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Abstract

A proposal unifying four approaches to genetic code is discussed.
The first approach is introduced by myself and is geometric: genetic code is interpreted as

an imbedding of the aminoacid space to DNA space possessing a fiber bundle like structure
with DNAs coding for a given aminoacid forming a discrete fiber with a varying number of
points. Also Khrennikov has proposed an analogous approach based on the identification of
DNAs coding for a given aminoacid as an orbit a discrete flow defined by iteration of a map
of DNA space to itself.

Much later (2014) I have introduced a variant of this scenario in which the fiber space
structure is by assigning aminoacids to the 20 vertices of icosahedron. This model allows to
understand the degeneracies of genetic code group theoretically.

Second approach starts from the 5-adic approach of Dragovich and Dragovich. Codons are
labelled by 5-adic integers n which have no non-vanishing 5-digits so that the n is in the range
[31, 124]. The number of primes in the range [31, 124] is 20. This suggests the labelling of
aminoacids by these primes. This inspires an additional condition on the geometric code: if
possible, one of the integers n projected to p equals to p(n). This condition fails only for the
primes 53,79,101,103 for which some of 5-digits vanishing in 5-ary expansion.

The third approach relies on the generalization of the basic idea of the so called divisor
code proposed by Khrennikov and Nilsson. The requirement is that the number of factors for
integer n labelling one of DNAs, call it nd coding for a given aminoacid is the total number
of codons coding for the aminoacid, its degeneracy. Therefore a given aminoacid labelled by
prime p with no non-vanishing 5-digits is coded by DNAs labelled by p itself and by nd. A
group theoretic and physical interpretation for the origin of the divisor code is proposed.

The fourth approach is a modification of the earlier 4-adic number theoretic thermody-
namics approach of Pitkänen.

1. 5-adic thermodynamics involving a maximization of number theoretic negentropy Np(n) =
−Sp(n) > 0(!) as a function of p-adic prime p labelling aminoacids assigns a unique prime
to the codon. If no prime in the range divides Sp, the codon is identified as a stopping
codon.

2. The number theoretic thermodynamics is assigned with the partitions P of the integer
n2) determined by the first two letters of the codon (16 integers belonging to the range
[6, 24]). The integer valued number theoretic Hamiltonian h(P ) ∈ Z25 appearing in the
Boltzmann weight 5h(P )/T5 is assumed to depend on the number r of summands for the
partition only. h(r) is assumed to be tailored by evolution so that it reproduces the code.

3. The effect of the third nucleotide is described in terms of 5-adic temperature T5 = 1/n,
n ∈ [0, 24]: the variation of T5 explains the existence of variants of genetic code and its
temporal variation the observed context sensitivity of the codon-aminoacid correspon-
dence for some variants of the code.

A numerical calculation scanning over N ∼ 1030 candidates for h(r) allows only 11 Hamil-
tonians and with single additional symmetry inspired condition there are 2 solutions which
differ only for 5 largest values of r. Due to the limited computational resources available only
24 percent of the available candidates have been scanned and the naive expectation is that
the total number of Hamiltonians is about about 45 unless one poses additional conditions.

The problem of the number theoretic models is that they do not predict but only reproduce.
This is in sharp contrst to the model based on dark proton sequences, which leads to a radically
new vision about the evolution of prebiotic life and to the vision about how immune system
and genetic code evolved and what is the meaning of the genetic code.

1 Introduction

A proposal unifying four approaches to genetic code is discussed.
The first approach is introduced by myself and is geometric: genetic code is interpreted as

an imbedding of the aminoacid space to DNA space possessing a fiber bundle like structure with
DNAs coding for a given aminoacid forming a discrete fiber with a varying number of points. Also
Khrennikov has proposed an analogous approach based on the identification of DNAs coding for a
given aminoacid as an orbit a discrete flow defined by iteration of a map of DNA space to itself.

Much later (2014) I have introduced a variant of this scenario in which the fiber space structure
is by assigning aminoacids to the 20 vertices of icosahedron. This model allows to understand the
degeneracies of genetic code group theoretically.
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Second approach starts from the 5-adic approach of Dragovich and Dragovich. Codons are la-
belled by 5-adic integers n which have no non-vanishing 5-digits so that the n is in the range
[31, 124]. The number of primes in the range [31, 124] is 20. This suggests the labelling of
aminoacids by these primes. This inspires an additional condition on the geometric code: if
possible, one of the integers n projected to p equals to p(n). This condition fails only for the
primes 53,79,101,103 for which some of 5-digits vanishing in 5-ary expansion.

The third approach relies on the generalization of the basic idea of the so called divisor code
proposed by Khrennikov and Nilsson. The requirement is that the number of factors for integer
n labelling one of DNAs, call it nd coding for a given aminoacid is the total number of codons
coding for the aminoacid, its degeneracy. Therefore a given aminoacid labelled by prime p with
no non-vanishing 5-digits is coded by DNAs labelled by p itself and by nd. A group theoretic and
physical interpretation for the origin of the divisor code is proposed.

The fourth approach is a modification of the earlier 4-adic number theoretic thermodynamics
approach of Pitkänen.

1. 5-adic thermodynamics involving a maximization of number theoretic negentropy Np(n) =
−Sp(n) > 0(!) as a function of p-adic prime p labelling aminoacids assigns a unique prime to
the codon. If no prime in the range divides Sp, the codon is identified as a stopping codon.

2. The number theoretic thermodynamics is assigned with the partitions P of the integer n2)
determined by the first two letters of the codon (16 integers belonging to the range [6, 24]).
The integer valued number theoretic Hamiltonian h(P ) ∈ Z25 appearing in the Boltzmann
weight 5h(P )/T5 is assumed to depend on the number r of summands for the partition only.
h(r) is assumed to be tailored by evolution so that it reproduces the code.

3. The effect of the third nucleotide is described in terms of 5-adic temperature T5 = 1/n,
n ∈ [0, 24]: the variation of T5 explains the existence of variants of genetic code and its
temporal variation the observed context sensitivity of the codon-aminoacid correspondence
for some variants of the code.

A numerical calculation scanning over N ∼ 1030 candidates for h(r) allows only 11 Hamiltonians
and with single additional symmetry inspired condition there are 2 solutions which differ only for
5 largest values of r. Due to the limited computational resources available only 24 percent of
the available candidates have been scanned and the naive expectation is that the total number of
Hamiltonians is about about 45 unless one poses additional conditions.

The problem of the number theoretic models is that they do not predict but only reproduce.
This is in sharp contrst to the model based on dark proton sequences, which leads to a radically
new vision about the evolution of prebiotic life and to the vision about how immune system and
genetic code evolved and what is the meaning of the genetic code.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using CMAP
realized as html files. Links to all CMAP files can be found at http://tgdtheory.fi/cmaphtml.
html [L5]. Pdf representation of same files serving as a kind of glossary can be found at http:

//tgdtheory.fi/tgdglossary.pdf [L6].

2 Unifying Various Approaches To The Genetic Code

The understanding of genetic at deeper level has gained increasing attention: mention only the
proposals of Khrennikov [A5, A8], Pitkänen [K9, ?, K6], and Dragovich and Dragovich [A7]. Quite
recently Khrennikov and Nilsson introduced the idea of divisor code [A9]. The idea is inspired
by the observations that the numbers of divisors of integers in the range [1, 20] are rather near to
degeneracies of amino-acids for the genetic code. The attempts to realize this idea as such had
however only a limited success and this led to a generalization of the basic idea of the divisor code
and stimulated the attempt to combining four different approaches to the genetic code to single
unified approach.

http://tgdtheory.fi/cmaphtml.html
http://tgdtheory.fi/cmaphtml.html
http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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2.1 Geometric Approach To The Genetic Code

The geometric approach of Pitkänen [K9, ?, K6] was inspired by the basic hypothesis of TGD
[L4, L3, L2] that space-times can be regarded as 4-surfaces X4 ⊂ H = M4×CP2 of 8-dimensional
embedding space H. The idea was to replace H by the discrete space of integers labeling the
64 DNA triplets and X4 by the discrete space of 20 amino-acids [?]. Thus genetic code imbeds
amino-acid space with points labeled by integers nA to the DNA space labeled by some subset of
integers (not necessarily 0 ≤ n ≤ 63) such that the DNAs coding for a given amino-acid A form a
discrete fiber like structure. One could also assume that one of the integers n(DNA) labeling one
of DNAs coding for A satisfies n(DNA) = n(A) if possible.

