http://tinyurl.com/yz2okpf
http://tinyurl.com/yz2okpf
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of also p-adic numbers. Even more general finite-dimensional extensions containing for instance
Neper number e and its roots are also possible and involve extensions of p-adic numbers.

At the level of Feynman graphs this means that different lines correspond to different p-adic
topologies and I have already proposed how this could give rise p-adic length scale hypothesis
when the Feynman amplitudes in the tensor product of quantum variants p-adic number fields are
mapped to reals by canonical identification [K11]. Rational or even more general entanglement
between different number fields would be essential.

The vertices of generalized Feynman diagrams for different incoming p-adic number fields could
be multi-p p-adic objects in quantum sense involving powers expansions in powers of integer n
decomposed to product of powers of quantum primes associated with its factors with coefficients
not divisible by the factors. An alternative option is that vertices are rational numbers common to
all number fields serving as entanglement coefficients. A third option is that they are real numbers
in corresponding tensor factor. One should also formulate symmetries in p-adic sectors and the
simplest option is that symmetries represented as affine transformations simply reduce to products
of the symmetries in various p-adic sectors of the embedding space.

The challenge is to formulate all this in a concise and elegant manner. It seems that adeles
generalized to Hilbert adeles might indeed provide this formulation. The näıve basic recipe would
be extremely simple: whenever you have a real number, replace it with Hilbert adele. You can even
replace the points of Hilbert spaces involved with corresponding Hilbert spaces! One could replace
embedding space, space-time surfaces, and WCW as well as embedding space spinors and spinor
fields and WCW spinors and spinor fields with the hierarchy of their Hilbert adelic counterparts
obtaining in this manner what might be interpreted as cognitive representations.

6 Quantum Mathematics And Quantum Mechanics

Quantum Mathematics (QM) suggests that the basic structures of Quantum Mechanics (QM)
might reduce to fundamental mathematical and metamathematical structures, and that one even
consider the possibility that Quantum Mechanics reduces to Quantum Mathematics with mathe-
matician included or expressing it in a concise manner: QM=QM!

The notes below were stimulated by an observation raising a question about a possible con-
nection between multiverse interpretation of quantum mechanics and quantum mathematics. The
heuristic idea of multiverse interpretation is that quantum state repeatedly branches to quan-
tum states which in turn branch again. The possible outcomes of the state function reduction
would correspond to different branches of the multiverse so that one could save keep quantum
mechanics deterministic if one can give a well-defined mathematical meaning to the branching.
Could quantum mathematics allow to somehow realize the idea about repeated branching of the
quantum universe? Or at least to identify some analog for it? The second question concerns the
identification of the preferred state basis in which the branching occurs.

Quantum Mathematics replaces numbers with Hilbert spaces and arithmetic operations + and
× with direct sum ⊕ and tensor product ⊗.

1. The original motivation comes from quantum TGD where direct sum and tensor product
are naturally assigned with the two basic vertices analogous to stringy 3-vertex and 3-vertex
of Feynman graph. This suggests that generalized Feynman graphs could be analogous to
sequences of arithmetic operations allowing also co-operations of ⊕ and ⊗.

2. One can assign to natural numbers, integers, rationals, algebraic numbers, transcendentals
and their p-adic counterparts for various prime p Hilbert spaces with formal dimension given
by the number in question. Typically the dimension of these Hilbert spaces in the ordinary
sense is infinite. Von Neuman algebras known as hyper-finite factors of type II1 assume
as a convention that the dimension of basic Hilbert space is one although it is infinite in
the standard sense of the word. Therefore this Hilbert space has sub-spaces with dimension
which can be any number in the unit interval. Now however also negative and even complex,
quaternionic and octonionic values of Hilbert space dimension become possible.

3. The decomposition to a direct sum matters unlike for abstract Hilbert space as it does also
in the case of physical systems where the decomposition to a direct sum of representations of
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symmetries is standard procedure with deep physical significance. Therefore abstract Hilbert
space is replaced with a more structured objects. For instance, the expansion

∑
n xnp

n of
a p-adic number in powers of p defines decomposition of infinite-dimensional Hilbert space
to a direct sum ⊕nxn ⊗ pn of the tensor products xn ⊗ pn. It seems that one must modify
the notion of General Coordinate Invariance since number theoretic anatomy distinguishes
between the representations of space-time point in various coordinates. The interpretation
would be in terms of cognition. For instance, the representation of Neper number requires
infinite number of pinary digits whereas finite integer requires onlya finite number of them
so that at the level of cognitive representations general coordinate invariance is broken.

Note that the number of elements of the state basis in pn factor is pn and m ∈ {0, ..., p− 1}
in the factor xn. Therefore the Hilbert space with dimension pn > xn is analogous to the
Hilbert space of a large effectively classical system entangled with the microscopic system
characterized by xn. p-Adicity of this Hilbert space in this example is for the purpose of
simplicity but raises the question whether the state function reduction is directly related to
cognition.

4. On can generalize the concept of real numbers, the notions of manifold, matrix group, etc...
by replacing points with Hilbert spaces. For instance, the point (x1, .., xn) of En is replaced
with Cartesian product of corresponding Hilbert spaces. What is of utmost importance for
the idea about possible connection with the multiverse idea is that also this process can
be also repeated indefinitely. This process is analogous to a repeated second quantization
since intuitively the replacement means replacing Hilbert space with Hilbert space of wave
functions in Hilbert space. The finite dimension and its continuity as function of space-time
point must mean that there are strong constraints on these wave functions. What does this
decomposition to a direct sum mean at the level of states? Does one have super-selection
rules stating that quantum interference is possible only inside the direct summands?

5. Could one find a number theoretical counterpart for state function reduction and preparation
and unitary time evolution? Could zero energy ontology have a formulation at the level of
the number theory as earlier experience with infinite primes suggest? The proposal was that
zero energy states correspond to ratios of infinite integers which as real numbers reduce to
real unit. Could zero energy states correspond to states in the tensor product of Hilbert
spaces for which formal dimensions are inverses of each other so that the total space has
dimension 1?

