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Abstract

Genus-generation correspondence is one of the basic ideas of TGD approach. In order to
answer various questions concerning the plausibility of the idea, one should know something
about the dependence of the elementary particle vacuum functionals on the vibrational degrees
of freedom for the partonic 2-surface.

The construction of the elementary particle vacuum functionals based on Diff invariance,
2-dimensional conformal symmetry, modular invariance plus natural stability requirements
indeed leads to an essentially unique form of the vacuum functionals and one can understand
why g > 0 bosonic families are experimentally absent and why lepton numbers are conserved
separately.

An argument suggesting that the number of the light fermion families is three, is developed.
The crux of the argument is that the partonic 2-surfaces coding for quantum states are for
the maxima of Kähler action hyper-elliptic, that is possess Z2 conformal symmetry, which for
g > 2 implies that elementary particle vacuum functional vanishes.

Although the the original model of elementary particle have been modified and replaced
with more complex one, the basic idea about the origin of three generations remains intact.

1 Introduction

One of the basic ideas of TGD approach has been genus-generation correspondence: boundary
components of the 3-surface should be carriers of elementary particle numbers and the observed
fermion families should correspond to various boundary topologies. The details of the assumed
correspondence have evolved during years.

1. The first proposal indeed indeed that both fermions and bosons correspond to boundary
components so that the genus of the boundary component would classify the particles topo-
logically. At this time I still believed that stringy diagrams would have a direct generalization
in TGD framework implying that g would define additive quantum number effectively. Later
it became clear that it is Feynman diagrams which must be generalized and the partons at
primary vertices must have same genus. Stringy diagrams are still there but have totally
different interpretation.

2. Boundary component was later replaced with the light-like surface at which the signature
of the induced metric changes and it was natural to identify bosons as wormhole contacts
carrying fermion and anti-fermion quantum numbers at opposite light-like worm-hole throats.
Hence bosons would be labeled by pairs (g1, g2) of genera. For gravitons one had to assume
pairs of wormhole contacts in order to obtain spin 2. Already at this stage it became clear
that SU(3) should act as a dynamical symmetry with fermions in triplet representation and
bosons in octet and singlet representations. The light bosons would correspond to singlets
which would guarantee universality of the couplings to fermion families.

3. For long time fermions were identified as single throats but twistorial program and the
properties of Chern-Simons Dirac operator suggesting strongly that the fundamental entities
must be massless, forced to replace physical fermion with a wormhole contact characterized
by (g, g) and transforming like triplet with respect to SU(3) as far as vertices are considered.
The hypothesis that SU(3) acts as dynamical symmetry for the reaction vertices has very
powerful implications and allows only BFF type vertices required also by bosonic emergence
and SUSY symmetry.

4. A further step in the evolution of ideas was the realization that electric-magnetic duality forces
to identify all elementary particles as “weak” string like objects consisting of Kähler magnetic
flux tubes with opposite magnetic charges at ends. This meant that all elementary particles -
not only gravitons- are described by “weak” strings. Note that this stringy character should
not be confused with that for wormhole contacts for which throats effectively play the role of
string ends. One can say that fundamental objects are massless states at wormhole throats
and that all elementary particles as well as string like objects emerge from them.

One might hope that this picture is not too far from the final one as far elementary particles
are considered. If one accepts this picture the remaining question is why the number of genera
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is just three. Could this relate to the fact that g ≤ 2 Riemann surfaces are always hyper-elliptic
(have global Z2 conformal symmetry) unlike g > 2 surfaces? Why the complete bosonic de-
localization of the light families should be restricted inside the hyper-elliptic sector? Does the
Z2 conformal symmetry make these states light and make possible de-localization and dynamical
SU(3) symmetry? Could it be that for g > 2 elementary particle vacuum functionals vanish for
hyper-elliptic surfaces? If this the case and if the time evolution for partonic 2-surfaces changing
g commutes with Z2 symmetry then the vacuum functionals localized to g ≤ 2 surfaces do not
disperse to g > 2 sectors.

In order to provide answers to either series of questions one must know something about the
dependence of the elementary particle state functionals on the geometric properties of the boundary
component and in the sequel an attempt to construct what might be called elementary particle
vacuum functionals, is made. Irrespective of what identification of interaction vertices is adopted,
the arguments involved with the construction involve only the string model type vertices so that
the previous discussion seems to apply more or less as such.

The basic assumptions underlying the construction are the following ones:

1. Elementary particle vacuum functionals depend on the geometric properties of the two-surface
X2 representing elementary particle.

2. Vacuum functionals possess extended Diff invariance: all 2-surfaces on the orbit of the 2-
surface X2 correspond to the same value of the vacuum functional. This condition is satisfied
if vacuum functionals have as their argument, not X2 as such, but some 2- surface Y 2

belonging to the unique orbit of X2 (determined by the principle selecting preferred extremal
of the Kähler action as a generalized Bohr orbit [K3] ) and determined in Diff3 invariant
way.

3. Zero energy ontology allows to select uniquely the partonic two surface as the intersection of
the wormhole throat at which the signature of the induced 4-metric changes with either the
upper or lower boundary of CD × CP2. This is essential since otherwise one one could not
specify the vacuum functional uniquely.

4. Vacuum functionals possess conformal invariance and therefore for a given genus depend on
a finite number of variables specifying the conformal equivalence class of Y 2.

5. Vacuum functionals satisfy the cluster decomposition property: when the surface Y 2 degen-
erates to a union of two disjoint surfaces (particle decay in string model inspired picture),
vacuum functional decomposes into a product of the vacuum functionals associated with
disjoint surfaces.

6. Elementary particle vacuum functionals are stable against the two-particle decay g → g1 +g2
and one particle decay g → g − 1.

In the following the construction will be described in more detail.

1. Some basic concepts related to the description of the space of the conformal equivalence
classes of Riemann surfaces are introduced and the concept of hyper-ellipticity is introduced.
Since theta functions will play a central role in the construction of the vacuum functionals,
also their basic properties are discussed.

2. After these preliminaries the construction of elementary particle vacuum functionals is carried
out.

3. Possible explanations for the experimental absence of the higher fermion families are consid-
ered.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [?].

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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2 Identification Of Elementary Particles

The developments in the formulation of quantum TGD which have taken place during the period
2005-2007 [K2, K1] suggest dramatic simplifications of the general picture discussed in the earlier
version of this chapter. p-Adic mass calculations [K4, K7, K5] leave a lot of freedom concerning
the detailed identification of elementary particles.

2.1 The Evolution Of The Topological Ideas About Elementary Particles

One of the basic ideas of TGD approach has been genus-generation correspondence: boundary
components of the 3-surface should be carriers of elementary particle numbers and the observed
fermion families should correspond to various boundary topologies.

With the advent of zero energy ontology this picture changed somewhat. It is the wormhole
throats identified as light-like 3-surfaces at with the induced metric of the space-time surface
changes its signature from Minkowskian to Euclidian, which correspond to the light-like orbits of
partonic 2-surfaces. One cannot of course exclude the possibility that also boundary components
could allow to satisfy boundary conditions without assuming vacuum extremal property of nearby
space-time surface. The intersections of the wormhole throats with the light-like boundaries of
causal diamonds (CDs) identified as intersections of future and past directed light cones (CD×CP2

is actually in question but I will speak about CDs) define special partonic 2-surfaces and it is the
moduli of these partonic 2-surfaces which appear in the elementary particle vacuum functionals
naturally.

The first modification of the original simple picture comes from the identification of physi-
cal particles as bound states of pairs of wormhole contacts (see Fig. http://tgdtheory.fi/

appfigures/wormholecontact.jpg or Fig. ?? in the appendix of this book) and from the as-
sumption that for generalized Feynman diagrams stringy trouser vertices are replaced with vertices
at which the ends of light-like wormhole throats meet. In this picture the interpretation of the
analog of trouser vertex is in terms of propagation of same particle along two different paths. This
interpretation is mathematically natural since vertices correspond to 2-manifolds rather than sin-
gular 2-manifolds which are just splitting to two disjoint components. Second complication comes
from the weak form of electric-magnetic duality forcing to identify physical particles as weak strings
with magnetic monopoles at their ends and one should understand also the possible complications
caused by this generalization.

These modifications force to consider several options concerning the identification of light
fermions and bosons and one can end up with a unique identification only by making some
assumptions. Masslessness of all wormhole throats- also those appearing in internal lines- and
dynamical SU(3) symmetry for particle generations are attractive general enough assumptions of
this kind. This means that bosons and their super-partners correspond to wormhole contacts with
fermion and anti-fermion at the throats of the contact. Free fermions and their superpartners
could correspond to CP2 type vacuum extremals with single wormhole throat. It turns however
that dynamical SU(3) symmetry forces to identify massive (and possibly topologically condensed)
fermions as (g, g) type wormhole contacts.

2.1.1 Do free fermions correspond to single wormhole throat or (g, g) wormhole?

The original interpretation of genus-generation correspondence was that free fermions correspond
to wormhole throats characterized by genus. The idea of SU(3) as a dynamical symmetry suggested
that gauge bosons correspond to octet and singlet representations of SU(3). The further idea that
all lines of generalized Feynman diagrams are massless poses a strong additional constraint and it
is not clear whether this proposal as such survives.

1. Twistorial program assumes that fundamental objects are massless wormhole throats carrying
collinearly moving many-fermion states and also bosonic excitations generated by super-
symplectic algebra. In the following consideration only purely bosonic and single fermion
throats are considered since they are the basic building blocks of physical particles. The
reason is that propagators for high excitations behave like p−n, n the number of fermions
associated with the wormhole throat. Therefore single throat allows only spins 0, 1/2, 1 as
elementary particles in the usual sense of the word.

http://tgdtheory.fi/appfigures/wormholecontact.jpg
http://tgdtheory.fi/appfigures/wormholecontact.jpg
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2. The identification of massive fermions (as opposed to free massless fermions) as wormhole
contacts follows if one requires that fundamental building blocks are massless since at least
two massless throats are required to have a massive state. Therefore the conformal excitations
with CP2 mass scale should be assignable to wormhole contacts also in the case of fermions.
As already noticed this is not the end of the story: weak strings are required by the weak
form of electric-magnetic duality.