As a matter fact, there exists the algebraic-geometric theory for codes based on the identification
of code as a subset of subspace of Gk

p where Gp is finite field [A10]. If the points of this subset are
labeled by some subset of integers m, the inclusion induces the code as a map m → n(m) where
n(m) consists of k Gp valued numbers. This concept of code does not apply to genetic code but
the generalization is obvious: assign to the embedding a bundle structure assigning to each point
n(m) a fiber consisting of points of Gk

p.
[A6] [A5] has proposed identification of codons coding for given amino-acid as an orbit of

a discrete flow in the space of codons. It is possible to interpret DNA space as a bundle with
fibers identified as orbits of the flow acting as a discrete group Zn of symmetries in the fiber.
The embedding of amino-acid space to DNA space in the case of 5-adic code is however not quite
equivalent with this view since four primes labeling amino-acids do not label codons.

2.2 4-Adicity And 5-Adicity As Possible Realizations Of The Symme-
tries Of The Genetic Code

An important physical constraint on any model is the fact that for the mitochondrial code codons
have exact A-C and G-U symmetries with respect to the last codon. For eukaryote code this
symmetry is broken only by two codons (Stop-Trp and Ile-Met pairs). A natural origin for this
symmetry would be the formation of the 3-codons via fusion of 2-codons and 1-codons as suggested
in the model of prebiotic evolution proposed in [?].

One can consider two mathematical models for this symmetry.

1. 4-adic model of Pitkänen [K6] assumes the labeling of the codons using 4-adic numbers
n = n0 + n14 + n316, ni ∈ Z4 such that codons with i = 0, 2 and 1, 3, which are 4-adically
close to each other, correspond to symmetry related pairs. Also the model of Khrennikov
and Kozyrev based on the identification of DNA space as 8 × 8 diadic plane (chess board!)
starts from 4-adicity [A8] and interprets genetic code as a locally constant map from DNA
space to amino-acid space. The number of primes p < 64 is 18 which leads to the idea that
integers n = 0, 1 and the primes p < 64 code for amino-acids. Note however that 4-adicity
as a strict symmetry needs to be assumed only for the third nucleotide.

2. For the 5-adic labeling of the codons suggested Dragovich and Dragovich [A7] codons are
labeled by integers n0+n15+n252 with ni 6= 0 and vary in the range [31, 124]. The observation
that the number of primes in this range is 20 inspires the hypothesis that that the primes
in question label amino-acids. 5-adicity in the weakest sense means 5-adicity with respect
to the third nucleotide so that either the codons (n, n + 50) or codon pairs (n, n + 25) and
(n, n+ 75) code for the same amino-acid in the case of vertebrate mitochondrial code. There
are three primes pairs (p, p1 = p + 50) [(47, 97), (53, 103), (59, 109)] so that n → n + 50
symmetry is not consistent with the labeling of amino-acids by primes. Hence only (n, n+25)
and (n, n+ 75) option meaning that A-C and G-U pairs correspond to pairs of even and odd
integers is acceptable and that the conjugation n3 → 5 − n3 cannot correspond to DNA
conjugation, which was the original motivation for the 5-adicity, but to the A↔C and G↔U
symmetries.

2.3 Number Theoretical Thermodynamics And Genetic Code

The original thermodynamical model for the genetic code developed by Pitkänen [K6] is based
on 4-adic labeling of codons. The model assumes that the number theoretical thermodynamics
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associated with the partitions of integers n labeling codons assigns to a given codon a unique
prime labeling the amino-acid coded by DNA as the prime p for which the number theoretic
negentropy Sp = −

∑
k pklogp(|pk|p)log(p) is maximum: here |x|p denotes p-adic norm. Sp satisfies

basic axioms of Shannon entropy but can be also negative so that its negative becomes a genuine
measure of information [K11, K6]. Stopping codons would correspond to DNAs for which no
prime in the allowed range of primes exists. A possible physical justification could be a breaking
of conformal symmetry so that the states of given conformal weight n =

∑
ni associated with the

states
∏
Lni |n = 0〉 are have different number theoretic “energies” depending only on the number

r of integers ni in the partition.
One can consider two variants of the number theoretical thermodynamics.

1. In the 4-adic case n = 0 and n = 1 amino-acids and codons correspond to DNAs labeled
by same integers and are thus in a special role. The number theoretical thermodynamics
[K6] is able to reproduce the genetic code and its variants by assuming that the integer
valued Boltzmann weights of the thermodynamics are integers in a suitable range tailored by
evolution in order to maximize the number theoretical negentropy. Boltzmann weights are
assumed to be arbitrary integers in some range rather than powers of some prime so that
genuine p-adic thermodynamics for some prime is not in question.

2. The 5-adic thermodynamics is favored by the fact that there are no special amino-acids now
(n = 0 and n = 1). Preliminary calculations suggests that the 5-adic thermodynamics can
be reduced to that for the 2-codons defined by the first two nucleotides labeled by integers
n2) = n0+n15, ni 6= 0 belonging to the range [6, ..., 24]. The integer valued Hamiltonian h(P )

for the thermodynamics of partitions P of n2) and defining Boltzmann weights 5h(P ) would
depend only on the number r of summands in the partition P of n as n =

∑r
k=1 nk. The

dependence of the coded amino-acid on the third letter of the codon would be coded by the
integer valued inverse of the 5-adic temperature T5 = 1/n. A-C and G-U symmetries would
correspond to the symmetry T5(r, k) = T5(r, 5 − k) and the breaking of these symmetries
would be due to the variation of temperature. The temporal variation of T5 would explain
the fact that for some variants of code same codon can code for either an amino-acid or
stopping sign [K6], [I1].

2.4 Group Theoretic Interpretation Of The Divisor Code

The basic question is why the product decompositions of integer n characterizing one of the DNAs
coding for a given amino-acid labeled by prime would determine the number of DNAs coding for
the amino-acid. The original suggestion was that explanation is group theoretical. The fundamen-
tal role of discrete subgroups of rotation group in quantum TGD [K17, K8] suggests that finite
subgroups H ⊂ G of G ⊂ SU(2) are involved with the code. Finite symmetry groups are indeed
naturally associated with codes and the first observation is that product decompositions of inte-
ger n correspond naturally to the decompositions of an Abelian group G order n to products of
subgroups with orders r and s, n = r × s.

The hypothesis is that integer n characterizing the amino-acid corresponds to the order of G
and that the factor pairs (r, s) of n = rs correspond to its subgroups Hr ×Hs ⊂ G. The codons
coding for amino-acid characterized by n would correspond to a normal sub-groups of G in general
case and to any subgroup in the Abelian case. The simplest identification of G is as the cyclic
group Zn. That the product decompositions (r, s) and (s, r), r×s = n must be counted as separate
can be understood if a wave function invariant under Zr = Zn/Zs characterizes the codon labeled
by (r, s). Zn would naturally act as a symmetry group in the discrete fiber of the fiber bundle
defined by the DNA space and defining a discrete flow in the fiber. The p-adic prime p assigned to
the amino-acid could in turn characterize the p-adicity of corresponding space-time sheet [K13].

The physical interpretation suggested by TGD and to be discussed later is that the wave
functions of (say) free electron pairs (possibly Cooper pairs) defined in the set of points defined by
the orbit of Zn ⊂ Ga are invariant under the subgroup of Zr = Zn/Zs ⊂ Zn for DNA labeled by
(r, s), r× s = n. Thus the codons coding for an amino-acid having Zn as a symmetry group would
be characterized by wave functions for free electron pairs transforming under representations of
Zn and remaining invariant under Zr ⊂ Zn and thus reducing to representations of Zs. Note that
r = 1 corresponds to all irreps of Zn and r = n to singlets under Zn.
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2.5 Divisor Code

The idea of divisor code discussed in [A9] is inspired by the following observations.

1. Consider the number N(n) of integer divisors for integers n in the range [1, 21] corresponding
to amino-acids with stopping sign counted as amino-acid.