6.1 The basic idea of Quantum Mathematics

The minimal view (see http://tinyurl.com/yblbzk6x) about unitary process and state function
reduction is provided by ZEO [K3, K17].

1. Zero energy states correspond to a superposition of pairs of positive and negative energy
states. The M-matrix defining the entanglement coefficients is product of Hermitian square
root of density matrix and unitary S-matrix, and various M-matrices are orthonormal as
products of orthonormal Hermitian square roots of density matrices and universal S-matrix
S(CD) = Sn, where integer n characterizes the size scale of CD. Quantum theory is square
root of thermodynamics. This is true even at single particle level. The square root of the
density matrix could be also interpreted in terms of finite measurement resolution.

2. It is natural to assume that zero energy states have well-defined single particle quantum
numbers at the either end of CD as in particle physics experiment. This means that state
preparation has taken place and the prepared end represents the initial state of a physical
event. Since either end of CD can be in question, both arrows of geometric time identifiable
as the Minkowski time defined by the tips of CD are possible.

3. The simplest identification of the U-matrix is as the unitary U-matrix relating to each other
the state basis for which M-matrices correspond to prepared states at two opposite ends
of CD. Let us assume that the preparation has taken place at the “lower” end, the initial
state. State function reduction for the final state means that one measures the single particle

http://tinyurl.com/yblbzk6x
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observables for the “upper” end of CD. This necessarily induces the loss of this property
at the “lower” end. Next preparation in turn induces localization in the “lower” end. One
has a kind of time flip-flop and the breaking of time reversal invariance would be absolutely
essential for the non-triviality of the process.

The basic idea of Quantum Mathematics is that M-matrix is characterized by Feynman dia-
grams representing sequences of arithmetic operations and their co-arithmetic counterparts. The
latter ones give rise to a superposition of pairs of direct summands (factors of tensor product)
giving rise to same direct sum (tensor product). This vision would reduce quantum physics to gen-
eralized number theory. Universe would be calculating and the consciousness of the mathematician
would be in the quantum jumps performing the state function reductions to which preparations
reduce.

Note that direct sum, tensor product, and the counterpart of second quantization for Hilbert
spaces in the proposed sense would be quantum mathematics counterpart for set theoretic opera-
tions, Cartesian product and formation of the power set in set theory.

6.2 ZEO, state function reduction, unitary process, and Quantum Math-
ematics

State function reduction acts in a tensor product of Hilbert spaces. In the p-adic context to be
discussed n the following xn ⊗ pn is the natural candidate for this tensor product. One can assign
a density matrix to a given entangled state of this system and calculate the Shannon entropy. One
can also assign to it a number theoretical entropy if entanglement coefficients are rationals or even
algebraic numbers, and this entropy can be negative. One can apply Negentropy Maximization
Principle to identify the preferred states basis as eigenstates of the density matrix. For negentropic
entanglement the quantum jump does not destroy the entanglement.

Could the state function reduction take place separately for each subspace xn⊗pn in the direct
sum ⊕nxn ⊗ pn so that one would have quantum parallel state function reductions? This is an
old proposal motivated by the many-sheeted space-time. The direct summands in this case would
correspond to the contributions to the states localizable at various space-time sheets assigned to
different powers of p defining a scale hierarchy. The powers pn would be associated with zero modes
by the previous argument so that the assumption about independent reduction would reflect the
super-selection rule for zero modes. Also different values of p-adic prime are present and tensor
product between them is possible if the entanglement coefficients are rationals or even algebraics.
In the formulation using adeles the needed generalization could be formulated in a straightforward
manner.

How can one select the entangled states in the summands xn⊗pn? Is there some unique choice?
How do unitary process and state function reduction relate to this choice? Could the dynamics of
Quantum Mathematics be a structural analog for a sequence of state function reductions taking
place at the opposite ends of CD with unitary matrix U relating the state basis for which single
particle states have well defined quantum numbers either at the upper or lower end of CD? Could
the unitary process and state function reduction be identified solely from the requirement that
zero energy states correspond to tensor products Hilbert spaces, which correspond to inverses of
each other as numbers? Could the extension of arithmetics to include co-arithmetics make the
dynamics in question unique?

6.3 What multiverse branching could mean?

Could QM allow to identify a mathematical counterpart for the branching of quantum states to
quantum states corresponding to preferred basis? Could one can imagine that a superposition
of states

∑
cnΨn in a direct summand xn ⊗ pn is replaced by a state for which Ψn belong to

different direct summands and that branching to non-interfering sub-universes is induced by the
proposed super-selection rule or perhaps even induces state function reduction? These two options
seem to be equivalent experimentally. Could this de-coherence process perhaps correspond to the
replacement of the original Hilbert space characterized by number x with a new Hilbert space
corresponding to number y inducing the splitting of xn ⊗ pn? Could the interpretation of finite
integers xn and pn as p-adic numbers p1 6= p induce the de-coherence?
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This kind of situation is encountered also in symmetry breaking. The irreducible representation
of a symmetry group reduces to a direct sum of representations of a sub-group and one has in
practice super-selection rule: one does not talk about superpositions of photon and Z0. In quantum
measurement the classical external fields indeed induce symmetry breaking by giving different
energies for the components of the state. In the case of the factor xn ⊗ pn the entanglement
coefficients define the density matrix characterizing the preferred state basis. It would seem that
the process of branching decomposes this state space to a direct sum 1-D state spaces associated
with the eigenstates of the density matrix. In symmetry breaking superposition principle holds true
and instead of quantum superposition for different orientations of “Higgs field” or magnetic field
a localization selecting single orientation of the “Higgs field” takes place. Could state function
reduction be analogous process? Could non-quantum fluctuating zero modes of WCW metric
appear as analogs of “Higgs fields”. In this picture quantum superposition of states with different
values of zero modes would not be possible, and state function reduction might take place only for
entanglement between zero modes and non-zero modes.