3. If free fermions corresponding to single wormhole throat, topological condensation is an
essential element of the formation of stringy states. The topological condensation of fermions
by topological sum (fermionic CP2 type vacuum extremal touches another space-time sheet)
suggest (g, 0) wormhole contact. Note however that the identification of wormhole throat is as
3-surface at which the signature of the induced metric changes so that this conclusion might be
wrong. One can indeed consider also the possibility of (g, g) pairs as an outcome of topological
condensation. This is suggested also by the idea that wormhole throats are analogous to string
like objects and only this option turns out to be consistent with the BFF vertex based on the
requirement of dynamical SU(3) symmetry to be discussed later. The structure of reaction
vertices makes it possible to interpret (g, g) pairs as SU(3) triplet. If bosons are obtained as
fusion of fermionic and anti-fermionic throats (touching of corresponding CP2 type vacuum
extremals) they correspond naturally to (g1, g2) pairs.

4. p-Adic mass calculations distinguish between fermions and bosons and the identification of
fermions and bosons should be consistent with this difference. The maximal p-adic tempera-
ture T = 1 for fermions could relate to the weakness of the interaction of the fermionic worm-
hole throat with the wormhole throat resulting in topological condensation. This wormhole
throat would however carry momentum and 3-momentum would in general be non-parallel
to that of the fermion, most naturally in the opposite direction.

p-Adic mass calculations suggest strongly that for bosons p-adic temperature T = 1/n,
n > 1, so that thermodynamical contribution to the mass squared is negligible. The low p-
adic temperature could be due to the strong interaction between fermionic and anti-fermionic
wormhole throat leading to the “freezing” of the conformal degrees of freedom related to the
relative motion of wormhole throats.

5. The weak form of electric-magnetic duality forces second wormhole throat with opposite
magnetic charge and the light-like momenta could sum up to massive momentum. In this
case string tension corresponds to electroweak length scale. Therefore p-adic thermodynam-
ics must be assigned to wormhole contacts and these appear as basic units connected by
Kähler magnetic flux tube pairs at the two space-time sheets involved. Weak stringy degrees
of freedom are however expected to give additional contribution to the mass, perhaps by
modifying the ground state conformal weight.

2.1.2 Dynamical SU(3) fixes the identification of fermions and bosons and fundamen-
tal interaction vertices

For 3 light fermion families SU(3) suggests itself as a dynamical symmetry with fermions in funda-
mental N = 3-dimensional representation and N ×N = 9 bosons in the adjoint representation and
singlet representation. The known gauge bosons have same couplings to fermionic families so that
they must correspond to the singlet representation. The first challenge is to understand whether
it is possible to have dynamical SU(3) at the level of fundamental reaction vertices.

This is a highly non-trivial constraint. For instance, the vertices in which n wormhole throats
with same (g1, g2) glued along the ends of lines are not consistent with this symmetry. The splitting
of the fermionic worm-hole contacts before the proper vertices for throats might however allow the
realization of dynamical SU(3). The condition of SU(3) symmetry combined with the requirement
that virtual lines resulting also in the splitting of wormhole contacts are always massless, leads
to the conclusion that massive fermions correspond to (g, g) type wormhole contacts transforming
naturally like SU(3) triplet. This picture conformal with the identification of free fermions as
throats but not with the näıve expectation that their topological condensation gives rise to (g, 0)
wormhole contact.

The argument leading to these conclusions runs as follows.
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1. The question is what basic reaction vertices are allowed by dynamical SU(3) symmetry. FFB
vertices are in principle all that is needed and they should obey the dynamical symmetry. The
meeting of entire wormhole contacts along their ends is certainly not possible. The splitting
of fermionic wormhole contacts before the vertices might be however consistent with SU(3)
symmetry. This would give two a pair of 3-vertices at which three wormhole lines meet along
partonic 2-surfaces (rather than along 3-D wormhole contacts).

2. Note first that crossing gives all possible reaction vertices of this kind from F (g1)F (g2) →
B(g1, g2) annihilation vertex, which is relatively easy to visualize. In this reaction F (g1) and
F (g2) wormhole contacts split first. If one requires that all wormhole throats involved are
massless, the two wormhole throats resulting in splitting and carrying no fermion number
must carry light-like momentum so that they cannot just disappear. The ends of the worm-
hole throats of the boson must glued together with the end of the fermionic wormhole throat
and its companion generated in the splitting of the wormhole. This means that fermionic
wormhole first splits and the resulting throats meet at the partonic 2-surface.

This requires that topologically condensed fermions correspond to (g, g) pairs rather than
(g, 0) pairs. The reaction mechanism allows the interpretation of (g, g) pairs as a triplet of
dynamical SU(3). The fundamental vertices would be just the splitting of wormhole con-
tact and 3-vertices for throats since SU(3) symmetry would exclude more complex reaction
vertices such as n-boson vertices corresponding the gluing of n wormhole contact lines along
their 3-dimensional ends. The couplings of singlet representation for bosons would have same
coupling to all fermion families so that the basic experimental constraint would be satisfied.

3. Both fermions and bosons cannot correspond to octet and singlet of SU(3). In this case
reaction vertices should correspond algebraically to the multiplication of matrix elements
eij : eijekl = δjkeil allowing for instance F (g1, g2)+F (g2, g3)→ B(g1, g3). Neither the fusion
of entire wormhole contacts along their ends nor the splitting of wormhole throats before
the fusion of partonic 2-surfaces allows this kind of vertices so that BFF vertex is the only
possible one. Also the construction of QFT limit starting from bosonic emergence led to the
formulation of perturbation theory in terms of Dirac action allowing only BFF vertex as
fundamental vertex [?].

4. Weak electric-magnetic duality brings in an additional complication. SU(3) symmetry poses
also now strong constraints and it would seem that the reactions must involve copies of basic
BFF vertices for the pairs of ends of weak strings. The string ends with the same Kähler
magnetic charge should meet at the vertex and give rise to BFF vertices. For instance, FFB
annihilation vertex would in this manner give rise to the analog of stringy diagram in which
strings join along ends since two string ends disappear in the process.

5. This picture means that all elementary particles - not only gravitons- are described by “weak”
strings involving four wormhole throats. Fundamental objects would be partonic 2-surfaces,
which in principle can carry arbitrary high fermion numbers N but only N = 1, 2 correspond
to particles with fermionic and bosonic propagators and the remaining ones correspond to
propagators behaving like p−n, n > 2, and having interpretation in terms of broken SUSY
with a large value of N identified as the number of fermionic modes. This compositeness of
elementary particles should become manifest below weak length scale. Note that this stringy
character should not be confused with that for the wormhole contacts for which conformal
invariance implies that throats effectively play the role of string ends. One can say that
fundamental objects are massless wormhole throats and that all elementary particles as well
as string like objects emerge from them.

2.2 Graviton And Other Stringy States

Fermion and anti-fermion can give rise to only single unit of spin since it is impossible to assign
angular momentum with the relative motion of wormhole throats. Hence the identification of
graviton as single wormhole contact is not possible. The only conclusion is that graviton must be
a superposition of fermion-anti-fermion pairs and boson-anti-boson pairs with coefficients deter-
mined by the coupling of the parton to graviton. Graviton-graviton pairs might emerge in higher
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orders. Fermion and anti-fermion would reside at the same space-time sheet and would have a
non-vanishing relative angular momentum. Also bosons could have non-vanishing relative angular
momentum and Higgs bosons must indeed possess it.

Gravitons are stable if the throats of wormhole contacts carry non-vanishing gauge fluxes so
that the throats of wormhole contacts are connected by flux tubes carrying the gauge flux. The
mechanism producing gravitons would the splitting of partonic 2-surfaces via the basic vertex. A
connection with string picture emerges with the counterpart of string identified as the flux tube
connecting the wormhole throats. Gravitational constant would relate directly to the value of the
string tension.

The development of the understanding of gravitational coupling has had many twists and it is
perhaps to summarize the basic misunderstandings.

1. CP2 length scale R, which is roughly 103.5 times larger than Planck length lP =
√
~G,

defines a fundamental length scale in TGD. The challenge is to predict the value of Planck
length

√
~G. The outcome was an identification of a formula for R2/~G predicting that

the magnitude of Kähler coupling strength αK is near to fine structure constant in electron
length scale (for ordinary value of Planck constant should be added here).

2. The emergence of the parton level formulation of TGD finally demonstrated that G actually
appears in the fundamental parton level formulation of TGD as a fundamental constant
characterizing the M4 part of CP2 Kähler gauge potential [K11, K8]. This part is pure
gauge in the sense of standard gauge theory but necessary to guarantee that the theory does
not reduce to topological QFT. Quantum criticality requires that G remains invariant under
p-adic coupling constant evolution and is therefore predictable in principle at least.

3. The TGD view about coupling constant evolution [K9] predicts the proportionality G ∝ L2
p,

where Lp is p-adic length scale. Together with input from p-adic mass calculations one ends
up to two conclusions. The correct conclusion was that Kähler coupling strength is equal
to the fine structure constant in the p-adic length scale associated with Mersenne prime
p = M127 = 2127 − 1 assignable to electron [K9]. I have considered also the possibility that
αK would be equal to electro-weak U(1) coupling in this scale.