2. Denote the number of integers n ≤ 21 for which the number of divisors is k by B(k). Also
stopping sign is counted as an amino-acid and n = 0 corresponds to amino-acid also. This
number N(k) varies in the range [1, 6]. B(k) has the values (1, 8, 2, 5, 1, 3) where k runs from
1 to 6.

3. Denote by A(k) the number of amino-acids coded by k DNA codons. A(k) has the values
2, 9, 2, 5, 0, 3.

The spectrum of A(k) is very similar to that of B(k) and this raises the question whether one
could understand genetic code as a divisor code in the sense that the degeneracy of amino-acid
would be dictated by the number of the integers 1 ≤ n ≤ 21 coding it. One might also ask whether
the amino-acids which are abundant and thus important are coded by integers with a large number
of divisors. Also one can ask whether the divisor structure possibly correlates with the structure
of the amino-acid.

Divisor code in this form would be only approximate and one can wonder could try to imagine
some simple symmetry breaking mechanism. In this respect the crucial observations might be
following.

1. The number of DNAs needed to realize divisor code would be 70 instead of 64. One must
drop 6 codons and by choosing them suitably one might hope of getting correct degeneracies.

2. The most natural manner to break the symmetry is to drop the 4 codons from the codons
coding for 5-plet which would thus become 1-plet. 5-plet corresponds to integer n = 16 and
its product compositions (16, 1), (1, 16), (2, 8), (8, 2), (4, 4) correspond to the DNAs coding
for it. (4, 4) would naturally correspond to singlet.

3. By dropping 2 codons from some 4-plet one obtains 2-plet and correct degeneracies. One can-
didate for 4-plet corresponds to n = 8 and its product decompositions (1, 8), (8, 1), (2, 4), (4, 2).
By dropping two of these one obtains correct degeneracies. It might that power of 2 property
of n = 8 and n = 16 somehow relates to 2-adicity and to the special role of these amino-acids.

4. A possible interpretation is in terms of symmetry based on cyclic group Z(n) serving as
a symmetry of DNA codons coding for amino-acid labeled n. Zn allows decompositions
Zn = Zn1

× Zn2
, n = n1 × n2 and if the representations are invariant under Zn2

and thus
reduce to those of Zn1

codons coding for a given amino-acid correspond to the product
decompositions. Symmetry breaking would be due to the lacking 6 codons and would mean
that only Z4 invariant states would be realized for Z16 and Z1 and Z8 of Z2 and Z4 invariant
states are realized for n = 8. n = 4 could correspond to triplet of stopping codons so that
powers of 2 would be in special role for vertebrate code suggesting 4-adicity. 4-adicity is also
suggests by the almost exact A-G and T-C symmetries of the last nucleotide.

2.6 Topological Interpretation Of The Divisor Code In TGD Framework

The most concrete physical interpretation of the divisor code found in TGD framework is topolog-
ical and based on TGD inspired vision about the role of dark matter in biology.

1. The generalized 8-D embedding space has a book like structure with pages glued together
along back which is 4-D surface of H = M4 × CP2 [K8, K15]. Particles at different pages
are dark relative to each other since they cannot have local interactions (appear in the same
vertex of Feynman diagram). The pages are partially characterized by the value of Planck
constant which can be arbitrary large. This explains the macroscopic quantum coherence of
living matter. Matter can leak between different pages meaning a phase transition changing
Planck constant.
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2. The notion of magnetic body with flux tubes carrying dark matter and connecting different
bio-molecules central for the TGD inspired model of living matter [K1]. Magnetic bodies of
bio-molecules can be also connected by magnetic flux tubes, even those in different pages of
the book. For instance, the phase transition reducing ~ reduces the distance between two
bio-molecules connected in this manner and forces them near to each other. This explains
the extreme selectivity of bio-catalysis and the miraculous ability of two bio-molecules to find
each other in the dense soup of bio-molecules. In particular, DNA and its conjugate codons,
mRNA codons, and tRNA would be connected by this kind of flux tubes. Also amino-acids
would be connected to tRNA codons in this manner since tRNA molecules catch the amino-
acids and bring them to the mRNA-amino-acid translation site. Genetic code could reduce
to the selection rules for the flux tube connections connecting in general situation magnetic
bodies belonging to different pages of the book.

3. The pages of book are almost copies of M4 × CP2. This means that M4 is replaced with
na-fold singular covering and CP2 with nb-fold singular covering. The coverings have cyclic
groups Zna

and Znb
act as discrete symmetries for the wave functions of particles in the

covering. A given page is thus labeled by two pager numbers (na, nb). Two pages contain
common points and thus a direct tunnelling of 3-surfaces between these pages is possible only
if the number na1 of the sheets of covering divides na2 or vice versa. Same holds true for
nb1 and nb2 . This rule is just the basic rule about how symmetries of system can change in
phase transition. This number theoretic rule could be behind genetic code and the extreme
selectivity of bio-catalysis.

4. Suppose that both bio-molecules correspond to ordinary matter with na = nb = 1 but that
the magnetic body of a given amino-acid corresponds to (na(A), nb(A)) and DNA, RNA, and
tRNA codon to (ra(DNA), rb(DNA)). Since the flux tube from tRNA codon to the amino-
acid page is essential for the process in which amino-acid is attached to tRNA, only tRNA
for with ra(tRNA) divides na(A) can catch an amino-acid labeled by na. Same applies to rb
and nb.

5. Without the presence of the integer nb the code would fail since DNA codon labeled by
ra would code for all amino-acids for which na has ra as a factor. nb can indeed save the
situation. Suppose that one has rb(tRNA) = nb(A) if DNA codes for an amino-acid. Assume
also that nb(a) is prime: nb(A) = pb(A), and different for each amino-acid. This prime does
not correspond to p-adic prime, which is expected to be very large in the length scales of
atomic physics (electron corresponds to M127 = 2127 − 1). Note that the assumption that
amino-acids are labeled by small primes was made in both TGD inspired number theoretical
models of the genetic code.

6. The assumptions mean that tRNA and amino-acid can be connected by a magnetic flux tube
only if one has

pb(tRNA) = pb(A)

and ra(tRNA) divides na(A). If the pages numbers na vary in the range [1, 21] the divisor
code follows from the argument of the previous section. Taking the previous argument
seriously, one should also understand why there is no amino-acid labeled by na = 4 and why
corresponding DNAs correspond to prime characterizing na = 4, why the number of DNA
codons labeled by the factors of na = 8 is two, and why the number of codons associated
with na = 16 only one.

Some further comments are in order.

1. The realization of the genetic code is not unique since the integers ra and na could be
replaced with Nna, where N is a product of primes larger than p = 19. It is also enough
that the integers characterizing amino-acids are relative primes (have not common factors).
The simplest assumption would be that the primes p(A) satisfy p(A) > 19 so that p(A) does
not divide n(A) for any A. If p(A) is as small as possible the value spectrum of p(A) is
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Figure 1: Illustration of the book-like structure of the generalized embedding space.

Figure 2: Illustration of the selection rules for magnetic flux tubes connecting magnetic bodies
of tRNA and amino-acid.

{23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109} .

If one assumes that the two additional amino-acids coded in some cases by non-vertebrate
genetic code correspond to primes also the primes 113, 127 are included.

What is interesting is that Mersenne prime M7 = 27 − 1 = 127 appears in the model of
genetic code based on the notion of Combinatorial Hierarchy [K9]. This model assumes that
DNA codons correspond to 64 integers in the range 1, ..., 127. This realization of the genetic
code cannot however be consistent with the divisor code realized in the proposed manner
since it would require that the integers n(A)p(A) belong to the range 1, .., 127. The prime
factors of these integers can however belong to this range.

2. The model in principle allows an infinite number of analogous codes and an interesting
question is whether the bio-catalysis involves this kind of codes. The quantum antenna model
for remote replication discussed in [K10] allows a dynamical interpretation for the flux tube
realization of the genetic code as a divisor code in terms of quantum antenna hypothesis [K14],
and predicts that sequences of DNA codons serve as names for polar molecules quite generally
so that genetic code would define a universal language in living matter. This leads to an
identification of the basic mechanism responsible for the functioning and evolution of the
immune system.
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3. The quantum states of dark baryons realize vertebrate genetic code with very general assump-
tions group theoretically [L1, K10, K16], [L1]. Since dark matter is involved in both cases,
one might wonder whether these codes could be related somehow. A one-one correspondence
between the quantum states of dark nucleons representing codon and the integers ra, pb is re-
quired in order to have this connection. The simplest possibility is that energy minimization
implies that given dark nucleon resides with high probability at flux tube labeled by unique
value of ra. Same applies to amino-acids.