6.4 The replacement of a point of hilbert space with Hilbert space as a
second quantization

The fractal character of the Quantum Mathematics is what could make it a good candidate for
understanding the self-referentiality of consciousness. The replacement of the Hilbert space with
the direct sum of Hilbert spaces defined by its points would be the basic step and could be repeated
endlessly corresponding to a hierarchy of statements about statements or hierarchy of nth order
logics. The construction of infinite primes leads to a similar structure.

What about the step leading to a deeper level in hierarchy and involving the replacement of
each point of Hilbert space with Hilbert space characterizing it number theoretically? What could
it correspond at the level of states?

1. Suppose that state function reduction selects one point for each Hilbert space xn ⊗ pn. The
key step is to replace this direct sum of points of these Hilbert spaces with direct sum of
Hilbert spaces defined by the points of these Hilbert spaces. After this one would select point
from this very big Hilbert space. Could this point be in some sense the image of the Hilbert
space state at previous level? Should one imbed Hilbert space xn ⊗ pn isometrically to the
Hilbert space defined by the preferred state xn ⊗ pn so that one would have a realization
of holography: part would represent the whole at the new level. It seems that there is a
canonical manner to achieve this. The interpretation as the analog of second quantization
suggest the identification of the embedding map as the identification of the many particle
states of previous level as single particle states of the new level.

2. Could topological condensation be the counterpart of this process in many-sheeted space-time
of TGD? The states of previous level would be assigned to the space-time sheets topologically
condensed to a larger space-time sheet representing the new level and the many-particle states
of previous level would be the elementary particles of the new level.

3. If this vision is correct, second quantization performed by theoreticians would not be a mere
theoretical operation but a fundamental physical process necessary for cognition! The above
proposed unitary embedding would imbed the states of the previous level as single particle
states to the new level. It would seem that the process of second quantization, which is indeed
very much like self-reference, is completely independent from state function reduction and
unitary process. This picture would conform with the fact that in TGD Universe the theory
about the Universe is the Universe and mathematician is in the quantum jumps between
different solutions of this theory.

Returning to the motivating question: it seems that the endless branching of the states in
multiverse interpretation cannot correspond to a repeated second quantization but could have
interpretation as a de-coherence identifiable as de-localization in zero modes. If state function
is allowed, it corresponds to a localization in zero modes analogous to Higgs mechanism. The
Quantum Mathematics realization for a repeated second quantization would represent a genuinely
new kind of process which does not reduce to anything already known.
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7 Speculations related to Hilbert adelization

This section contains further speculations related to realization of number theoretical universality
in terms of Hilbert adeles and to the notion of number theoretic emergence. One can construct
infinite hierarchy of Hilbert adeles by replacing the points of Hilbert spaces with Hilbert spaces
repeatedly: this generalizes the repeated second quantization used to construct infinite primes and
realizes also algebraic holography since the points of space have infinitely complex structure. There
are strong restrictions on the values of coordinates of Hilbert space for the p-adic sectors of the
adele and the number of state basis satisfying orthonormality conditions is very restricted: a good
guess is that unitary transformations reduce to a permutation group and that its cyclic subgroup
defines quantum Galois group. Also the Hilbert counterpart of real factor of adeles is present and
in this case there are no such restrictions.

A logical use of terms is achieved if one refers by term “quantum Hilbert adele” to the adele
obtained by replacing the Hilbert space coefficients an < p of pinary expansions with their quantum
Hilbert spaces. On the other hand the hierarchy of Hilbert adeles is very quantal since it is
analogous to a hierarchy of second quantizations so that Hilbert adeles could be also called quantum
adeles. Reader can decide.

7.1 Hilbert adelization as a way to realize number theoretical univer-
sality

Hilbert adelization is highly suggestive realization of the number theoretical universality. The very
construction of adeles and their Hilbert counterparts is consistent with the idea that rational num-
bers are common to all completions of rationals. This suggests a generalization of the formalism
of physics allowing to realize number theoretical universality in terms of adeles and their Hilbert
counterparts. What this would mean the replacement of real numbers everywhere by adeles con-
taining real numbers as one Cartesian factor. Field equations make sense for the adeles separately
in each Cartesian factor.

If one can define differential calculus for the Hilbert reals and p-adics as seems to be the case,
this abstraction might make sense. There seems to be no obvious objection for field property and
the entire hierarchy of n-Hilbert spaces could be seen as a cognitive self-referential representation of
the mathematical structure allowing perhaps also physical realization if the structure is consistent
with the general axioms.

Field equations would thus make sense also for an infinite hierarchy formed by Hilbertn adeles.
The fascinating conjecture is that quantum physics reduces to quantum mathematics and one
might hope that TGD provides a realization for this physics because of its very strong ties with
number theory.

7.1.1 Hilbert adelication at embedding space level

The Hilbert adelization at the level of embedding space makes senses if adelization works so that
one can consider only adelization.

1. Could embedding space coordinates regarded as adeles? In the p-adic sectors general coor-
dinate invariance would require some preferred coordinate choices maybe unique enough by
symmetry considerations. One can also consider a spontaneous breaking of GCI by cognitive
representations. Adelization would code field equations in various p-adic number fields to
single field equation for adeles and would not bring anything new.

2. What could field equations mean for Hilbert adeles? One could imagine that ordinary field
equations as local algebraic statements are expressed separately at each point of space-time
surface giving infinite number of equations of form F k(x) = 0, where k labels embedding
space coordinates. Moving to the first level of hierarchy would mean that one replaces the
points of Hilbert spaces involved with Hilbert spaces. The connection with the first order
logic would suggest that the points of the Hilbert spaces representing points of embedding
space and space-time - in general infinite-dimensional for real and p-adic numbers - represent
points of embedding space and of space-time. This second quantization would transform
infinite number of statements of predicate logic to a statement of first order logic.
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This certainly sounds hopelessly abstract and no-one would seriously consider solving field
equations in this manner. But maybe mathematical thinking relying on quantum physics
could indeed do it like this? At the next level of hierarchy one might dream of combining
field equations for entire families of solutions of field equations to single equation and so
on. Maybe these families could correspond to supports of WCW spinor fields in WCW .
At the next level statements would be about families of WCW spinors fields and so on - ad
infinitum. In fact, WCW spinors can be seen as quantum superpositions of logical statements
in fermionic Fock space and WCW spinor fields would assign to WCW a direct sum of this
kind of statements, one to each point of WCW . This sounds infinitely infinite but one must
remember that the sub- WCW consisting of surfaces expressible in terms of rational functions
is discrete.