4. The additional - wrong- conclusion was that gravitons must always correspond to the p-adic
prime M127 since G would otherwise vary as function of p-adic length scale. As a matter
fact, the question was for years whether it is G or g2K which remains invariant under p-
adic coupling constant evolution. I found both options unsatisfactory until I realized that
RG invariance is possible for both g2K and G! The point is that the exponent of the Kähler
action associated with the piece of CP2 type vacuum extremal assignable with the elementary
particle is exponentially sensitive to the volume of this piece and logarithmic dependence on
the volume fraction is enough to compensate the L2

p ∝ p proportionality of G and thus
guarantee the constancy of G.

The explanation for the small value of the gravitational coupling strength serves as a test for
the proposed picture. The exchange of ordinary gauge boson involves the exchange of single CP2

type extremal giving the exponent of Kähler action compensated by state normalization. In the
case of graviton exchange two wormhole contacts are exchanged and this gives second power for
the exponent of Kähler action which is not compensated. It would be this additional exponent that
would give rise to the huge reduction of gravitational coupling strength from the näıve estimate
G ∼ L2

p.

2.3 Spectrum Of Non-Stringy States

The 1-throat character of fermions is consistent with the generation-genus correspondence. The
2-throat character of bosons predicts that bosons are characterized by the genera (g1, g2) of the
wormhole throats. Note that the interpretation of fundamental fermions as wormhole contacts
with second throat identified as a Fock vacuum is excluded.

The general bosonic wave-function would be expressible as a matrix Mg1,g2 and ordinary gauge
bosons would correspond to a diagonal matrix Mg1,g2 = δg1,g2 as required by the absence of neutral



3. Basic Facts About Riemann Surfaces 9

flavor changing currents (say gluons transforming quark genera to each other). 8 new gauge bosons
are predicted if one allows all 3 × 3 matrices with complex entries orthonormalized with respect
to trace meaning additional dynamical SU(3) symmetry. Ordinary gauge bosons would be SU(3)
singlets in this sense. The existing bounds on flavor changing neutral currents give bounds on
the masses of the boson octet. The 2-throat character of bosons should relate to the low value
T = 1/n� 1 for the p-adic temperature of gauge bosons as contrasted to T = 1 for fermions.

If one forgets the complications due to the stringy states (including graviton), the spectrum
of elementary fermions and bosons is amazingly simple and almost reduces to the spectrum of
standard model. In the fermionic sector one would have fermions of standard model. By simple
counting leptonic wormhole throat could carry 23 = 8 states corresponding to 2 polarization states,
2 charge states, and sign of lepton number giving 8+8=16 states altogether. Taking into account
phase conjugates gives 16+16=32 states.

In the non-stringy boson sector one would have bound states of fermions and phase conjugate
fermions. Since only two polarization states are allowed for massless states, one obtains (2 + 1)×
(3 + 1) = 12 states plus phase conjugates giving 12+12=24 states. The addition of color singlet
states for quarks gives 48 gauge bosons with vanishing fermion number and color quantum numbers.
Besides 12 electro-weak bosons and their 12 phase conjugates there are 12 exotic bosons and their
12 phase conjugates. For the exotic bosons the couplings to quarks and leptons are determined by
the orthogonality of the coupling matrices of ordinary and boson states. For exotic counterparts
of W bosons and Higgs the sign of the coupling to quarks is opposite. For photon and Z0 also the
relative magnitudes of the couplings to quarks must change. Altogether this makes 48+16+16=80
states. Gluons would result as color octet states. Family replication would extend each elementary
boson state into SU(3) octet and singlet and elementary fermion states into SU(3) triplets.

3 Basic Facts About Riemann Surfaces

In the following some basic aspects about Riemann surfaces will be summarized. The basic topo-
logical concepts, in particular the concept of the mapping class group, are introduced, and the
Teichmueller parameters are defined as conformal invariants of the Riemann surface, which in fact
specify the conformal equivalence class of the Riemann surface completely.

3.1 Mapping Class Group

The first homology group H1(X2) of a Riemann surface of genus g contains 2g generators [A4,
A6, A5]: this is easy to understand geometrically since each handle contributes two homology
generators. The so called canonical homology basis can be defined (see Fig. 1 ).

One can define the so called intersection J(a, b) for two elements a and b of the homology group
as the number of intersection points for the curves a and b counting the orientation. Since J(a, b)
depends on the homology classes of a and b only, it defines an antisymmetric quadratic form in
H1(X2). In the canonical homology basis the non-vanishing elements of the intersection matrix
are:

J(ai, bj) = −J(bj , ai) = δi,j . (3.1)

J clearly defines symplectic structure in the homology group.
The dual to the canonical homology basis consists of the harmonic one-forms αi, βi, i = 1, .., g

on X2. These 1-forms satisfy the defining conditions

∫
ai
αj = δi,j

∫
bi
αj = 0 ,∫

ai
βj = 0

∫
bi
βj = δi,j .

(3.2)

The following identity helps to understand the basic properties of the Teichmueller parameters

∫
X2

θ ∧ η =
∑

i=1,..,g

[

∫
ai

θ

∫
bi

η −
∫
bi

θ

∫
ai

η] . (3.3)
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Figure 1: Definition of the canonical homology basis

The existence of topologically nontrivial diffeomorphisms, when X2 has genus g > 0, plays
an important role in the sequel. Denoting by Diff the group of the diffeomorphisms of X2 and
by Diff0 the normal subgroup of the diffeomorphisms homotopic to identity, one can define the
mapping class group M as the coset group

M = Diff/Diff0 . (3.4)

The generators of M are so called Dehn twists along closed curves a of X2. Dehn twist is defined
by excising a small tubular neighborhood of a, twisting one boundary of the resulting tube by 2π
and gluing the tube back into the surface: see Fig. 2.

Figure 2: Definition of the Dehn twist

It can be shown that a minimal set of generators is defined by the following curves
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a1, b1, a
−1
1 a−12 , a2, b2, a

−1
2 a−113 , ..., ag, bg . (3.5)

The action of these transformations in the homology group can be regarded as a symplectic
linear transformation preserving the symplectic form defined by the intersection matrix. Therefore
the matrix representing the action of Diff on H1(X2) is 2g × 2g matrix M with integer entries
leaving J invariant: MJMT = J . Mapping class group is often referred also and denoted by
Sp(2g, Z). The matrix representing the action of M in the canonical homology basis decomposes
into four g × g blocks A,B,C and D

M =

(
A B
C D

)
, (3.6)

where A and D operate in the subspaces spanned by the homology generators ai and bi respectively
and C and D map these spaces to each other. The notation D = [A,B;C,D] will be used in the
sequel: in this notation the representation of the symplectic form J is J = [0, 1;−1, 0].

3.2 Teichmueller Parameters

The induced metric on the two-surface X2 defines a unique complex structure. Locally the metric
can always be written in the form

ds2 = e2φdzdz̄ . (3.7)

where z is local complex coordinate. When one covers X2 by coordinate patches, where the line
element has the above described form, the transition functions between coordinate patches are
holomorphic and therefore define a complex structure.

The conformal transformations ξ of X2 are defined as the transformations leaving invariant
the angles between the vectors of X2 tangent space invariant: the angle between the vectors X
and Y at point x is same as the angle between the images of the vectors under Jacobian map at
the image point ξ(x). These transformations need not be globally defined and in each coordinate
patch they correspond to holomorphic (anti-holomorphic) mappings as is clear from the diagonal
form of the metric in the local complex coordinates. A distinction should be made between local
conformal transformations and globally defined conformal transformations, which will be referred
to as conformal symmetries: for instance, for hyper-elliptic surfaces the group of the conformal
symmetries contains two-element group Z2.

Using the complex structure one can decompose one-forms to linear combinations of one-forms
of type (1, 0) (f(z, z̄)dz) and (0, 1) (f(z, z̄)dz̄). (1, 0) form ω is holomorphic if the function f is
holomorphic: ω = f(z)dz on each coordinate patch.

There are g independent holomorphic one forms ωi known also as Abelian differentials Alvarez,
Farkas, Mumford and one can fix their normalization by the condition

∫
ai

ωj = δij . (3.8)

This condition completely specifies ωi.
Teichmueller parameters Ωij are defined as the values of the forms ωi for the homology gener-

ators bj

Ωij =

∫
bj

ωi . (3.9)

The basic properties of Teichmueller parameters are the following:

1. The g × g matrix Ω is symmetric: this is seen by applying the formula (3.3 ) for θ = ωi and
η = ωj .
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2. The imaginary part of Ω is positive: Im(Ω) > 0. This is seen by the application of the same
formula for θ = η. The space of the matrices satisfying these conditions is known as Siegel
upper half plane.

3. The space of Teichmueller parameters can be regarded as a coset space Sp(2g,R)/U(g) [A5]:
the action of Sp(2g,R) is of the same form as the action of Sp(2g, Z) and U(g) ⊂ Sp(2g,R)
is the isotropy group of a given point of Teichmueller space.

4. Teichmueller parameters are conformal invariants as is clear from the holomorphy of the
defining one-forms.

5. Teichmueller parameters specify completely the conformal structure of Riemann surface [A6]

Although Teichmueller parameters fix the conformal structure of the 2-surface completely, they
are not in one-to-one correspondence with the conformal equivalence classes of the two-surfaces:
i) The dimension for the space of the conformal equivalence classes is D = 3g − 3, when g > 1
and smaller than the dimension of Teichmueller space given by d = (g × g + g)/2 for g > 3: all
Teichmueller matrices do not correspond to a Riemann surface. In TGD approach this does not
produce any problems as will be found later.
ii) The action of the topologically nontrivial diffeomorphisms on Teichmueller parameters is non-
trivial and can be deduced from the action of the diffeomorphisms on the homology (Sp(2g, Z)
transformation) and from the defining condition

∫
ai
ωj = δi,j : diffeomorphisms correspond to

elements [A,B;C,D] of Sp(2g, Z) and act as generalized Möbius transformations

Ω→ (AΩ +B)(CΩ +D)−1 . (3.10)

All Teichmueller parameters related by Sp(2g, Z) transformations correspond to the same Riemann
surface.
iii) The definition of the Teichmueller parameters is not unique since the definition of the canonical
homology basis involves an arbitrary numbering of the homology basis. The permutation S of the
handles is represented by same g×g orthogonal matrix both in the basis {ai} and {bi} and induces
a similarity transformation in the space of the Teichmueller parameters

Ω→ SΩS−1 . (3.11)

Clearly, the Teichmueller matrices related by a similarity transformations correspond to the same
conformal equivalence class. It is easy to show that handle permutations in fact correspond to
Sp(2g, Z) transformations.