The number theoretical model discussed in this chapter emerged before the topological expla-
nation of the divisor code. Hence the model becomes somewhat obsolete. In particular, it involves
un-necessarily strong assumptions. p-Adic thermodynamics might be used to understand the pos-
sible equivalence of the divisor code and the dark baryon code discussed in [K16] but this problem
will not be discussed here.

2.7 Is The Fusion Of Geometric, Thermodynamical, And Divisor Code
Approaches Possible In The 5-Adic Case?

A very attractive general idea is that genetic code could be understood in two dual ways: as an
assignment n→ p(n) and as an assignment p→ n(p).

1. Genetic code could be understood in terms of a 5-adic thermodynamics for the partitions of
integers characterizing codons. Here 6 ≤ n2) = n0 + n15 ≤ 24, nk 6= 0, labels the 2-codons
formed by the first two letters of the codon. This approach would predict the assignment
n→ p(n) once the number theoretic thermodynamics is specified.

2. Genetic code could be understood as a geometric embedding p → n(p) of amino-acid space
labeled by 20 primes 31 ≤ p < 124 to DNA space such that one has n(p) = p if possible. This
cannot the case for 4 primes (p = 53, 79, 101, 103). Also the interpretation as an induction of
number theoretical bundle structure over amino-acid base space from DNA space is possible.
n(p) = p constraint obviously poses strong constraints on the model but it turns out that it
is possible to satisfy these constraints for other than exceptional primes.

3. Also the basic idea of the divisor code could be included to the model via the condition that
the number of divisors of the integer n2) for one of the DNAs coding for a given amino-acid
equals to the number of DNAs coding for the amino-acid. There would be thus two labelings
of amino-acids so that the model would become highly predictive.

The natural starting point is the vertebrate mitochondrial code with full A ↔ C and G ↔ U
symmetries and one could interpret the breaking of these symmetries in the case of eukaryote code
in terms of the context sensitivity characterized by the number theoretic temperature T5. The large
number of constraints raises the hope that a rather unique code could result. It will be found that
for the number theoretic Hamiltonian depending only on the number partitions r of the integer
n2) characterizing the first two letters of the 5-adic codon, only 4 solutions to the conditions can
be found in the set of N ∼ 1030 candidates for h(r).

3 5-Adicity Or 4-Adicity?

It seems that 5-adic representation of A − C and T − G symmetries allows the unification of the
geometric view about genetic code with the number theoretic thermodynamics view and the idea
of the divisor code.

3.1 The Problems Of The 4-Adic Model Of The Divisor Code

The 4-adic model for the divisor code has some problems.

1. 4-adic model is not consistent with the assumption that the set of DNAs coding for given
amino-acid contains both the integer characterizing the degeneracy of the amino-acid as a
number of its divisors and the codon labeled by the prime labeling the amino-acid. Hence
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the geometric realization must be given up unless one assumes that the primes associated
with amino-acids associated with columns not containing primes are mapped to the integers
in the columns by embedding map. Even this option fails.

2. It is not easy to understand the emergence of singlets without assuming breaking of the
number theoretical symmetries.

3. The proposed TGD inspired topological interpretation of the divisor code is not consistent
with the presence of n = 0 codons. Also n = 1 codons are problematic.

4. There is no obvious connection with the maximization of the number theoretic negentropy
assigning primes to amino-acids. 5-adic thermodynamics can do this and one could have
dual descriptions. Geometric description in terms of embedding of amino-acid space to DNA
space (assigning DNAs to amino-acids) and thermodynamics description in terms of 5-adic
thermodynamics assigning amino-acids to DNAs.

3.2 5-Adic Model Works For Thermodynamics Based On Partitions

5-adic variant of the model can overcome the problems of the 4-adic model.

3.2.1 Basic assumptions

1. Stopping codons do not correspond to formal amino-acids. The natural hypothesis is that
the stopping codons do not possess negentropy maximizing prime in the range considered.

2. The question is whether conjugation k → 5−k for the last nucleotide corresponds 1) to DNA
conjugation as in [A7] or 2) to a symmetry of the last codon. The näıve guess would be 1).
The guess turns out to be wrong since it implies that 3 4-plets contain symmetry related
primes so that the number of amino-acids would be reduced by 3 due to the n → n + 50
symmetry of the last nucleotide. On the other hand, k → 5−k as a representation of A↔ C
and G↔ U symmetries takes odd integers to even integers so that there are no problems.

3. DNA codons correspond to 5-adic integers in the range [31, 124] having no vanishing 5-
digits. Amino-acids are labeled by the 20 primes in the same range. They are mapped
to DNA triplets. For 16 primes this embedding is just the identification n(p) = p. The 4
“outsider” primes 53, 79, 101, 103, which have a vanishing 5-digit, have necessarily n(p) 6= p.
The first guess is that the outsider primes 53, 79, 101, 103 correspond to amino-acids that are
somehow special. It turns out that a possible identification for the amino-acids is as Trp,
Lys, Met, Gln but that Lys, Gln pair can be replaced by any pair in the set {Gln, Lys,Glu}.
One could also argue that the amino-acids corresponding to 53 and 103 = 53 + 50 should
be related by some kind of symmetry. Trp and Met indeed have the comment feature that
a codon coding for them can also act as stopping codon. On the other hand, also Lys, Gln,
and Glu share the property of being polar amino-acids.

3.2.2 Further constraints

The observation that there are two 4-columns containing no primes when combined with some
facts about the genetic code and its variants give strong constraints on the code.

1. One of the prime-free columns must correspond to shared Ser-Arg column which transforms
to Ser-Stop column for mitochondrial code. Otherwise one prime coding for an amino-acid
would be lost.

2. In the case of the yeast mitochondria Thr is coded 8 times and Leu only twice. This forces
the conclusion that second prime-free 4-column corresponds to Leu.

3. Since Leu must be coded by prime, Leu-Phe 4-column must correspond to the second 4-
plet containing two primes. Hence the two 4-columns containing 2 primes give rise to three
doublets. 6 additional doublets for eukaryote code and 9 additional doublets for mitochondrial
code must be identified.



3.2 5-Adic Model Works For Thermodynamics Based On Partitions 12

4. Thr 4-plet should contain n possessing 8 divisors. Only 3 4-columns contain n = 8 and
correspond to 321, 131, and 231 columns.

3.2.3 Detailed identification of the code

Consider now a more detailed identification of the code.

1. Mitochondrial code is obtained as follows. 4 outsider primes which do not label DNAs directly
are imbedded into 4-columns containing single prime. This gives 8 doublets altogether.
Stopping codons in the 4-column containing Tyr and corresponding prime give one additional
doublet so that a correct number of doublets result.

2. The breaking of the mitochondrial code to eukaryote code is easy to understand in the
proposed framework. Trp and Met become singlets and Ile becomes triplet so that 9 doublets
result.

3. Outsider primes would in this model correspond to Gln, Lys, Trp, Met. Gln and Lys could be
replaced with any pair in the set {Gln, Lys, Glu} for the simple reason that corresponding
amino-acid doublets cannot be distinguished from each other number theoretically. The
identifications of the integers associated with amino-acids coded by 4 entire 4-column (Val,
Ala, Pro, Gly) are unique apart from 4! = 24 permutations of these amino-acids. It should
be noticed that Lys, Gln, Glu belong to the group of 11 polar amino-acids and Met and Trp
belong to the group of 8 hydrophobic amino-acids.

4. The multiplet containing Met is unique since there is only single codon (n = 112 = 121) for
which the number of divisors is 3.

5. One can say that Ile and Met compete: either Ile3-Met results when Ile wins. Ile2-Met2

results when Met wins. One can argue that Trp as outsider prime can also correspond to
singlet or that Stop can “eat” any any prime and reduce the degeneracy. 5-adicity is broken
for the first two nucleotides, which is not surprising.