3. The conjecture that field equations reduce to octonion real-analyticity requires that octonions
and quaternions make sense also p-adically. The problem is that the p-adic variants of
octonions and quaternions do not form a field: the reason is that even the equation x2 +
y2 = 0 can have solutions in p-adic number fields so that the inverses of quaternions and
octonions, and even p-adic complex numbers need not make sense. The p-adic counterparts of
quaternions and octonions however exist as a ring so that one could speak about polynomials
and Taylor series whereas the definition of rationals and therefore rational functions would
involve problems. Octonion real-analyticity and quaternion real-analyticity and therefore
also space-time surfaces defined by polynomials or even by infinite Taylor series could make
sense also for the p-adic variants of octonions and quaternions.

Could embedding space spinors be regarded as adelic and even Hilbert adelic spinors? Again
the problems reduce to the adelic level.

1. Adelization could be perhaps seen as a convenient book keeping device allowing to encapsu-
late the infinite number of physics in various quantum p-adic number fields to single physics.
Hilbert adelic structures could however provide much deeper realization of physics as gener-
alized number theory. One can indeed ask whether the action of the p-adic quantum coun-
terparts of various symmetries could representable in the quantum quantum Galois groups
for Hilbert adeles: these groups might reduce to cyclic groups and might relate to cyclic
coverings of embedding space at the level of physics.

The minimal interpretation would be as a cognitive representation of quantum numbers of
physical states at the first “material” level of hierarchy using the number theoretic Hilbert
space anatomy of the point to achieve the representation. The representative capacity would
be infinite for transcendental numbers with infinite number of pinary digits and finite for
rational numbers. For real unit if would be miminal and zero could not represent anything.
Quantum entanglement would be possible for tensor product coefficients and quantum su-
perposition would be possible due to direct sum of pinary digits.

2. Embedding space spinor fields could be regarded as Cartesian products (direct sums) of
spinor fields in real and various p-adic embedding spaces having values in the same number
field. Also the induced metric and spinor connection would correspond to Cartesian product
rather than tensor product. The isometries of the embedding space would have matrix
representation in terms of adeles on the adelic components of spinors and embedding space
coordinates.

7.1.2 Hilbert adelication at the level of WCW

What about quantum TGD at the level of WCW ? Could Hilbert adelication apply also at this
level? Could one use the same general recipes to adelize? The step from adele to the hierarchy of
Hilbert adeles does not seem to be a conceptual problem and the basic problem is to understand
what adele means.

1. Could WCW described in terms of generalized number theory? Could adelic WCW be defined
as the Cartesian product of real WCW and p-adic WCW s? The observations about dessins
d’enfant [A2] [K2] suggest that the description of WCW could be reduced to the description
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in terms of orbits of algebraic 2-surfaces identified as partonic 2-surfaces at the boundaries
of CDs (also the 4-D tangent space data at them codes for physics).

2. For a Cartesian product of finite-dimensional spaces spinors are formed as tensor products
associated with with the Cartesian factors. Adelic WCW is Cartesian sum of real and p-adic
variants. Could Hilbert adelic WCW spinors be identified as a tensor product of WCW
spinors defined in the Hilbert adelic variant of WCW . This would conform with the physical
vision that real and p-adic physics (matter and cognition) correspond to tensor factors of a
larger state space. Furthermore, spinos generalizes scalar functions and the function space
for adele valued functions with adelic argument forms in a natural manner tensor product
of function spaces for various completions of reals. Note that one can speak about rational
quantum entanglement since rational numbers are common to all the Cartesian factors.

3. Could also the moduli space of conformal equivalence classes of partonic 2-surfaces be re-
garded as adele in the sense that Teichmueller parameters from adele. This requires that
the Teichmueller space of conformal equivalence classes of Riemann surfaces corresponds to
the p-adic version of real Teichmueller space: this has been actually assumed in p-adic mass
calculations [K7, K13].

One could start from the observation that algebraic Riemann surfaces are dense in the space
of all Riemann surfaces. This means that the algebraic variant of Teichmueller space is able
to characterize the conformal equivalence classes. What happens when one adds the Riemann
surfaces for which the coefficients of the Belyi function and rational functions defining are
allowed to be in real or p-adic completion of rationals. A natural guess is that completion of
the algebraic variant of Teichmueller space results in this manner. If this is argument makes
sense then adelic moduli space makes sense too.

There are however technical delicacies involved. Teichmueller parameters are defined as
values of 1-forms for the homology generators of Riemann surface. What does one mean
with the values of these forms when one has a surface containing only algebraic points and
ordinary integral is not well-defined? Also in the p-adic context the definition of the integral is
problematic and I have devoted a lot of time and energy to this problem (see for instance [K14]
). Could the holomorphy of these forms help to define them in terms of residue calculus?
This option looks the most plausible one.

What about the partial well-ordering of p-adic numbers induced by the map n→ nq combined
with canonical identification: could this allow an elegant notion of integration by using
the partial well-ordering. Note that one cannot say which of the numbers 1 and −(p −
1)

∑
n = 1∞pn is bigger in this ordering, and this induces similar problem for all p-adic

integers which have finite number of pinary digits.

7.1.3 Problems to solutions and new questions

Usually one becomes fully conscious of a problem only after one has found the solution of the
problem. The vision about Hilbert adeles - as a matter fact, already adeles- solves several nasty
nuisances of this kind and I have worked hardly to prevent these problems from running off under
the rug.