3.3 Hyper-Ellipticity

The motivation for considering hyper-elliptic surfaces comes from the fact, that g > 2 elementary
particle vacuum functionals turn out to be vanishing for hyper-elliptic surfaces and this in turn
will be later used to provide a possible explanation the non-observability of g > 2 particles.

Hyper-elliptic surface X can be defined abstractly as two-fold branched cover of the sphere
having the group Z2 as the group of conformal symmetries (see [A7, A6, A5]. Thus there exists a
map π : X → S2 so that the inverse image π−1(z) for a given point z of S2 contains two points
except at a finite number (say p) of points zi (branch points) for which the inverse image contains
only one point. Z2 acts as conformal symmetries permuting the two points in π−1(z) and branch
points are fixed points of the involution.

The concept can be generalized [A7]: g-hyper-elliptic surface can be defined as a 2-fold covering
of genus g surface with a finite number of branch points. One can consider also p-fold coverings
instead of 2-fold coverings: a common feature of these Riemann surfaces is the existence of a
discrete group of conformal symmetries.

A concrete representation for the hyper-elliptic surfaces [A5] is obtained by studying the surface
of C2 determined by the algebraic equation
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w2 − Pn(z) = 0 , (3.12)

where w and z are complex variables and Pn(z) is a complex polynomial. One can solve w from
the above equation

w± = ±
√
Pn(z) , (3.13)

where the square root is determined so that it has a cut along the positive real axis. What happens
that w has in general two roots (two-fold covering property), which coincide at the roots zi of Pn(z)
and if n is odd, also at z =∞: these points correspond to branch points of the hyper-elliptic surface
and their number r is always even: r = 2k. w is discontinuous at the cuts associated with the
square root in general joining two roots of Pn(z) or if n is odd, also some root of Pn and the point
z =∞. The representation of the hyper-elliptic surface is obtained by identifying the two branches
of w along the cuts. From the construction it is clear that the surface obtained in this manner
has genus k− 1. Also it is clear that Z2 permutes the different roots w± with each other and that
r = 2k branch points correspond to fixed points of the involution.

The following facts about the hyper-elliptic surfaces [A6, A5] turn out to be important in the
sequel:
i) All g < 3 surfaces are hyper-elliptic.
ii) g ≥ 3 hyper-elliptic surfaces are not in general hyper-elliptic and form a set of codimension 2
in the space of the conformal equivalence classes [A5].

3.4 Theta Functions

An extensive and detailed account of the theta functions and their applications can be found in
the book of Mumford [A5] . Theta functions appear also in the loop calculations of string [J1]
[A4]. In the following the so called Riemann theta function and theta functions with half integer
characteristics will be defined as sections (not strictly speaking functions) of the so called Jacobian
variety.

For a given Teichmueller matrix Ω, Jacobian variety is defined as the 2g-dimensional torus
obtained by identifying the points z of Cg ( vectors with g complex components) under the equiv-
alence

z ∼ z + Ωm+ n , (3.14)

where m and n are points of Zg (vectors with g integer valued components) and Ω acts in Zg by
matrix multiplication.

The definition of Riemann theta function reads as

Θ(z|Ω) =
∑
n

exp(iπn · Ω · n+ i2πn · z) . (3.15)

Here · denotes standard inner product in Cg. Theta functions with half integer characteristics are
defined in the following manner. Let a and b denote vectors of Cg with half integer components
(component either vanishes or equals to 1/2). Theta function with characteristics [a, b] is defined
through the following formula

Θ[a, b](z|Ω) =
∑
n

exp [iπ(n+ a) · Ω · (n+ a) + i2π(n+ a) · (z + b)] .

(3.16)

A brief calculation shows that the following identity is satisfied
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Θ[a, b](z|Ω) = exp(iπa · Ω · a+ i2πa · b)×Θ(z + Ωa+ b|Ω)

(3.17)

Theta functions are not strictly speaking functions in the Jacobian variety but rather sections in
an appropriate bundle as can be seen from the identities

Θ[a, b](z +m|Ω) = exp(i2πa ·m)Θ[a, b](zΩ) ,

Θ[a, b](z + Ωm|Ω) = exp(α)Θ[a, b](z|Ω) ,

exp(α) = exp(−i2πb ·m)exp(−iπm · Ω ·m− 2πm · z) .

(3.18)

The number of theta functions is 22g and same as the number of nonequivalent spinor structures
defined on two-surfaces. This is not an accident [A4]: theta functions with given characteristics
turn out to be in a close relation to the functional determinants associated with the Dirac operators
defined on the two-surface. It is useful to divide the theta functions to even and odd theta functions
according to whether the inner product 4a · b is even or odd integer. The numbers of even and odd
theta functions are 2g−1(2g + 1) and 2g−1(2g − 1) respectively.

The values of the theta functions at the origin of the Jacobian variety understood as functions
of Teichmueller parameters turn out to be of special interest in the following and the following
notation will be used:

Θ[a, b](Ω) ≡ Θ[a, b](0|Ω) , (3.19)

Θ[a, b](Ω) will be referred to as theta functions in the sequel. From the defining properties of odd
theta functions it can be found that they are odd functions of z and therefore vanish at the origin
of the Jacobian variety so that only even theta functions will be of interest in the sequel.

An important result is that also some even theta functions vanish for g > 2 hyper-elliptic
surfaces: in fact one can characterize g > 2 hyper-elliptic surfaces by the vanishing properties of
the theta functions [A6, A5]. The vanishing property derives from conformal symmetry (Z2 in
the case of hyper-elliptic surfaces) and the vanishing phenomenon is rather general [A7]: theta
functions tend to vanish for Riemann surfaces possessing discrete conformal symmetries. It is
not clear (to the author) whether the presence of a conformal symmetry is in fact equivalent
with the vanishing of some theta functions. As already noticed, spinor structures and the theta
functions with half integer characteristics are in one-to-one correspondence and the vanishing of
theta function with given half integer characteristics is equivalent with the vanishing of the Dirac
determinant associated with the corresponding spinor structure or equivalently: with the existence
of a zero mode for the Dirac operator Alvarez. For odd characteristics zero mode exists always: for
even characteristics zero modes exist, when the surface is hyper-elliptic or possesses more general
conformal symmetries.

4 Elementary Particle Vacuum Functionals

The basic assumption is that elementary particle families correspond to various elementary parti-
cle vacuum functionals associated with the 2-dimensional boundary components of the 3-surface.
These functionals need not be localized to a single boundary topology. Neither need their depen-
dence on the boundary component be local. An important role in the following considerations
is played by the fact that the preferred extremal property associates a unique 3-surface to each
boundary component, the “Bohr orbit” of the boundary and this surface provides a considerable
(and necessarily needed) flexibility in the definition of the elementary particle vacuum functionals.
There are several natural constraints to be satisfied by elementary particle vacuum functionals.
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4.1 Extended Diff Invariance And Lorentz Invariance

Extended Diff invariance is completely analogous to the extension of 3-dimensional Diff invariance
to four-dimensional Diff invariance in the interior of the 3-surface. Vacuum functional must be
invariant not only under diffeomorphisms of the boundary component but also under the diffeo-
morphisms of the 3- dimensional “orbit” Y 3 of the boundary component. In other words: the value
of the vacuum functional must be same for any time slice on the orbit the boundary component.
This is guaranteed if vacuum functional is functional of some two-surface Y 2 belonging to the orbit
and defined in Diff3 invariant manner.

An additional natural requirement is Poincare invariance. In the original formulation of the
theory only Lorentz transformations of the light cone were exact symmetries of the theory. In this
framework the definition of Y 2 as the intersection of the orbit with the hyperboloid

√
mklmkml = a

is Diff3 and Lorentz invariant.

1. Interaction vertices as generalization of stringy vertices

For stringy diagrams Poincare invariance of conformal equivalence class and general coordinate
invariance are far from being a trivial issues. Vertices are now not completely unique since there is
an infinite number of singular 3-manifolds which can be identified as vertices even if one assumes
space-likeness. One should be able to select a unique singular 3-manifold to fix the conformal
equivalence class.

One might hope that Lorentz invariant invariant and general coordinate invariant definition
of Y 2 results by introducing light cone proper time a as a height function specifying uniquely
the point at which 3-surface is singular (stringy diagrams help to visualize what is involved), and
by restricting the singular 3-surface to be the intersection of a = constant hyperboloid of M4

containing the singular point with the space-time surface. There would be non-uniqueness of the
conformal equivalence class due to the choice of the origin of the light cone but the decomposition
of the configuration space of 3-surfaces to a union of WCW s characterized by unions of future and
past light cones could resolve this difficulty.

2. Interaction vertices as generalization of ordinary ones

If the interaction vertices are identified as intersections for the ends of space-time sheets rep-
resenting particles, the conformal equivalence class is naturally identified as the one associated
with the intersection of the boundary component or light like causal determinant with the ver-
tex. Poincare invariance of the conformal equivalence class and generalized general coordinate
invariance follow trivially in this case.