These number theoretic constraints do not allow a unique identification of the code but pose
considerable restrictions. Table 1 represents one example consistent with these conditions. Note
that the table does not fix how the primes 53, 79, 101, and 103 are assigned to Trp, Lys, Met, and
Gln. Trp and Met are indeed special since they can be replaced by stopping codon some variants
of the code.

It will be found that under rather general conditions (roughly 1030 candidates for the Hamil-
tonian h(r) characterizing the thermodynamics of partitions) there are only 4 choices of h(r)
reproducing the eukaryote code, vertebrate mitochondrial code as well as other variations of the
code. If one requires that the polar amino-acids Lys and Gln (or any pair in the set {Gln, Lys,
Glu} ) correspond to the conjugation related primes 53 and 103 only single solution for h(r) is
found. The 5-adic thermodynamics based on spin-spin interaction fails as do also other simple
models.
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(114,106,4,UG) (214,107,2,GU) (314,108,GC) (414,109,2,GA)
(113,81) Trp (21,82,4) Val (313,83,2, Ala) (413,84, Glu)
(112,56,4,Cys) (212,57,4) (312,58) (412,59,2,Asp)
(111,31,2) (211,32) (311,33,4) (411,34,4)

(124,111,4,GG) (224,112,UA) (324,113,2,AC) (424,114,6,CG)
(123,86,4,Gly) (223,87,4,Stop) (323,88,8,Thr) (423,89,2,Arg)
(122,61,2) (222,62,4,Tyr) (322,63,4) (422,64)
(121,36) (221,37,2) (321,38,4) (421,39,4)

(134,116,6,CC) (234,117,6,UC) (334,118,4,AA ) (434,119,4,AG)
(133,91,4,Pro) (233,92,6,Ser) (333,93,4,Lys) (433,94,4,Arg)
(132,66,8) (232,67,2) (332,68,6,Asn) (432,69,4,Ser)
(131,41,2) (231,42,8) (331,43,2) (431,44,6)

(144,121,3,AU) (244,122,4,UU) (344,123,4,CA) (444,124,6,CU)
(143,96,Met) (243,97,2,Leu) (343,98,6,Gln) (443,99,6,Leu)
(142,71,2,Ile) (242,72,Phe) (342,73,2,His) (442,74,4)
(141,46,4) (241,47,2) (341,48) (441,49,3)

Table 1: An example of a code obeying approximate 5-adic symmetry k ↔ 5− k with respect to
the last codon. Given are the integers associated with the codons of given 4-column in 5-adic and
decimal notion, the number of divisors appearing if it belongs to the range of allowed values, and
the 2-codon associated with the 4-column. Note that 5-adic symmetry for the first two nucleotides
is broken.

4 5-Adic Thermodynamical Model For The Genetic Code

The challenge is to guess the number theoretic Hamiltonian characterizing the thermodynamical
model and the dependence of the 5-adic temperature T5 on third nucleotide describing the splitting
of 4-plets to doublets and further splitting of the doublets in the case of eukaryote code. There are
two options concerning the choice of the Hamiltonian.

1. The Hamiltonian depends only on the number r of integers in the partition n2) =
∑
nk of

6 ≤ n ≤ 24 of integer n2) = n0 + n15 characterizing the first two nucleotides of the codon.
Hamiltonian is tailored by evolution to reproduce the genetic code and its variants.

2. Hamiltonian is a direct analog of spin spin interaction J
∑
nknl with nk interpreted as spin

associated with nk Cooper pairs.

4.1 The Simplest Model For The 5-Adic Temperature

The simplest model for 5-adic temperature applies irrespective of the number theoretic Hamiltonian
h and relies on the assumption inspired by the comparison of the mitochondrial and eukaryote code
tables.

1. T5(n3) = T5 hold true for common 4-plets, 4-plet parts of 6-plets, and 6-plets of the mito-
chondrial and eukaryote codes.

2. T5(n3) = T5(5−n3) holds true for common 2-plets (A-C and T-G symmetries with respect to
the third nucleotide) of eukaryote and mitochondrial code and for all 2-plets of mitochondrial
code.

3. For eukaryote code this symmetry of 5-adic temperature would fail for Ile3-Met, Cys2-Stop-
Trp and only for the second pair of values of n3 corresponding to Met-Met→ Ile-Met and
Trp-Trp → Ttop-Trp [n3, 5− n3) = (2, 3)]. Ser-Stop-Ser-Stop to Ser-Arg-Ser-Arg transition
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would in turn be induced by the change of 5-adic temperature. Stop would correspond to a
5-adic temperature for which no prime coding amino-acid divides the partition function.

The condition that the model reproduces correctly the n→ p(n) correspondence to be discussed
later in principle allows to fix number theoretic Hamilton and T5(n3) to a high degree.

4.2 The Simplest Possible Model For Thermodynamics

Before dwelling into complex calculations it is useful to ask what could be the simplest model for
the 5-adic thermodynamics.

1. Calculational simplicity would suggest that the partition function must be as small as possible
and thus satisfy Z(n) < 125. This restriction also maximizes the probability that the prime
divisors are in the range 31 ≤ p ≤ 113 with stopping codons involving only divisors p < 31.
This together with the 5-adicity at the level of partition function would suggest that the
definition of Z(n) should involve 5-adic cutoff in the form Z(n) → Z(n) mod 53. The
natural constraint on the values h of the number theoretical Hamiltonian would thus be
h ∈ {0, 1, 2} ∈ Z3. Modulo three arithmetics fits also nicely with the triplet structure of
codons.

2. In this model the effect of changing 5-adic temperature form T5 = 1 to T5 = 1/n, n = 1, 2
would be expressed as h(r) → n × h(r). Only two possible 5-adic temperatures would
be possible and the symmetries of the vertebrate mitochondrial code would be predicted
automatically. The symmetry breaking down to eukaryote code could be described in terms
of 5-adic temperature if one allows formally infinite temperature for which one would have
effectively h(r)→ h(r) = 0 so that partition function equivalent with Z = 1 would result and
the codon in question would code for stopping sign. This is indeed the case for the codon
coding originally Trp. For the breaking of Ile-Met doublet the splitting to triplet and singlet
can be also understood as the dependence of T5 on codon in symmetry breaking manner.

3. The simplest possible model would correspond to Z(n) = p(n) =
∑
pk5k so that pk would

have interpretation as degeneracies of states modulo 5: this would imply that the doublets
would correspond to primes related by exchange of p1 and p2, which does not make sense.
Hence the integers pk cannot directly correspond to the degeneracies of states with different
energies and the partition function must be obtained via Z → Z mod 125 prescription from
a more complex partition function having values Z > 125. The three digits pk for 5-adic
code and Z3 valuedness of h(r) might relate naturally to 3-letter structure of codons.For
n = p(n) one would simply have Z(n) = n = p(n). For the four exceptional amino-acid
primes p = 53, 79, 101, 103 this would not hold true. The most general model would allow
small integer k ≤ 4 as an additional factor of Z(n) ≤ 124.

Unfortunately, this simple model does not allow any obvious number theoretical realization.
In particular, the models based thermodynamics of partitions and on spin-spin interaction fail
with Z3 valued h(r) and Z125 valued Z(n). The simplicity and explanatory power of the model
encourage however to keep mind open for the existence of this kind of model.

4.3 Number Theoretic Hamilton Depending On The Number OfParti-
tions Of Integer Characterizing DNA

The number theoretic model for the genetic code discussed in [K6] was based on the assumption
that the number theoretic Hamiltonian depends only on the number of summands in the partition
n =

∑
k nk.