1. What one means with integer -1 is not a problem for p-adic mathematics. It becomes a
problem for physical interpretation when one must relate real and p-adic physics to each
other since canonical identification maps p-adic numbers to non-negative reals. This leads
to problems with Hilbert space inner product but algebraic extensions of p-adic numbers
by roots of unity allow to define p-adic Hilbert spaces but it seems that the allowed state
basis are very restricted since the number of unitary isometries of Hilbert space is restricted
dramatically by number theoretical existence requirement. The optimistic interpretation
would that full quantum superposition is highly restricted in cognitive sectors by the condition
of number theoretic existence.

2. What one means with complex p-adics is second problem.
√
−1 exists p-adically for p mod 4 =

1 so that one cannot introduce it via algebraic extension of p-adics in this case. This is a
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problem of p-adic quantum mechanics. Allowance of only p-adic primes p which do not split
for the extension containing imaginary unit seems to be a general solution of the problem.

3. p-Adic counterparts of quaternions, and octonions do not exist for the simple reason that
the p-adic norm can be vanishing even for p-adic complex number for p-adic fields allowing√
−1. This problem can be circumvented by giving up the requirement that one has number

field.

4. The norm for adeles exist as a product of real and norm and p-adic norms but is not physical.
Also the assignment of Hilbert space structure to adeles is problematic. Canonical identifica-
tion combined with n→ nq allows the mapping p-adic components of adele to real numbers
and this allows to define natural inner product and norm analogous to Hilbert space norm
for adeles and their Hilbert counterparts.

5. p-Adic numbers are not well ordered. This implies that difficulties with the definition of
integral since definite integral relies heavily on well-orderedness of reals. Canonical identi-
fication suggests that quantum p-adics are well ordered: a < b holds true if it holds true
for the images under canonical identification. This gives hopes about defining also definite
integral. For integrable functions the natural definition of quantum p-adic valued integral
would be by using substitution for integral function. One - and rather ugly - option is to
define the integral as ordinary real integral for the canonical image of the quantum p-adic
valued function. This because this image is not expected to be smooth in real sense even if
p-adic function is smooth.

6. p-Adic integration is plagued also by the problem that already for rational integrals one
obtains numbers like log(n) and π and is forced to introduce infinite-dimensional extension
of p-adic numbers. For log(n) one could restrict the consideration to p-adic primes p satisfying
n mod p = 1 but this looks like a trick. Could this difficulty be circumvented somehow for
p-adic numbers? The only possibility that one can imagine would be canonical identification
map combined with n→ nq and the interpretation of integral as a real number.

This could provide also the trick to interpret the integrals involving powers of π possible
emerging from Feynman diagrams in sensible manner. All integrals can be reduced with
the use of Laurent series to integrals of powers of x so that integral calculus would exist in
analytic sense for analytic functions of quantum p-adic numbers.

7. What does one mean with the p-adic counterpart of CP2 or more generally, with the p-adic
counterpart of any non-linear manifold? What does one mean with the complex structure of
p-adic CP2 for p mod 4 = 1? Should one restrict the consideration to p mod 4 = 3? What
does one mean with groups and coset spaces? One can inceed have a satisfactory looking
definition based on algebraic extensions and effective discretization by introducing roots of
unity replacing complex phases as continuous variables [K14].

One could consider two options.

(a) Could the p-adic counterpart of real M4×CP2 be M8? The objection is that algebraic
groups are however fundamental for mathematics and typically non-linear manifolds.
Therefore there are excellent motivations for their (Hilbert) adelic existence. Projective
spaces are in turn central in algebraic geometry and in this spirit one might hope that
CP2 could have non-trivial p-adic counterpart defined as quantum p-adic projective
space.

(b) Another option accepts that adeles contain only those p-adic number fields as Cartesian
factors for which the prime does not split. This excludes automatically p mod 4 = 1
if
√
−1 is present from the beginning in the algebraic extension of rationals defining

the adeles. What happens if one does not assume this. Does CP2 degenerate to real
projective space RP2? What happens to M4 if regarded as a Cartesian product of
hyper-complex numbers and complex numbers. Does it reduce to M2. Could the not
completely well understood role of M2 in quantum TGD relate to this kind of reduction?

The new view raises also questions challenging previous basic assumptions.
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1. Could adeles and their octonionic counterpart allow to understand the origin of commutative
complexification for quaternions and octonions in number theoretic vision about TGD? How
could the commutative imaginary unit emerge number theoretically?

2. One must also reconsider M8 −M4 × CP2 duality. For instance, could M8 be the natural
choice in p-adic sectors and M4 × CP2 in the real sector?

3. The preferred extremals of Kähler action are conjectured to be quaternionic in some sense.
There are two proposals for what this means. Could it be that the sense in which the space-
time surfaces are quaternionic depends on whether the surface is real or quantum p-adic?

4. The idea that rationals are in the intersection of reals and p-adics is central in the applications
of TGD. How does this vision change? For p = 2 quantum rationals in the sense that
pinary coefficients are quantum integer, are ordinary rational numbers. For p > 2 the pinary
coefficients are in general mapped to algebraic numbers involving lq, 0 < l < p. The common
points with reals would in general algebraic numbers.

7.1.4 Do basic notions require updating in the Hilbert adelic context?

In the adelic context one must take a fresh look to what one means with phrases like “embedding
space” and “space-time surfaces”. The phrase “space-time surface as a preferred extremal of Kähler
action” might be quite too strong a statement in adelic context and could actually make sense only
in the real sector of the quantum adelic embedding space. Also the phrase “p-adic variant of
M4 × CP2” might involve un-necessarily strong implicit assumptions since for p-adic integers one
has automatically the counterparts of compactness even for M8. The proposed identification of
the quantum p-adic numbers as Hilbert p-adic quantum numbers reduces the question to whether
p-adic counterparts of various structures exist or are needed as such.