4.2 Conformal Invariance

Conformal invariance implies that vacuum functionals depend on the conformal equivalence class of
the surface Y 2 only. What makes this idea so attractive is that for a given genus g WCW becomes
effectively finite-dimensional. A second nice feature is that instead of trying to find coordinates for
the space of the conformal equivalence classes one can construct vacuum functionals as functions
of the Teichmueller parameters.

That one can construct this kind of functions as suitable functions of the Teichmueller pa-
rameters is not trivial. The essential point is that the boundary components can be regarded as
sub-manifolds of M4

+ ×CP2: as a consequence vacuum functional can be regarded as a composite
function:

2-surface → Teichmueller matrix Ω determined by the induced metric → Ωvac(Ω)

Therefore the fact that there are Teichmueller parameters, which do not correspond to any Riemann
surface, doesn’t produce any trouble. It should be noticed that the situation differs from that in the
Polyakov formulation of string models, where one doesn’t assume that the metric of the two-surface
is induced metric (although classical equations of motion imply this).
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4.3 Diff Invariance

Since several values of the Teichmueller parameters correspond to the same conformal equivalence
class, one must pose additional conditions on the functions of the Teichmueller parameters in order
to obtain single valued functions of the conformal equivalence class.

The first requirement of this kind is the invariance under topologically nontrivial Diff transfor-
mations inducing Sp(2g, Z) transformation (A,B;C,D) in the homology basis. The action of these
transformations on Teichmueller parameters is deduced by requiring that holomorphic one-forms
satisfy the defining conditions in the transformed homology basis. It turns out that the action
of the topologically nontrivial diffeomorphism on Teichmueller parameters can be regarded as a
generalized Möbius transformation:

Ω→ (AΩ +B)(CΩ +D)−1 . (4.1)

Vacuum functional must be invariant under these transformations. It should be noticed that the
situation differs from that encountered in the string models. In TGD the integration measure over
WCW is Diff invariant: in string models the integration measure is the integration measure of the
Teichmueller space and this is not invariant under Sp(2g, Z) but transforms like a density: as a
consequence the counterpart of the vacuum functional must be also modular covariant since it is
the product of vacuum functional and integration measure, which must be modular invariant.

It is possible to show that the quantities

(Θ[a, b]/Θ[c, d])4 . (4.2)

and their complex conjugates are Sp(2g, Z) invariants [A5] and therefore can be regarded as basic
building blocks of the vacuum functionals.

Teichmueller parameters are not uniquely determined since one can always perform a permu-
tation of the g handles of the Riemann surface inducing a redefinition of the canonical homology
basis (permutation of g generators). These transformations act as similarities of the Teichmueller
matrix:

Ω→ SΩS−1 , (4.3)

where S is the g × g matrix representing the permutation of the homology generators understood
as orthonormal vectors in the g- dimensional vector space. Therefore the Teichmueller parameters
related by these similarity transformations correspond to the same conformal equivalence class of
the Riemann surfaces and vacuum functionals must be invariant under these similarities.

It is easy to find out that these similarities permute the components of the theta characteristics:
[a, b]→ [S(a), S(b)]. Therefore the invariance requirement states that the handles of the Riemann
surface behave like bosons: the vacuum functional constructed from the theta functions is invariant
under the permutations of the theta characteristics. In fact, this requirement brings in nothing
new. Handle permutations can be regarded as Sp(2g, Z) transformations so that the modular
invariance alone guarantees invariance under handle permutations.

4.4 Cluster Decomposition Property

Consider next the behavior of the vacuum functional in the limit, when boundary component with
genus g splits to two separate boundary components of genera g1 and g2 respectively. The splitting
into two separate boundary components corresponds to the reduction of the Teichmueller matrix
Ωg to a direct sum of g1 × g1 and g2 × g2 matrices (g1 + g2 = g):

Ωg = Ωg1 ⊕ Ωg2 , (4.4)

when a suitable definition of the Teichmueller parameters is adopted. The splitting can also take
place without a reduction to a direct sum: the Teichmueller parameters obtained via Sp(2g, Z)
transformation from Ωg = Ωg1 ⊕ Ωg2 do not possess direct sum property in general.
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The physical interpretation is obvious: the non-diagonal elements of the Teichmueller matrix
describe the geometric interaction between handles and at this limit the interaction between the
handles belonging to the separate surfaces vanishes. On the physical grounds it is natural to require
that vacuum functionals satisfy cluster decomposition property at this limit: that is they reduce
to the product of appropriate vacuum functionals associated with the composite surfaces.

Theta functions satisfy cluster decomposition property [A4, A5]. Theta characteristics reduce
to the direct sums of the theta characteristics associated with g1 and g2 (a = a1 ⊕ a2, b = b1 ⊕ b2)
and the dependence on the Teichmueller parameters is essentially exponential so that the cluster
decomposition property indeed results:

Θ[a, b](Ωg) = Θ[a1, b1](Ωg1)Θ[a2, b2](Ωg2) . (4.5)

Cluster decomposition property holds also true for the products of theta functions. This property
is also satisfied by suitable homogenous polynomials of thetas. In particular, the following quantity
playing central role in the construction of the vacuum functional obeys this property

Q0 =
∑
[a,b]

Θ[a, b]4Θ̄[a, b]4 , (4.6)

where the summation is over all even theta characteristics (recall that odd theta functions vanish
at the origin of Cg).

Together with the Sp(2g, Z) invariance the requirement of cluster decomposition property im-
plies that the vacuum functional must be representable in the form

Ωvac = PM,N (Θ4, Θ̄4)/QMN (Θ4, Θ̄4) (4.7)

where the homogenous polynomials PM,N and QM,N have same degrees (M and N as polynomials
of Θ[a, b]4 and Θ̄[a, b]4.

4.5 Finiteness Requirement

Vacuum functional should be finite. Finiteness requirement is satisfied provided the numerator
QM,N of the vacuum functional is real and positive definite. The simplest quantity of this type
is the quantity Q0 defined previously and its various powers. Sp(2g, Z) invariance and finiteness
requirement are satisfied provided vacuum functionals are of the following general form

Ωvac =
PN,N (Θ4, Θ̄4)

QN0
, (4.8)

where PN,N is homogenous polynomial of degree N with respect to Θ[a, b]4 and Θ̄[a, b]4. In
addition PN,N is invariant under the permutations of the theta characteristics and satisfies cluster
decomposition property.

4.6 Stability Against The Decay G→ G1 +G2

Elementary particle vacuum functionals must be stable against the genus conserving decays g →
g1 + g2. This decay corresponds to the limit at which Teichmueller matrix reduces to a direct sum
of the matrices associated with g1 and g2 (note however the presence of Sp(2g, Z) degeneracy). In
accordance with the topological description of the particle reactions one expects that this decay
doesn’t occur if the vacuum functional in question vanishes at this limit.

In general the theta functions are non-vanishing at this limit and vanish provided the theta
characteristics reduce to a direct sum of the odd theta characteristics. For g < 2 surfaces this
condition is trivial and gives no constraints on the form of the vacuum functional. For g = 2 surfaces
the theta function Θ(a, b), with a = b = (1/2, 1/2) satisfies the stability criterion identically (odd
theta functions vanish identically), when Teichmueller parameters separate into a direct sum. One
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can however perform Sp(2g, Z) transformations giving new points of Teichmueller space describing
the decay. Since these transformations transform theta characteristics in a nontrivial manner to
each other and since all even theta characteristics belong to same Sp(2g, Z) orbit [A4, A5], the
conclusion is that stability condition is satisfied provided g = 2 vacuum functional is proportional
to the product of fourth powers of all even theta functions multiplied by its complex conjugate.

If g > 2 there always exists some theta functions, which vanish at this limit and the minimal
vacuum functional satisfying this stability condition is of the same form as in g = 2 case, that
is proportional to the product of the fourth powers of all even Theta functions multiplied by its
complex conjugate:

Ωvac =
∏
[a,b]

Θ[a, b]4Θ̄[a, b]4/QN0 , (4.9)

where N is the number of even theta functions. The results obtained imply that genus-generation
correspondence is one to one for g > 1 for the minimal vacuum functionals. Of course, the multi-
plication of the minimal vacuum functionals with functionals satisfying all criteria except stability
criterion gives new elementary particle vacuum functionals: a possible physical identification of
these vacuum functionals is most naturally as some kind of excited states.

One of the questions posed in the beginning was related to the experimental absence of g > 0,
possibly massless, elementary bosons. The proposed stability criterion suggests a nice explanation.
The point is that elementary particles are stable against decays g → g1 + g2 but not with respect
to the decay g → g + sphere. As a consequence the direct emission of g > 0 gauge bosons is
impossible unlike the emission of g = 0 bosons: for instance the decay muon → electron +(g = 1)
photon is forbidden.

4.7 Stability Against The Decay G→ G− 1

This stability criterion states that the vacuum functional is stable against single particle decay
g → g− 1 and, if satisfied, implies that vacuum functional vanishes, when the genus of the surface
is smaller than g. In stringy framework this criterion is equivalent to a separate conservation
of various lepton numbers: for instance, the spontaneous transformation of muon to electron is
forbidden. Notice that this condition doesn’t imply that that the vacuum functional is localized to
a single genus: rather the vacuum functional of genus g vanishes for all surfaces with genus smaller
than g. This hierarchical structure should have a close relationship to Cabibbo-Kobayashi-Maskawa
mixing of the quarks.

The stability criterion implies that the vacuum functional must vanish at the limit, when one of
the handles of the Riemann surface suffers a pinch. To deduce the behavior of the theta functions
at this limit, one must find the behavior of Teichmueller parameters, when i: th handle suffers a
pinch. Pinch implies that a suitable representative of the homology generator ai or bi contracts to
a point.