Generalizing to the recent context, the Hamiltonian h(r) for the 5-adic thermodynamics should
depend only on the number r of summands in the partition n2) =

∑r
k=1 nk. The deviations from

the standard code would be explained in terms of the variation 5-adic temperature which has values
T = 1/n, n positive integer, implying Boltzmann weights 5h(r)/T5 . The fact that same codon does
not always code same amino-acid [?] , [I1], could be understood in terms of temporal variation of
5-adic temperature. A possible interpretation is in terms of a breaking of conformal invariance
characterized completely the number r of subsets in the partition.
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A further assumption motivated by 5-adicity is the replacement X ≡ h(r)/T5 in Boltzmann
weight with X mod N , where N characterizes the highest power of 5 appearing in partition func-
tion. N = 3 would be the minimal option but it turns that only N = 25 works. It will be assumed
that evolution has gradually tailored h(r) so that the observed genetic code maximizes for a given
DNA the p-adic information measure defined by the prime p(DNA) coding the corresponding
amino-acid in practice this means that partition function is divisible by a power of p(DNA).

The interpretation in terms of the number of sub-condensates of Cooper pairs containing nk
spin 1 Cooper pairs is an alternative interpretation and would look attractive physically but in
this case the Hamilton depending on the number r of partitions only does no look natural. The
number theoretic Hamiltonian would depend on the number r of bound states only if the interaction
energy E(nk, nl) between two sub-condensates with nk and nl Cooper pairs is a constant integer
E(nk, nl) = E, so that the interaction energy between sub-condensates would behave as r(r −
1)E mod N . This could give rise to a rather random looking behavior of h(r) as a function of r.
The modulo arithmetic constraint would restrict considerably the number of choices of h(r). This
model does not reproduce realistic genetic code.

4.3.1 Formula for the partition function

The formula for the partition function is given as

Z =
∑
r

d(n, r)5H(r) ,

H(r) =
h(r)

T5
mod 25 . (4.1)

T5 = 1/n varies in the range n ∈ [1, 24].
The partition numbers appearing in are conveniently calculated by using the recurrence relation

[A2]

d(n, r) = P (n, r) = P (n− 1, r − 1) + P (n− r, r) , P (n, 1) = 1 .

(4.2)

4.3.2 The structure of the calculation

The flow of calculation proceeds along the rows of the code table as given in Table ?? coding for
the constraints coming from the assumption that the number of divisors for of the integers labeling
DNAs is same as the degeneracy of corresponding amino-acid and from the consistency with the
geometric model of the code.

1. It is assumed 0 ≤ h(r) ≤ hmax = 2 for r > 1. h(1) = 0 can be assumed without a loss
of generality if one assumes that r = 1 (trivial partition) corresponds to the most probable
minimum energy partition in the sense of 5-adic thermodynamics. This implies that 323

candidates for h(r) must be scanned. All possible 4! = 24 assignments of Trp, Lys, Met, Gln
with the primes p = 53, 101, 79, 103 which do not label codons are considered.

2. At the first step those guesses for h(r), r ≤ 6, for which the DNA-Cys correspondence with
p(Cys) = 31 is reproduced and stored.

3. At the next step calculation branches to four separate calculations corresponding to the four
possible values of p(Trp) ∈ {53, 101, 79, 103}. 5-adic temperature T5 is varied and it is found
whether the p(Trp) can be reproduced for some value of T5 ∈ {1, 2, ..., 24}. If this is not
possible, the candidate for h(r), r ≤ 6 is rejected. After this the calculation proceeds for
given p(Trp) assignment through next values of h(r) to r = 18 where one checks whether
p(Asn) = 43 can be reproduced. In the transitions to new row corresponding to r = 10, 11
and r = 15, 16 two values of of 0 ≤ h(r) ≤ 2 appear and bring in additional degrees of
freedom. In Glu − Asp column at the end of the first row T5 is varied to see whether also
p(Asp) = 59 can be reproduced.
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(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
tlmg tglm tmgl tlgm tgml tmlg
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
ltmg gtlm mtgl ltgm gtml mtlg
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
lmtg mgtl gltm lgtm gmtl mltg
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
lmgt glmt mglt lgmt gmlt mlgt

Table 2: There are 24 different solution types depending on which permutation xyzu of
(Trp, Lys, Met, Gln) corresponds to the exceptional primes (53, 79, 101, 103). For instance,
lmtg means (Lys,Met, Trp,Gln) → (53, 79, 101, 103), and tglm means (Trp,Gln, Lys,Met) →
(53, 79, 101, 103). It is convenient to label the 24 possibilities by pairs of integers (m,n).
m = 1, 2, 3, 4 according to whether Trp, Lys, Met or Gln corresponds to p = 53. The second
integer n = 1, ..., 6 specifies which of the six permutations of remaining three amino-acids corre-
sponds to (79, 101, 103) in a way expressed by the table. For instance, for (m,n) = (1, 1)↔ (tlmg)
codes for (Trp, Lys,Gln,Met)→ (53, 79, 101, 103).

4. After this the calculation for given value of p(Trp) branches to 6 alternatives corresponding
to different assignments of remaining exceptional primes to Lys,Met,Gln. Since Arg-Ser
four-column does not give any conditions the values of h(r) for r = 19, 20, 21 appear as free
parameters. This part of calculation is especially critical since the first 4-columns of the last
row of the table contain only doublets. The last 4-column (Leu) corresponding to r = 24
does not pose any conditions on h(24) unless one requires that also n = 49 gives partition
function for p(Leu) = 97 is the maximizing prime.

4.3.3 Results

The difficulties involved with the numerical computation were considerable since only University
MATLAB was available and for the extensive computations involved its functioning turned out to
be somewhat unreliable and reasons for this could not be identified. 22 solutions to the conditions
expressed in Table 2 has been found from the set of about 1030 candidates, and have been checked
separately to satisfy all the conditions.

The 11 number theoretic Hamiltonians h(r) for r = 1, 2, ...., 23 are given inTable 3 with
conventions expressed in Table ??

One can consider additional symmetry assumptions reducing the number of solutions.

1. One might argue that the “unstable” amino-acids Trp and Met naturally correspond to the
conjugation related primes 53 and 103. The are only 2 solutions (h1 and h2 in Table 3)
corresponding to the assignment (Trp,Met)→ (53, 103) or vice versa (the integer pairs (m,
n) corresponding to txym and mxyt in Table 2 are (1, 2), (1, 4), (4, 3), (4, 6)). These two
solutions differ only for last 5 values of r.

2. One might also argue that the polar amino-acids Lys and Gln (or any pair in the set
{Lys,Gln,Glu}) correspond to the conjugation related primes 53 and 103 (the integer pairs
(m, n) corresponding to lxyg and gxyl in Table 2). There are 3 solutions (h6, h7 and h8
in Table 3) corresponding to the assignment (Lys,Gln)→ (53, 103)orviceversa (the integer
pairs (m, n) corresponding to txym and mxyt in Table 2 are (2, 1), (2, 4), (3, 1), (3, 4)).

That not too many solutions exist to the conditions together with the fact that the model
is consistent with the basic ideas of geometric code and of divisor code and results from 5-adic
thermodynamics, raises the hope that something more than a mere complex parameterization of
the genetic code might be in question. For r = 2 h(r) only the values h(r) ≤ 5 have been scanned
(the reasons were the strange problems that made the continuation of calculations very difficult)
so that a portion 6/25 = 24 per cent of all possible candidates for h(r) are scanned. The number
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m 1 1 1 1 2 3 3 3 3 3 4
n 2 2 5 5 2 1 1 1 2 6 2
r h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11

1 0 0 0 0 0 0 0 0 0 0 0
2 1 1 4 5 3 2 0 0 0 0 0
3 3 3 24 23 11 0 10 10 13 13 13
4 19 19 12 24 2 14 16 16 4 4 4
5 3 3 13 15 9 18 21 21 12 12 12
6 0 0 19 6 5 2 9 9 12 12 12
7 1 1 12 4 14 5 16 16 9 9 9
8 15 15 16 0 10 18 20 20 7 7 7
9 17 17 7 15 9 2 14 14 12 12 12
10 3 3 17 10 15 12 14 14 16 16 16
11 17 17 9 22 3 1 24 24 5 5 5
12 8 8 14 12 18 3 4 4 11 11 11
13 4 4 24 3 17 12 5 5 19 19 19
14 16 16 5 11 19 6 4 4 18 18 18
15 13 13 9 19 3 16 1 1 7 7 7
16 11 11 20 11 20 7 2 2 7 7 7
17 23 23 14 5 17 22 14 14 21 21 21
18 7 7 13 3 4 1 5 5 6 6 6
19 14 16 1 11 8 6 11 14 9 4 4
20 16 14 1 22 22 1 6 12 7 17 23
21 6 19 17 11 19 12 13 15 13 23 22
22 14 0 6 22 2 7 19 5 15 21 16
23 13 12 6 17 7 2 7 12 12 4 15