1. We “know” that the real embedding space must beM4×CP2. What about p-adic counterpart
of the embedding space? Is it really possible to have a p-adic counterpart of CP2 or could non-
linearity destroy this kind of hopes? Are there any strong reasons for having the counterpart
of M4 × CP2 in p-adic sectors? Could one have M4 × CP2 only in real sector and M8 in
p-adic sectors. Complex structure of CP2 requires p mod 4 = 3. This is not a problem if
one assumes that adeles contain only the p-adic primes which do not split in the extension
of rationals containing imaginary unit. Definition as coset space CP2 = SU(3)/U(2) is one
possible manner to proceed and seems to work also.

One can also wonder whether octonion real-analyticity really makes sense for M4×CP2 and
its p-adic variants. The fact that real analyticity makes sense for S2 suggests that it does.
In any case, octonion real-analyticity would make life very easy for p-adic sectors if regarded
as octonionic counterpart of M8 rather than M4 × CP2.

2. If the p-adic factors are identified as linear spaces with M8 regarded as sub-space of the
ring of complexified p-adic octonions, octonion real-analyticity for polynomial functions with
rational coefficients could replace field equations in the ring formed by Zp. Note however
that octonion real-analyticity requires the Wick rotation mapping to ordinary octonions, the
identification of the 4-surface from the vanishing of the imaginary part of the octonion real-
analytic function, and map back to Minkowski space by Wick rotation. This is well-defined
procedure used routinely in quantum field theories but could be criticized as mathematically
somewhat questionable. One could consider also the definition of Minkowski space inner
product as real part of z1z2 for quaternions and use similar formula for octonions. This
would give Minkowski norm squared for z1 = z2.

Linear space would also allow to realize the idea that partonic 2-surfaces are in some sense
trivial in most sectors reducing to points represented most naturally by the tips of causal
diamonds (CDs). For p-adic sectors CP2 would be replaced with E4 and for most factors
M8
p the partonic 2-surfaces would reduce to the point s = 0 of E4 representing the origin of

coordinates in which E4 rotations act linearly.

3. The conjecture is that preferred extremals correspond to loci for the zeros of the imaginary
or real part of octonion real-analytic function. Is this identification really necessary? Could
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it be that in the real sector the extremals correspond to quaternionic 4-surfaces in the sense
that they have quaternionic tangent spaces? And could the identification as loci for the
zeros of the imaginary or real part of octonion real-analytic function be the sensible option
in the p-adic sectors of the adelic embedding space: in particular if these sectors correspond
to octonionic M8. If this were the case, M8 −M4 × CP2 duality would have a meaning
differing from the original one and would relate the real sector of adelic embedding space
to its p-adic sectors in manner analogous to the expression of real rational as a Cartesian
product of powers of p-adic primes in various sectors of adele.

My cautious conclusion is that the earlier vision is correct: M4×CP2 makes sense in all sectors.

7.2 Could number theoretic emergence make sense?

The observations made in this and previous sections encourage to ask whether some kind of number
theoretic emergence could make sense. One would end up step by step from rationals to octonions
by performing algebraic extensions and completions. At some step also the attribute “Hilbert”
would lead to a further abstraction and relate closely to the evolution of cognition. This would
mean something like follows.

Rationals → algebraic extensions → algebraic numbers → completions of rationals to reals and
p-adics → completions of algebraic 2-surfaces to real and p-adic ones in algebraic extensions reals
and classical number fields→ hierarchy of Hilbert variants of these structures as their cognitive
representations.

The Maximal Abelian Galois group (MAGG) for rationals is isomorphic to the multiplicative
group of ideles and involves reals and various p-adic number fields. How could one interpret the
Hilbert variant of this structure. Could some kind of physical and cognitive evolution lead from
rationals to octonions and eventually to Universe according to TGD? Could it be that the gradual
emergence of algebraic numbers and AGG (Absolute Galois Group defined as Galois group of
algebraic numbers as extension of rationals) brings in various completions of rationals and further
extensions to quaternions and octonions and symmetry groups like SU(2) acting as automorphisms
of quaternions as extension of reals and SU(3) ⊂ G2 where G2 acts as Galois for the extension of
octonions as extension of reals?

7.2.1 Objections against emergence

The best manner to develop a new idea is by inventing objections against it. This applies also to
the notion of algebraic emergence. The objections actually allow to see the basic conjectures about
preferred extremals of Kähler action in new light.

1. Algebraic numbers emerge via extensions of rationals and complex numbers via completion of
algebraic numbers. But can higher dimensions really emerge? This is possible but only when
they correspond to those of classical number fields: reals, quaternions, and octonions. This
is enough in TGD framework. Adelization could lead to the emergence of real space-time
and its p-adic variants. Completion of solutions of algebraic equations to p-adic and real
number fields is natural. Also the extensions of reals and complex numbers to quaternions
and octonions are natural and could be seen as emergence.

2. All algebraic Riemann surfaces are compact but the reverse of this does not hold true. Par-
tonic 2-surfaces are fundamental in TGD framework. Once the induced metric of the compact
partonic 2-surface is known, one can regard it as a Riemann surface. Only if it is algebraic
surface, the action of Galois group on it is well-defined as an action on the algebraic coeffi-
cients appearing in rational functions defining the surface. This is consistent with the basic
vision about life as something in the intersection of real and p-adic worlds and therefore
having as correlates algebraic partonic 2-surfaces. The non-algebraic partonic 2-surfaces are
naturally present and if they emerge they must do so via completion to reals occurring also
at adelic level.

All partonic 2-surfaces allow a representation as projective varieties in CP3 which forces
again the question about possible connection with twistors.
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Representation as algebraic projective varieties in say CP3 does not imply this kind of repre-
sentation in δCD×CP2. This kind of representation can make sense for 3-surfaces consisting
of light like geodesics emanating from the tip of the CD. If one wants to obtain 2-surfaces one
must restrict light-like radial coordinate r to be a real function of complex variables so that
the 2-surface cannot be algebraic surface defined as a null locus of holomorphic functions
unless r is taken to be a constant equal to algebraic number. Note that the light rays of 3-D
light-cone are parametrized by S2, which corresponds to CP1 ⊂ CP3. This kind of partonic
2-surfaces might correspond to maxima for Kähler function.