Consider first the case, when ai contracts to a point. The normalization of the holomorphic
one-form ωi must be preserved so that that ωi must behaves as 1/z, where z is the complex
coordinate vanishing at pinch. Since the homology generator bi goes through the pinch it seems
obvious that the imaginary part of the Teichmueller parameter Ωii =

∫
bi
ωi diverges at this limit

(this conclusion is made also in [A5] ): Im(Ωii)→∞.
Of course, this criterion doesn’t cover all possible ways the pinch can occur: pinch might take

place also, when the components of the Teichmueller matrix remain finite. In the case of torus
topology one finds that Sp(2g, Z) element (A,B;C,D) takes Im(Ω) = ∞ to the point C/D of
real axis. This suggests that pinch occurs always at the boundary of the Teichmueller space: the
imaginary part of Ωij either vanishes or some matrix element of Im(Ω) diverges.

Consider next the situation, when bi contracts to a point. From the definition of the Teich-
mueller parameters it is clear that the matrix elements Ωkl, with k, l 6= i suffer no change. The
matrix element Ωki obviously vanishes at this limit. The conclusion is that i:th row of Teichmueller
matrix vanishes at this limit. This result is obtained also by deriving the Sp(2g, Z) transformation
permuting ai and bi with each other: in case of torus this transformation reads Ω→ −1/Ω.

Consider now the behavior of the theta functions, when pinch occurs. Consider first the limit,
when Im(Ωii) diverges. Using the general definition of Θ[a, b] it is easy to find out that all
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theta functions for which the i: the component ai of the theta characteristic is non-vanishing
(that is ai = 1/2) are proportional to the exponent exp(−πΩii/4) and therefore vanish at the
limit. The theta functions with ai = 0 reduce to g − 1 dimensional theta functions with theta
characteristic obtained by dropping i: th components of ai and bi and replacing Teichmueller
matrix with Teichmueller matrix obtained by dropping i: th row and column. The conclusion is
that all theta functions of type Θ(a, b) with a = (1/2, 1/2, ...., 1/2) satisfy the stability criterion in
this case.

What happens for the Sp(2g, Z) transformed points on the real axis? The transformation
formula for theta function is given by [A4, A5]

Θ[a, b]((AΩ +B)(CΩ +D)−1) = exp(iφ)det(CΩ +D)1/2Θ[c, d](Ω) ,

(4.10)

where

(
c
d

)
=

(
A B
C D

)((
a
b

)
−
(

(CDT )d/2
(ABT )d/2

))
.

(4.11)

Here φ is a phase factor irrelevant for the recent purposes and the index d refers to the diagonal
part of the matrix in question.

The first thing to notice is the appearance of the diverging square root factor, which however
disappears from the vacuum functionals (P and Q have same degree with respect to thetas). The
essential point is that theta characteristics transform to each other: as already noticed all even
theta characteristics belong to the same Sp(2g, Z) orbit. Therefore the theta functions vanishing
at Im(Ωii) = ∞ do not vanish at the transformed points. It is however clear that for a given
Teichmueller parameterization of pinch some theta functions vanish always.

Similar considerations in the case Ωik = 0, i fixed, show that all theta functions with b =
(1/2, ...., 1/2) vanish identically at the pinch. Also it is clear that for Sp(2g, Z) transformed points
one can always find some vanishing theta functions. The overall conclusion is that the elementary
particle vacuum functionals obtained by using g → g1 + g2 stability criterion satisfy also g → g− 1
stability criterion since they are proportional to the product of all even theta functions. Therefore
the only nontrivial consequence of g → g− 1 criterion is that also g = 1 vacuum functionals are of
the same general form as g > 1 vacuum functionals.

A second manner to deduce the same result is by restricting the consideration to the hyper-
elliptic surfaces and using the representation of the theta functions in terms of the roots of the
polynomial appearing in the definition of the hyper-elliptic surface [A5]. When the genus of the
surface is smaller than three (the interesting case), this representation is all what is needed since
all surfaces of genus g < 3 are hyper-elliptic.

Since hyper-elliptic surfaces can be regarded as surfaces obtained by gluing two compactified
complex planes along the cuts connecting various roots of the defining polynomial it is obvious
that the process g → g − 1 corresponds to the limit, when two roots of the defining polynomial
coincide. This limit corresponds either to disappearance of a cut or the fusion of two cuts to a
single cut. Theta functions are expressible as the products of differences of various roots (Thomae’s
formula [A5] )

Θ[a, b]4 ∝
∏

i<j∈T
(zi − zj)

∏
k<l∈CT

(zk − zl) , (4.12)

where T denotes some subset of {1, 2, ..., 2g} containing g + 1 elements and CT its complement.
Hence the product of all even theta functions vanishes, when two roots coincide. Furthermore,
stability criterion is satisfied only by the product of the theta functions.

Lowest dimensional vacuum functionals are worth of more detailed consideration.
i) g = 0 particle family corresponds to a constant vacuum functional: by continuity this vacuum
functional is constant for all topologies.
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ii) For g = 1 the degree of P and Q as polynomials of the theta functions is 24: the critical number
of transversal degrees of freedom in bosonic string model! Probably this result is not an accident.
ii) For g = 2 the corresponding degree is 80 since there are 10 even genus 2 theta functions.

There are large numbers of vacuum functionals satisfying the relevant criteria, which do not
satisfy the proposed stability criteria. These vacuum functionals correspond either to many particle
states or to unstable single particle states.

4.8 Continuation Of The Vacuum Functionals To Higher Genus Topolo-
gies

From continuity it follows that vacuum functionals cannot be localized to single boundary topology.
Besides continuity and the requirements listed above, a natural requirement is that the continuation
of the vacuum functional from the sector g to the sector g+k reduces to the product of the original
vacuum functional associated with genus g and g = 0 vacuum functional at the limit when the
surface with genus g+ k decays to surfaces with genus g and k: this requirement should guarantee
the conservation of separate lepton numbers although different boundary topologies suffer mixing
in the vacuum functional. These requirements are satisfied provided the continuation is constructed
using the following rule:

Perform the replacement

Θ[a, b]4 →
∑
c,d

Θ[a⊕ c, b⊕ d]4 (4.13)

for each fourth power of the theta function. Here c and d are Theta characteristics associated with
a surface with genus k. The same replacement is performed for the complex conjugates of the
theta function. It is straightforward to check that the continuations of elementary particle vacuum
functionals indeed satisfy the cluster decomposition property and are continuous.

To summarize, the construction has provided hoped for answers to some questions stated in
the beginning: stability requirements explain the separate conservation of lepton numbers and
the experimental absence of g > 0 elementary bosons. What has not not been explained is the
experimental absence of g > 2 fermion families. The vanishing of the g > 2 elementary particle
vacuum functionals for the hyper-elliptic surfaces however suggest a possible explanation: under
some conditions on the surface X2 the surfaces Y 2 are hyper-elliptic or possess some conformal
symmetry so that elementary particle vacuum functionals vanish for them. This conjecture indeed
might make sense since the surfaces Y 2 are determined by the asymptotic dynamics and one might
hope that the surfaces Y 2 are analogous to the final states of a dissipative system.

5 Explanations For The Absence Of The g > 2 Elementary
Particles From Spectrum

The decay properties of the intermediate gauge bosons [C1] are consistent with the assumption
that the number of the light neutrinos is N = 3. Also cosmological considerations pose upper
bounds on the number of the light neutrino families and N = 3 seems to be favored [C1]. It must
be however emphasized that p-adic considerations [K5] encourage the consideration the existence
of higher genera with neutrino masses such that they are not produced in the laboratory at present
energies. In any case, for TGD approach the finite number of light fermion families is a potential
difficulty since genus-generation correspondence suggests that the number of the fermion (and
possibly also boson) families is infinite. Therefore one had better to find a good argument showing
that the number of the observed neutrino families, or more generally, of the observed elementary
particle families, is small also in the world described by TGD.

It will be later found that also TGD inspired cosmology requires that the number of the ef-
fectively massless fermion families must be small after Planck time. This suggests that boundary
topologies with handle number g > 2 are unstable and/or very massive so that they, if present in
the spectrum, disappear from it after Planck time, which correspond to the value of the light cone
proper time a ' 10−11 seconds.
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In accordance with the spirit of TGD approach it is natural to wonder whether some geometric
property differentiating between g > 2 and g < 3 boundary topologies might explain why only
g < 3 boundary components are observable. One can indeed find a good candidate for this kind
of property: namely hyper-ellipticity, which states that Riemann surface is a two-fold branched
covering of sphere possessing two-element group Z2 as conformal automorphisms. All g < 3 Rie-
mann surfaces are hyper-elliptic unlike g > 2 Riemann surfaces, which in general do not posses this
property. Thus it is natural to consider the possibility that hyper-ellipticity or more general con-
formal symmetries might explain why only g < 2 topologies correspond to the observed elementary
particles.

As regards to the present problem the crucial observation is that some even theta functions
vanish for the hyper-elliptic surfaces with genus g > 2 [A5]. What is essential is that these surfaces
have the group Z2 as conformal symmetries. Indeed, the vanishing phenomenon is more general.
Theta functions tend to vanish for g > 2 two-surfaces possessing discrete group of conformal
symmetries [A7]: for instance, instead of sphere one can consider branched coverings of higher
genus surfaces.

From the general expression of the elementary particle vacuum functional it is clear that ele-
mentary particle vacuum functionals vanish, when Y 2 is hyper-elliptic surface with genus g > 2
and one might hope that this is enough to explain why the number of elementary particle families
is three.

5.1 Hyper-Ellipticity Implies The Separation Of h ≤ 2 Andg > 2 Sectors
To Separate Worlds

If the vertices are defined as intersections of space-time sheets of elementary particles and if elemen-
tary particle vacuum functionals are required to have Z2 symmetry, the localization of elementary
particle vacuum functionals to g ≤ 2 topologies occurs automatically. Even if one allows as limiting
case vertices for which 2-manifolds are pinched to topologies intermediate between g > 2 and g ≤ 2
topologies, Z2 symmetry present for both topological interpretations implies the vanishing of this
kind of vertices. This applies also in the case of stringy vertices so that also particle propagation
would respect the effective number of particle families. g > 2 and g ≤ 2 topologies would behave
much like their own worlds in this approach. This is enough to explain the experimental findings
if one can understand why the g > 2 particle families are absent as incoming and outgoing states
or are very heavy.