Table 3: Table represents the 11 solutions found for the Hamiltonian of partition thermodynamics
consistent with the code table represented in Table 1. The integer pair (m, n) given in the first
two rows codes for the correspondence between amino-acids (Trp, Lys, Met, Gln) and exceptional
primes (53, 79, 101, 103) according via the correspondence given in Table 2
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m n β(1) β(4) β(11) β(13) β(14) β(15)

1 2 19 11 6 5 24 21
1 2 19 11 6 5 23 7
1 5 21 5 15 6 4 7
1 5 15 13 10 23 21 13
2 2 10 16 23 15 16 21
3 1 6 17 16 17 3 19
3 1 10 2 23 17 20 11
3 1 10 2 23 4 4 12
3 2 5 6 5 18 18 7
3 6 5 6 5 8 23 16
4 2 11 6 5 24 23 18

Table 4: Inverse 5-adic temperatures β = 1/t5 for doublets of the vertebrate mitochondrial code.
The notational conventions and the ordering of solutions are same as in the previous table.

of solutions found is 11. If the solutions are distributed evenly, the estimate for the total number
solutions is about 45.

The 5-adic temperature is T5 = 1 for all lower doublets in the code table (the two smallest
values of n(DNA) in a given 4-column). The values of 5-adic temperature for the upper vertebrate
mitochondrial doublets are given by Table 4 for some cases. For eukaryote code symmetry breaking
means only a change of 5-adic temperature for the symmetry breaking codon so that it codes for
either Stop as in case of Trp-Cys doublet or for Ile instead of Met. Also the context dependence
observed for some variants of the genetic code [I1] can be understood in terms of a temporary
change of the 5-adic temperature. Note however that the amino-acid coded temporarily does not
belong to the group of standard amino-acids.

For the stopping codon 1/T5 = 2 is the minimum temperature implying that no prime 31 ≤
p ≤ 113 divides the partition function.

4.4 Number Theoretical Hamiltonian Identified As Spin-Spin Interac-
tion

The hypothesis that Hamiltonian depends on the number r of summands in the partition is of
course only a very simple working hypothesis allowing a relatively easy numerical search of the
Hamiltonian (in the original model one had n ≤ 63 so that rather large numbers of partitions had
to be considered). If one takes seriously the idea about sub-condensates of spin 1 Cooper pairs,
one could argue that the interaction energy between blocks of Cooper pairs is spin-spin interaction
proportional to the product of net spins of electrons and is therefore of form E(nk, nl) = Jnknl,
k 6= l. A number theoretical analog of rather spin glass variant of Ising model would be in question.

In this case one would have h = J
∑

k,l nknl =
∑

k nk(n − nk) = n2 −
∑

k n
2
k and thermody-

namically equivalent with h = J
∑

k n
2
k. This Hamiltonian or rather, its modulo N variant (N = 3

in the minimal case), would distinguish between partitions with the same value of r. In the recent
model one has 6 ≤ n2) ≤ 24 so that the numbers of partitions are quite reasonable.

What makes this Hamiltonian so attractive would be its clear physical interpretation and involve
a minimal amount of ad hoc elements.

The simplest working option is that third nucleotide affects only the 5-adic temperature so that
one would have

h(n1, ..., nr) =
J

T5
×

∑
pairs

nknl ,

where one has T5 = 1, 2. This interpretation conforms with the idea about living matter as
spin glass like structure for which interaction strengths for spin-spin interactions are variable



4.4 Number Theoretical Hamiltonian Identified As Spin-Spin Interaction 19

parameters. This would also conform with the general vision about TGD Universe as a four-
dimensional spin glass like structure [L2].

4.4.1 Calculation of the partition function for a model based on spin-spin interaction

The task is to calculate the partition function Z(T (n3)) =
∑

P 5h(n2,P )/T5 . To achieve this one
can generalize the recursion formulas for the numbers d(n, r) of partitions of n to sum of r terms.

1. One can arrange the integers in the partition so that one has always nk ≤ nk+1 and start
the recursive calculation from hr(1, ....1, n− r + 1) = (n− r + 1)(r − 1).

2. This gives rise to general recursion formula given by

hr(n1, ..., nr−1, n− r + 1− k1) = J(n− r + 1− k1)(r − 1 + k1)

+ hr−1(n1, ..., nr−1) . (4.3)

Using this recursion formula one can express the formula for Hamiltonian as

1
J hr(kr + 1, kr−1 + 1− kr, ..., k2 + 1− k3, k1 + 1− k2, n− r + 1− k1)

= (n− r + 1− k1)(r − 1 + k1) + (k1 − r + 2− k2)1)(r − 2 + k2)

+...+ (ks−1 − r + s− ks)1)(r − s+ ks) + ...+ (kr−1 − kr)kr

(4.4)

In this formula h→ h mod 25 operation is not written explicitly.

The expression for the partition function can be written as

Z(n) =
∑
r

Z(n, r)

Z(n, r) =
∑

k1,....,kr

5hr(kr+1,kr−1+1−kr,...,k2+1−k3,k1+1−k2,n−r+1−k1) . (4.5)

The lower and up upper bounds for ks in the summation can be deduced as follows. An upper
bound for k1 obtained from the condition rk1 = n and gives k1 ≤ kmax = [n/r] where [x] denotes
the integer n ≤ x nearest to x. The corresponding upper bound for ks reads as ks ≤ [ks−1/r−s+1].
A lower bound for ks comes from the requirement ns ≥ 1 and gives ks ≤ ks−1.

To avoid problems caused by the fact that the numbers for various loops are dynamical, one
can use recursion to calculate Z(n, r) such that the module in question calculates h(...) by calling
itself repeatedly. What simplifies the calculation dramatically is that it is not necessary to store
the data about the values of Hamiltonian since partition function is all that is needed.

1. At sth level the module first adds to the Hamiltonian of a given branch the contribution from
that level and after that adds the contributions from from (s+ 1)th level.

2. The calculation branches which means a a loop over the values of ks+1. This means that
module calls itself at each step of the loop to calculate the contributions of the next level to
the Hamiltonian at a given branch.

3. The module adds also to Z the contribution from (s + 1)th level is added. The addition is
trivial until the rth level is reached and all contributions to the Hamilton are known.

4. At the last level of tree the situation looks like follows. At given branch of the tree at
(r− 1)th level the module adds in loop-wise manner to Z the contributions from rth level for
that branch. After the return to (r − 2)th branch next branch at (r − 1)th level is selected
and same process is repeated. Etc...

5. In order to avoid overflow problems it is safest to express the terms of the partition function
in pinary series with respect to the p-adic prime 31 ≤ p ≤ 113 considered and perform the
addition of contributions to Z in terms of the pinary series.
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4.4.2 Structure of the calculation

The general structure of the calculation is following.

1. Perform a loop over n labeling the 2-codons and find for each of them the prime p for which
negentropy Sp(n) is minimum and look whether for a suitable choice of T5 the resulting
assignment n→ p(n) is consistent with the geometric model of the code and with the basic
idea of the divisor code.

2. For a given n perform a loop over allowed values of p to see whether anyone of them appears
as a divisor of the partition function and which of them maximizes the number theoretic
negentropy. Unless this occurs the codon in question is identified as a stopping codon. The
proposed geometric model of course fixes the integers n associated with the stopping codon.

3. For given n and p perform a loop over the values of r and sum their contributions to the
partition function Z(n, r) by applying the recursive procedure described in the previous
subsection. In order to avoid overflow problems (possibly appearing in the case of MATLAB),
the calculation must be performed for each value of p separately using pinary expansions for
Z(n, r). If Hamiltonian belongs to Z3, overflow problems are of course avoided automatically.

4. An alternative manner to view the calculation is to take the proposal for the n → p(n)
correspondence represented as a table at the end of previous section as an input and by
a suitable selection of 0 ≤ J(n2)) ≤ 2 try to reproduce it. Note that the correspondence
between primes 53, 79, 101, 103 and amino-acids Trp, Met, Gln, Lys if not fixed by the
model represented in the table.