3. Could one do without the non-algebraic partonic 2-surfaces? This is not the case if one
believes on the notion of number theoretic entanglement entropy which can be negative for
rational or even algebraic entanglement and presumably also for its quantum variant. Non-
algebraic partonic 2-surfaces would naturally correspond to reals as a Cartesian factor of
adeles. All partonic 2-surfaces which do not allow a representation as algebraic surfaces
would belong to this factor of adelic embedding space. The ordinary real number based
physics would prevail in this sector and entanglement in this sector would be in generic
case real so that ordinary definition of entropy would work. In quantum p-adic sectors
entanglement probabilities would be quantum rational (in the sense of n → nq) and the
generalization of number theoretic entanglement entropy should make sense. Completion
must be taken as would be part of the emergence.

Could embedding space spinors really emerge? The dimension of the space of embedding space
spinors is dictated by the dimension of the embedding space. Therefore it is difficult to image
how 8+8-complex-dimensional spinors could emerge from spinors in the set of algebraic num-
bers since these spinors are naturally 2-dimensional for algebraic numbers which are geometrically
2-dimensional. Does this mean that one must introduce algebraic octonions and their complexifi-
cations from the very beginning? Not necessarily.

1. The idea that also the embedding space spinors emerge algebraically suggests that embedding
space spinors in p-adic sectors are octonionic (p-adic octonions form a ring but this might be
enough). In real sector both interpretations might make sense and have been considered [K23,
K4]. For octonionic spinors ordinary gamma matrices are replaced with the analogs of gamma
matrices obtained as tensor products of sigma matrices having quaternionic interpretation
and of octonionic units. For these gamma matrices SO(1, 7) as vielbein group is replaced
with G2. Physically this corresponds to the presence of a preferred time direction defined
by the line connecting the tips of CD. It would seem that SO(1, 7) must be assigned with
the ordinary embedding space spinors assignable to the reals as a factor of quantum adeles.
The relationship between the ordinary and octonionic embedding space spinors is unclear.
One can however ask whether the p-adic spinors in various factors of adelic spinors could
correspond to the octonionic modification of gamma matrices so that these spinors would be
1-D spinors algebraically extended to octonionic spinors.

2. Also quaternionic spinors make sense and could emerge in a well-defined sense. The basic
conjecture is that the preferred extremals of Kähler action are quaternionic surfaces in some
sense. This could mean that the octonionic tangent space reduces to quaternionic one at
each point of the space-time surface. This condition involves partial derivatives and these
make sense for p-adic number fields. The “real” gamma matrices would be ordinary gamma
matrices. In p-adic sectors at least octonion real-analyticity would be the natural condition
allowing to identify quaternionic 4-surfaces [K22] if one allows only Taylor series expansions.

7.2.2 Emergence of reals and p-adics via quantum adeles?

MAGG (Maximal Abelian Galois Group) brings in reals and various p-adic number fields although
one starts from algebraic numbers as maximal abelian extension of rationals. Does this mean
emergence?

1. Could one formulate the theory by starting from algebraic numbers? The proposal that
octonion real-analytic functions can be used to define what quaternionicity looks sensible for



7.2 Could number theoretic emergence make sense? 54

quantum p-adic space-time surfaces. For real space-time surfaces octonion real-analyticity
might be an unrealistic condition and quaternionicity as the condition that octonionic gamma
matrices generate quaternionic algebra in the tangent space looks more plausible alternative.
Quantum p-adic space-time surfaces would be naturally algebraic but in real context also
non-algebraic space-time surfaces and partonic 2-surfaces are possibe. In real sector partial
differential equations would prevail and in quantum p-adic sectors algebraic equations would
dictate the dynamics.

2. The p-adic variants of quaternions and octonions do not exist as fields. The vanishing of the
sum of Euclidian norm for quaternions and octonions for p-adic octonions and quaternions
makes it impossible to define p-adic quaternion and octonionic fields. There are also problems
due to the fact that

√
−1 exists as p-adic number for p mod 4 = 1.

3. The notion of quaternionic space-time surface requires complexified octonions with addi-
tional imaginary unit i commuting with octonionic imaginary units Ik. Space-time surfaces
are identified as surfaces in the sub-space of complexified octonions of form o0 + i

∑
okI

k.
Could i relate to the algebraic extensions of rationals and could complexified quantum p-adic
embedding spaces have complex coordinates x+ iy?

4. Polynomial equations with real algebraic coefficients make sense even if adeles where not
a field and one can assign to the roots of polynomials with quaternionic and octonionic
argument Galois group if one restricts to solution which reduce to complex solutions in some
complex plane defined by preferred imaginary unit. For quaternions Galois group consist
of rotations in SO(3) acting via adjoint action combined with AAG. For octonions Galois
group consists of G2 elements combined with AAG. SU(3) leaves the preferred imaginary
unit invariant and U(2) the choice of quaternionic plane. Are there any other solutions of
polynomial equations than those reducing to complex plane?

7.2.3 Is it really necessary to introduce p-adic space-time sheets?

The (Hilbert) adelization of embedding space, space-time, and WCW as well as spinors fields
of embedding space and WCW would be extremely elegant manner to realize number theoretic
universality. One must however keep the skeptic attitude. The definition of p-adic embedding
space and space-time surfaces is not free of technical problems. The replacement of M4 × CP2

with M8 in p-adic sectors could help solve these problems. The conservative approach would be
based on giving up p-adicization in embedding space degrees of freedom. It is certainly not an
imaginative option but must be considered as a manner to gain additional insights.

1. p-Adic mass calculations do not mention anything about the p-adicization of space-time
sheets unless one wants to answer the question what is the concrete realizations of various
conformal algebras. Only p-adic and adelic interpretation of conformal weights would be
needed. Adelic interpretation of conformal weights makes sense. The replacement n → nq
(interpreted originally as quantum p-adicization) brings in only O(p2) corrections which are
typically extremely small in elementary particle scales.