5.2 What About G > 2 Vacuum Functionals Which Do Not Vanish For
Hyper-Elliptic Surfaces?

The vanishing of all g ≥ 2 vacuum functionals for hyper-elliptic surfaces cannot hold true generally.
There must exist vacuum functionals which do satisfy this condition. This suggest that elementary
particle vacuum functionals for g > 2 states have interpretation as bound states of g handles and
that the more general states which do not vanish for hyper-elliptic surfaces correspond to many-
particle states composed of bound states g ≤ 2 handles and cannot thus appear as incoming and
outgoing states. Thus g > 2 elementary particles would decouple from g ≤ 2 states.

5.3 Should Higher Elementary Particle Families Be Heavy?

TGD predicts an entire hierarchy of scaled up variants of standard model physics for which particles
do not appear in the vertices containing the known elementary particles and thus behave like dark
matter [K10]. Also g > 2 elementary particles would behave like dark matter and in principle there
is no absolute need for them to be heavy.

The safest option would be that g > 2 elementary particles are heavy and the breaking of Z2

symmetry for g ≥ 2 states could guarantee this. p-Adic considerations lead to a general mass
formula for elementary particles such that the mass of the particle is proportional to 1√

p [K6]. Also

the dependence of the mass on particle genus is completely fixed by this formula. What remains
however open is what determines the p-adic prime associated with a particle with given quantum
numbers. Of course, it could quite well occur that p is much smaller for g > 2 genera than for
g ≤ 2 genera.
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5.4 Could Higher Genera Have Interpretation As Many-Particle States?

The topological explanation of family replication phenomenon of fermions in terms of the genus g
defined as the number of handles added to sphere to obtain the quantum number carrying partonic
2-surface distinguishes TGD from GUTs and string models. The orbit of the partonic 2-surface
defines 3-D light-like orbit identified as wormhole throat at which the induced metric changes
its signature. The original model of elementary particle involved only single boundary component
replaced later by a wormhole throat. The generalization to the recent situation in which elementary
particles correspond to wormhole flux tubes of length of order weak length scales with pairs of
wormhole throats at its ends is straight-forward.

The basic objection against the proposal is that it predicts infinite number of particle families
unless the g ≤ 3 topologies are preferred for some reason. Conformal and modular symmetries are
basic symmetries of the theory and global conformal symmetries provide an excellent candidate
for the sought for reason why.

1. For g ≤ 3 the 2-surfaces are always hyper-elliptic which means that they have have always
Z2 as global conformal symmetries. For g ≥ 2 these symmetries are absent in the generic
case. Moreover, the ¡modular invariant elementary particle vacuum functionals¡/a¿ vanish
for hyper-elliptic surfaces for g ≥ 2. This leaves several options to consider. The basic idea
is however that ground states are usually highly symmetric and that elementary particles
correspond to ground states.

2. The simplest guess is that g ≥ 2 surfaces correspond to very massive states decaying rapidly
to states with smaller genus. Due to the conformal symmetry g ≤ 3 surfaces would be
analogous to ground states and would have small masses.

3. The possibility to have partonic 2-surfaces of macroscopic and even astrophysical size identi-
fiable as seats of anyonic macroscopic quantum phases [K8] suggests an alternative interpre-
tation consistent with global conformal symmetries. For partonic 2-surfaces of macroscopic
size it seems natural to consider handles as particles glued to a much larger partonic 2-surface
by topological sum operation (topological condensation).

All orientable manifolds can be obtained by topological sum operation from what can be
called prime manifolds. In 2-D orientable case prime manifolds are sphere and torus rep-
resenting in well-defined sense 0 and 1 so that topological sum corresponds to addition of
positive integers arithmetically. This would suggest that only sphere and torus appear as
single particle states. Particle interpretation however requires that also g = 0 and g = 2
surfaces topologically condensed to a larger anyonic 2-surface have similar interpretation,
at least if they have small enough size. What kind of argument could justify this kind of
interpretation?

4. An argument based on symmetries suggests itself. The reduction of degrees of freedom
is the generic signature of bound state. Bound state property implies also the reduction of
approximate single particle symmetries to an exact overall symmetry. Rotational symmetries
of hydrogen atom represent a good example of this. For free many particle states each particle
transforms according to a representation of rotation group having total angular momentum
defined as sum of its spin and angular momentum. For bound states rotational degrees
of freedom are strongly correlated and only overall rotations of the state define rotational
symmetries.

In this spirit one could interpret sphere as vacuum, torus as single handle state, and torus
with handle as a bound state of 2 handles in conformal degrees of freedom meaning that the
Z2 symmetries of vacuum and handles are frozen in topological condensation (topological
sum) to single overall Z2. If this interpretation is correct, g ≥ 2 2-surfaces would always
have a decomposition to many-particle states consisting of spheres, tori and tori with single
handle glued to a larger sphere by topological sum. Each of these topologically condensed
composites would possess Z2 as approximate single particle symmetry.

5.5 A new piece to the TGD inspired model of family replication

The TGD vision about family replication phenomenon of fermions is as follows.
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1. Fermion families correspond to the genera for partonic 2-surfaces. This predicts generation-
genus correspondence. Electron and its neutrino correspond to a sphere with genus g = 0;
muon and its neutrino to a torus with g = 1; τ and its neutrino to to with g = 2. Similar
picture applies to quarks. CKM mixing corresponds to topological mixings of genera, which
are different for different charged states and CKM mixing is the difference of these mixings.

The problem is that TGD suggests an infinite number of genera. Only 3 fermion families are
observed. Why?

2. The first piece of the answer is Z2 conformal symmetry. It is present for the genera g = 0, 1, 2
but only for hyperelliptic Riemann surfaces for g > 2.

3. The second piece of the answer is that one regards the genera g ≥ 2 as many-handle states.
For g ≥ 2 many-handle states would have a continuous mass spectrum and would not be
elementary particles. For g = 2 a bound state of two handles would be possible by Z2

symmetry.

Consider now the new building brick for the explanation.

1. Quantum classical correspondence is the basic principle of TGD and requires that quantum
states have classical counterparts.

2. Assume that in a suitable region of moduli space it makes sense to talk of a handle as a
particle moving in the geometry defined by g − 1 handles. One can imagine that the handle
is glued by a small wormhole contact to the background defined by g−1 handles and behaves
like a free point-like particle moving along a geodesic line of the background.

This relationship must be symmetric so that the background must move along the geodesic
line of the handle. This means that particles and background are glued together along the
geodesic lines of both.

3. Consider now various cases.

(a) The case g = 0 is trivial since one has a handle vacuum.

(b) For g = 1, one has the motion of a handle in spherical geometry along a great circle,
which corresponds to a geodesic line of the sphere. The torus can rotate like a rigid
body and this corresponds to a geodesic line of torus characterized by two winding
numbers (m,n). Alternatively, one can say that the sphere rotates along a geodesic of
the torus. There is an infinite but discrete number of orbits. The simplest solution is
the stationary solution (m,n) = (0, 0).

(c) For g = 2, one has a geodesic motion of a handle in the toric geometry defined by the
second handle. Now one can speak of bound states of two handles.

One would have a gluing of two tori along geodesic lines (m,n) and (r, s). The ratios
of these integers are rational so that one obtains a closed orbit. The simplest solution
is (m,n) = (r, s) = 0.

Stationary solutions are stable for constant curvature case since curvature of torus van-
ishes. Locally the stationary solution is like a particle at rest in Euclidian plane.

(d) For g = 3 one has a geodesic motion of the handle in g = 2 geometry or vice versa.
g = 2 geometry has negative total scalar curvature and as a special case a constant
negative curvature. This implies that all points are saddle points and therefore unstable
geodesics so that two geodesics going through a given point in general diverge. This
strongly suggests that only unstable geodesics are possible for g = 2 whether it is
regarded as background or as a particle. This suggests a butterfly effect and a chaotic
behavior. Even if g = 2 particle represents a classical bound state the third handle
must move along a chaotic geodesics of g = 2 geometry.This could explain the absence
of bound states at quantum level.
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6 Elementary Particle Vacuum Functionals For Dark
Matter

One of the open questions is how dark matter hierarchy reflects itself in the properties of the
elementary particles. The basic questions are how the quantum phase q = ep(2iπ/n) makes
itself visible in basic theory and how elementary particle vacuum functionals depend on q.

6.1 Hurwitz Zetas Cannot Correspond To Dark Matter In TGD
Sense

Intuitively dark matter corresponds to n-sheeted singular coverings of space-time surfaces
analogous to corresponding coverings of complex plane. Assume that the consideration can
be restricted to string world sheets or partonic 2-surfaces. The complex coordinate is replaced
with w = z1/n and the conformal algebra in question has conformal weight spectrum scaled
down by 1/n. Conformal symmetry is broken and only the integer valued conformal weights
assignable to z = wn correspond to gauge symmetries. One can also use w as variable and
say that the subalgebra of conformal algebra for covering with conformal weights coming
as multiples of n acts as gauge symmetry. The conformal transformations acting as gauge
symmetries would not permute the sheets of the covering and space-time sheets would define
n conformal equivalence classes.

An important point to notice is that the breaking of conformal symmetry as gauge symmetry
would give a justification for p-adic thermodynamics. This breaking could occur for all
conformal algebras involved.

Riemann zeta is associated naturally as spectral zeta function ζK−D =
∑

1/λs with the
solutions of Kähler-Dirac operator coming as powers of zm as in string models. What happens
for the spectrum and ζK−D in the replacement of space-time surfaces with its n-fold covering?