2. Is the notion of p-adic or Hilbert p-adic (Hilbert adelic) spinor field in embedding space
absolutely necessary? If one has p-adic spinors one must have also p-adic spinor connection.
This does not require p-adic embedding space and space-time surface if one restricts the
consideration to algebraic points and if the components of connection are algebraic numbers
or even rational numbers and allow p-adic interpretation. This assumption is however in
conflict with the universality of adelization.

3. What about Hilbert adelic WCW spinor fields. They are needed to give both p-adic and real
quantum states. These fields should have adelic values. Their arguments could be algebraic
partonic surfaces. There would be no absolute need to perform completions of algebraic
partonic 2-surfaces although this would be very natural on basis of number theoretical uni-
versality.

4. The vision about life in the intersection of real and p-adic worlds is very attractive. The
p-adicization of algebraic surfaces is very natural as completion meaning that one just solves
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the algebraic equations using series in powers of p. Imaginary unit is key number of quantum
theory and the fact that

√
−1 exists for p mod 4 = 1 is potential problem for p-adic quantum

mechanics. For these primes also splitting occurs in the ring of Gaussian integers. For
quantum adeles this problem disappears if one allows only the p-adic number fields for which
p does not slit in algebraic extension (now Gaussian rationals).

8 Appendix: some possibly motivating considerations

The path to the idea that quantum adeles could represent algebraic numbers originated from a
question having no obvious relation to quantum p-adics or quantum adeles and I will proceed in
the following by starting from this question.

Function fields are much simpler objects to handle than rationals and their algebraic extensions.
In particular, the objects of function fields have inverses and inverse is well defined also for sum
of elements. This is not true in the ring of adeles. This is the reason why geometric Langlands is
easier than the number theoretic one. Also the basic idea of Langlands correspondence is that it is
possible to translate problems of classical number theory (rationals and their extensions) to those
involving function fields. Could it be possible to represent the field of rationals as a function field
in some sense? Quantum arithmetics gives a slight hope that this might be possible.

8.1 Analogies between number theoretic and function field theoretic
ramification

Consider first the analogies between number theoretic and geometric ramification (probably trivi-
alities for professionals but not for a physicist like me!). The relationship between number theoretic
and geometric ramification is interesting and mathematician could of course tell a lot about it. My
comments are just wonderings of a novice.

1. The number theoretic ramification takes place for the primes of number field when it is
extended. If one knows the roots of the polynomials involved with the rational function
f(z) defining Belyi function one knows the coefficient field F of polynomial and its algebraic
extension K and can deduce the representations of ordinary primes as products of those of
F and of the primes of the coefficient field F as products of those of K. In particular, one
can find the ramified primes of ordinary integers and of integers of F .

2. The ramification however occurs also for ordinary integers and means that their decomposi-
tion to primes involves higher powers of some primes: n =

∏
l l
el with el > 1 for some primes

l dividing n. Could one introduce an extension of some ring structure in which ordinary
primes would be analogous to the primes in the extension of rationals?

3. Geometric ramification takes place for polynomials decomposing to products of first order
monomials P (z) = z − zk with roots which are in algebraic extension of coefficients. The
polynomials can however fail to be irreducible meaning that they have multiple roots. For
multiple roots one obtains a ramified zero of a root and for Belyi functions these critical
points correspond to zeros which are ramified when the degree is larger than zero. The
number theoretic ramification implies that the polynomials involved have several algebraic
roots and when they coincide, a geometric ramification takes place. Degeneration of roots of
polynomial implies ramification.

4. Ordinary integers clearly correspond to the space of polynomials and the integers, which are
not square free are analogous to polynomials with multiple roots. The ramification of prime
in the extension of rationals and also the appearance of higher powers of p in non-square free
integer is analogous to the degeneration of roots of polynomial.

8.2 Could one assign analog of function field to integers and analogs
prime polynomials to primes?

Could one assign to integer (prime) a map analogous to (prime) polynomial? Prime polynomial
can be labeled by its zero and polynomial by its zeros. What kind of maps could represent ordinary
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primes and integers. What could be the argument of this kind of maps and do zeros of these map
label them? What could be the ring in which the counterparts of polynomials are defined?

Could quantum arithmetics [K19] help to answer these questions?

1. Quantum arithmetics involves the map fq : n =
∏
l|n l

el → nq =
∏
l|n l

el
q , where l are primes

in the prime decomposition of n and quantum primes s lq = (ql− q−ln)/(q− q−1) are defined
by the phase q = exp(iπ/p), where p is the preferred prime. Note that one has pq = 0 and
(p+ 1)q = −1. Note also that one has q = exp(iπ/p) rather than q = exp(i2π/p) (as in the
earlier version of article). This is necessary to get the denominator correctly also for p = 2
and to make quantum primes lq non-negative for l < p. Under n→ nq all integers n divisible
by p are mapped to zero. This would suggest that the counterparts of prime polynomials
are the maps fq, q = qp and that the analogs of polynomials are products

∏
p fqp defined in

some sense.

2. The more conventional view about quantum integers defines analogous map as n → nq =
(qn − q−n)/(q − q−1). Choosing q = exp(iπ/p) one finds also now that integers divisible by
p are mapped to zero. By finding the primes for which n is mapped to zero one finds the
prime decomposition of n. Now one does not however have a decomposition to a product of
quantum primes as above. Similar statement is of course true also for the above definition
of quantum decomposition: the maps n → nq are analogous to polynomials and primes are
analogous to the zeros of these polynomials.

3. One can also consider q = exp(iπ/m) and used decomposition primes which are smaller than
m. This would give non-vanishing quantum integers. They would correspond to quantum q-
adicity with q = m integer: q-adic numbers do not form a field. q could be even rational. As
a special case these numbers give rise to multi-p p-adicity. The Jones inclusions of hyperfinite
factors of type II1 [K10] suggests that also these quantum phases should be considered. The
index [M : N ] = 4cos2(2π/n) of the inclusion would correspond to quantum matrix dimension
22q, for q = exp(iπ/n) corresponding to quantum 2-spinors so that quantum dimension pq
could be interpreted as dimension of p-dimensional quantum Hilbert space.
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