(a) To obtain the spectral zeta function characterizing the Kähler-Dirac operator, one just
makes the replacement m→ m/n in the defining formula ζ(s) =

∑
s−m of the spectral

zeta function. For the covering Riemann zeta ζ(s) would be replaced with ζ(s)/ns so
that zeros would not be affected. The result is not so surprising since sub-algebra of
conformal algebra are isomorphic to the algebra itself.

(b) Note that I have also considered the possibility that the conformal weights of the genera-
tors of super-symplectic algebra - certainly not of Kähler-Dirac operator - come as zeros
of Riemann zeta: this would mean a huge extension of the algebra since the number
of generators increase from a finite number to infinite number. Given complex confor-
mal weight for a generator of algebra would correspond to the power rhM of the radial
light-like coordinate rM of δM4

+, h zero of zeta. n-fold covering would correspond to

rM → r
1/n
M as variable. Orthogonality conditions would allow this spectrum of radial

conformal weights. Note that the physical conformal weights (which could have inter-
pretation as mass squared eigen values) would be still integers by what I call conformal
confinement.

Nothing would happen for the spectrum of super-symplectic conformal weights if iden-
tified as zeros of the spectral zeta of K-D operator (for which there is however no
compelling reason!).

Hurwitz zeta obtained by a shift m→ m+a in ζ =
∑
m−s to give ζH(s, a) =

∑
1/(m+a)s.

Here a could be restricted to be a rational number in the range (0, 1) or inverse integer 1/n.
For integer values of a some of the lowest integers drop from the integer spectrum. For other
values something more complex takes place. For a = 1/2 Hurwitz zeta is proportional to
Riemann zeta: ζ(s, 1/2) = (2s − 1)ζ(s) and its spectrum of zeros includes those or Riemann
zeta plus points sn = n× i2π/ln(2) at imaginary axis. For other value of a the spectrum of
zeros is not concentrated on vertical line and does not include zeros of Riemann zeta. The
failure of Riemann Hypothesis is an ugly property.
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(a) Hurwitz zeta can be identified as spectral zeta if the spectrum of K-D operator consists
of functions zn+a. This kind of situation could result from boundary conditions at origin
z = 0 giving shift rather than scaling of the conformal weights required by the covering
space picture. This allows to understand why for integer values of a Hurwitz equals to
Riemann zeta apart from few terms.

(b) The spectrum of conformal weights for Ramond type representations comes as integers
but for N-S type representations the ground state conformal weight is ±1/2. Therefore
Hurwitz zeta with a = 1/2 would be relevant if half odd integer spectrum for conformal
weights of K-D operator is allowed. If the zeros of spectral zeta determine the spectrum
of generating super-symplectic conformal weights would include also the set hn = n ×
i2π/ln(2) in this case.

6.2 Hurwitz Zeta Inspires An Explanation For Why The Number
Of Fermion Generations Is Three

It is clear that Hurwitz zeta does not relate to dark matter in TGD sense. The exceptional
character of a = 1/2 for Hurwitz zeta however inspires an argument for why the number of
fermion generations is three. Ironically, Hurwitz zeta is not required by the argument itself!

(a) Dark matter would correspond to n-fold coverings of space-time sheets and also of
partonic 2-surfaces. The inclusions of HFFs allow only quantum phases corresponding
to n > 2 suggesting that dark matter corresponds to n > 2 coverings. For this reason
there is a temptation to see n = 2-sheetedness as a space-time correlate for spin 1/2
property rather than dark matter property. More generally, if n is even, one obtains the
same result since Z2 appears as a factor in Zn.

(b) Ramond representation (a = 0) rather than N-S representation assignable to a = 1/2
looks a reasonable candidate for super-conformal representation for fermions. The rea-
son is that two-valuedness is not associated with wave function but with its transfor-
mation property under 2π rotation. p-Adic mass calculations indeed assume Ramond
representation for fermions.

(c) One expects that for n > 2 Zn acts as a conformal symmetry, which is not gauge
symmetry. n = 2 can be an exception to this rule. Z2 symmetry permuting the sheets
would act as a global conformal gauge symmetry for hyper-elliptic partonic 2-surfaces.
There would be no breaking of conformal symmetry since the degeneracy would be
absent.

The three lowest fermion genera g ≤ 2 are always hyper-elliptic but for g > 2 this would
be case only for special values of moduli and for these values of moduli elementary
particle vacuum functionals vanish. Thus for g > 2 Z2 could not act as gauge symmetry
for physical particles consisting of fundamental fermions. One would obtain something
different - perhaps genuine dark matter explaining why higher generations have not
been observed! Second interpretation is that the interpretation as single fermion state
fails for g > 2: handles would behave as particles and one would have the analog of
many-particle state.

(d) One can of course criticize this explanation by saying that “dark matter” has replaced
the old “very heavy” or more modern “in the second sector of the multiverse”, and
that one can apply this argument always when theory predicts something which is not
observed such as space-time symmetry and colored excitations of quarks and leptons.
The basic element of the explanation would be breaking of a conformal symmetry as
gauge symmetry and this can indeed take place.

The conclusion is that ζH cannot relate to the dark matter in TGD sense. ζH(s, 1/2) cannot
appear as spectral zeta function for fundamental fermions and could result only in their
bosonization in which wave function is genuinely two valued.

The earlier proposal that Hurwitz zeta could relate to dark matter is wrong. The motivating
observation was that one could generalize modular invariance to fractional modular invariance
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for Riemann surfaces possessing Zn symmetry and perform a similar generalization for theta
functions and elementary particle vacuum functionals. The Hurwitz zetas would form Zn
multiplets assignable to dark matter describable in terms of n-fold coverings. I did not have
heart to throw out the mathematical facts related to Hurwitz zetas.

6.3 About Hurwitz Zetas

The action of modular group SL(2, Z) on Riemann zeta [A2] is induced by its action on
theta function [A3]. The action of the generator τ → −1/τ on theta function is essential
in providing the functional equation for Riemann Zeta. Usually the action of the generator
τ → τ + 1 on Zeta is not considered explicitly. The surprise was that the action of the
generator τ → τ + 1 on Riemann Zeta does not give back Riemann zeta but a more general
function known as Hurwitz zeta ζ(s, z) for z = 1/2. One finds that Hurwitz zetas for certain
rational values of argument define in a well defined sense representations of fractional modular
group to which quantum group can be assigned naturally. Could they allow to code the value
of the quantum phase q = exp(i2π/n) to the solution spectrum of the Kähler-Dirac operator
D? As already shown the answer to this question is negative. Despite this Hurwitz zetas
deserve a closer examination.

6.3.1 Definition

Hurwitz zeta is obtained by replacing integers m with m+ z in the defining sum formula for
Riemann Zeta:

ζ(s, z) =
∑
m

(m+ z)−s . (6.1)

Riemann zeta results for z = n apart from finite number of terms.

Hurwitz zeta obeys the following functional equation for rational z = m/n of the second
argument [A1]:

ζ(1− s, m
n

) =
2Γ(s)

2πn

s n∑
k=1

cos(
πs

2
− 2πkm

n
)ζ(s,

k

n
) . (6.2)

The representation of Hurwitz zeta in terms of θ [A1] is given by the equation

∫ ∞
0

[θ(z, it)− 1] ts/2
dt

t
= π(1−s)/2Γ(

1− s
2

) [ζ(1− s, z) + ζ(1− s, 1− z)] . (6.3)

By the periodicity of theta function this gives for z = n Riemann zeta apart from finite
number of terms.

6.3.2 The action of τ → τ + 1 transforms ζ(s, 0) to ζ(s, 1/2)

The action of the transformations τ → τ + 1 on the integral representation of Riemann
Zeta [A2] in terms of θ function [A3]

θ(z; τ)− 1 = 2

∞∑
n=1

[exp(iπτ)]
n2

cos(2πnz) (6.4)

is given by
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π−s/2Γ(
s

2
)ζ(s) =

∫ ∞
0

[θ(0; it)− 1] ts/2
dt

t
. (6.5)

Using the first formula one finds that the shift τ = it → τ + 1 in the argument θ induces
the shift θ(0; τ) → θ(1/2; τ). Hence the result is Hurwitz zeta ζ(s, 1/2). For τ → τ + 2 one
obtains Riemann Zeta.

Thus ζ(s, 0) and ζ(s, 1/2) behave like a doublet under modular transformations. Under the
subgroup of modular group obtained by replacing τ → τ + 1 with τ → τ + 2 Riemann Zeta
forms a singlet. The functional equation for Hurwitz zeta relates ζ(1 − s, 1/2) to ζ(s, 1/2)
and ζ(s, 1) = ζ(s, 0) so that also now one obtains a doublet, which is not surprising since
the functional equations directly reflects the modular transformation properties of theta
functions. This doublet might be the proper object to study instead of singlet if one considers
full modular invariance.

6.3.3 Hurwitz zetas form n-plets closed under the action of fractional modular
group

The inspection of the functional equation for Hurwitz zeta given above demonstrates that
ζ(s,m/n), m = 0, 1, ..., n, form in a well-defined sense an n-plet under fractional modular
transformations obtained by using generators τ → −1/τ and τ → τ + 2/n. The latter
corresponds to the unimodular matrix (a, b; c, d) = (1, 2/n; 0, 1). These matrices obviously
form a group. Note that Riemann zeta is always one member of the multiplet containing n
Hurwitz zetas.

These observations bring in mind fractionization of quantum numbers, quantum groups cor-
responding to the quantum phase q = exp(i2π/n), and the inclusions for hyper-finite factors
of type II1 partially characterized by these quantum phases. Fractional modular group ob-
tained using generator τ → τ + 2/n and Hurwitz zetas ζ(s, k/n) could very naturally relate
to these and related structures.
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