5. The most practical manner to perform the calculation is to take J = 1 and allow T5 to
run from 1 to 2 for every value of n and look whether the resulting spectrum of primes is
consistent with the proposed n → n(p) correspondence or possible modification of it. At
the roughest level the calculation serves as a test for 5-adicity that is whether the integer
n = n0 + n15 corresponds to prime of form n+ 25 or n+ 75.

4.4.3 Results

The proposed spin-spin interaction model allowing varying value of T5 cannot reproduce the model
summarized by Table 3. The roughest test for the model is whether 5-adic description of A-C
and T-G symmetries works. For mod 25 thermodynamics with n = n0 + n15 determining the
thermodynamics the fails to be consistent with the predictions of the simplest model.

5 A Possible Physical Interpretation Of Various Codes In
TGD Framework

The inspiration for attempts to interpret physically the origin of various codes in TGD framework
(summaries of quantum TGD, TGD inspired theory of consciousness, and TGD inspired view
about quantum biology are given in articles [L4, L3, L2] ) springs from the following ideas.

1. At fundamental level quantum TGD reduces to almost topological quantum field theory at
light-like 3-surfaces of H = M4×CP2 having also interpretation as random light-like orbits of
2-dimensional partons, which can have arbitrarily large sizes. Quantum TGD involves fusion
of real physics and its p-adic variants relying crucially to the assumption that S-matrix
involves only data at intersections of real 2-surfaces and their p-adic counterparts obeying
same algebraic equations consisting of rational pointsandalgebraic points in the algebraic
extension of p-adic numbers characterization physical states in question. These intersections
consist of discrete points giving rise to cognitive representations which should naturally relate
to the genetic code.

2. TGD based view about dark matter as a hierarchy of quantum coherent phases labeled
by symmetry groups Ga × Gb ⊂ SU(2) × SU(2) ⊂ SL(2, C) × SU(3), where SL(2, C) is
Lorentz group and SU(3) corresponds to the gauge group of color interactions. These phases
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are characterized by arbitrarily large values of Planck constants and are assumed to be
responsible for the quantum control in living matter.

3. The generalization of the notion of embedding space H = M4×CP2 based on the geometric
realization of the dark matter hierarchy and involving a hierarchy of discrete sub-groups
Ga ×Gb.

The basic idea is that the maximal cyclic subgroup Zn of Ga could correspond to the group Zn

assigned with amino-acid and corresponding codons in the proposed group theoretic interpretation
of the divisor code. n would give the order of the maximal cyclic subgroup Zn ⊂ Ga acting
as symmetry group of wave functions of free electron pairs and (r, s), rs = n could define a
decomposition of Zn = Zr × Zs with Zr leaving invariant the electronic wave function.

5.1 Generalization Of Embedding Space And Interpretation Of Discrete
Bundle Like Structures

One should understand how the discrete number theoretical structures associated with various
realizations of the genetic code emerge from TGD based physics. TGD suggests a very general
geometric realization of the geometric codes in terms of points in the intersection of p-adic and
real space-time sheets (actually a 2-D “partonic” surfaces having arbitrarily large size) consisting
of algebraic points and of the TGD based generalization of embedding space obtained by gluing
together infinite number of copies of the embedding space having singular bundle structure H =
M4 × CP2 → H/Ga ×Gb, where one has Ga ×Gb ⊂ SU(2)× SU(2) ⊂ SL(2, C)× SU(3).

Ga would manifest itself directly as discrete rotational symmetries of biomolecules basically due
the presence of dark matter having Ga as exact group of rotational symmetries. Hence only Ga

would be interesting in the recent case. In fact, the maximal cyclic subgroup Zn for arbitrary Ga

is in a special physical role and it might be possible to identify the group characterizing amino-acid
and DNA as this group.

The bundle structure H → H/Ga × Gb has singular points corresponding to the points of H
for which Ga × Gb or its subgroup acts as an isotropy group leaving the point invariant. Quite
generally, the singular points, in particular those for which Ga acts as isotropies, are involved with
the phase transitions changing Planck constant and interpreted as a leakage of 3-surfaces between
sectors of H labeled by different groups Ga ×Gb.

The interpretation of Gr characterizing DNA as an isotropy of singular point of bundle structure
does not seem however natural. Rather, the wave functions of (say) free electron pairs (possibly
Cooper pairs) defined in the set of points defined by the orbit of Zn ⊂ Ga could be invariant
under some subgroup of Zr ⊂ Zn for DNA labeled by (r, s), r × s = n. Thus codons coding for
an amino-acid having Zn as a symmetry group would be characterized by wave functions for free
electron pairs transforming under representations of Zn and remaining invariant under Zr ⊂ Zn

and thus reducing to representations of Zs = Zn/Zr. Note that r = 1 corresponds to all irreps of
Zn and r = n to singlets under Zn.

5.2 A Possible Interpretation For The Divisor Code

Consider now a model for what might happen in the coding of amino-acid by DNA.

1. Suppose that the maximal cyclic subgroup Zn ⊂ Ga acts as symmetries of “dark” space-time
sheets and wave functions of “dark” free electron pairs for the amino-acid and corresponding
DNAs so that the 2-surfaces in question are n-fold coverings of CP2 points by M4 points
(corresponding to positions of say 5 molecules in a cyclic molecule) and corresponding codons.
Free electron pairs could correspond to the dark matter in question.

2. Suppose that DNA characterized by n and its particular divisor r has electronic wave
functions invariant under Zr and thus forming irreducible representations of Zs = Zn/Zr,
n = r × s. The electronic wave functions assignable to the amino-acid would in general
transform according to some irreducible representations of Zn =

∏
i Zpi

, n =
∏

i pi, where
same prime pi can appear several times. This assumption would explain why the product
decompositions (r, s) and (s, r) are not equivalent.
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5.3 About The Geometric Interpretation For The Thermodynamics Of
Partitions Of N2)

Suppose that the maximization of the information content for the thermodynamics for the parti-
tions of the integer n2 = n mod 52 belonging to the range [6, 24] and labeling 2-codons provides
a dual manner to understand the genetic code. n → n mod 25 would have an interpretation
in terms of reduction to a subset of the finite finite field G(5, 2) and would be natural in 5-adic
context.

One could try to interpret the modulo arithmetics in terms of the generalized notion of embed-
ding space.

1. One could label the points of M4 covering of CP2 by integers 0 ≤ m ≤ n. The sheets points
m and m+ k25 should be equivalent from the point of view of mitochondrial genetic code so
that Z25 equivalence classes would give rise to n2) points.

2. A more concrete interpretation would be that first nucleotide along gives rise to n0-fold
covering, second nucleotide adds 5n1 sheets so that n2) = n0 + 5n1-fold covering results, and
third nucleotide adds n352 sheets so that to n = n2)+n3×52-fold covering results. The sheets
contributed by the third nucleotide would not participate in the partition thermodynamics
and the third nucleotide would only determine the 5-adic temperature T5 = 1/n.

5.4 About The Physical Interpretation For The Thermodynamics Of
Partitions Of N2)

The 5-adic thermodynamics relies on the partitions of n2 = n mod 52. n2 could have interpreta-
tion both as a net conformal weight or spin associated with spin one electronic Cooper pairs.

1. Modulo 52 property could be due to the invariance of electronic wave functions under Z25

acting as rotations. There would be 25-periodicity of physics in the covering, the analog of a
lattice structure in angle degree of freedom with sub-lattices forming dynamical units. Also
quantum group with quantum phase q = exp(iπ/25) implies the analog of lattice structure
in angle degrees of freedom.

2. Each equivalence class analogous to a sub-lattice with points having distance of 25 units
would effectively carry one unit conformal weight or one unit of spin (L0 and iL0 act as
infinitesimal scaling and rotation respectively). At the concrete physical level the following
alternative interpretations suggest themselves.

5.4.1 The interpretation in terms of conformal symmetry

The partitions of the integer n2) = n0 + n15, ni 6= 0 could have interpretation as partitions of the
set of equivalence classes to a union of subsets with the number nk of elements in the subset giving
the total conformal weight created by Lnk

rather than Lk
1 . These partitions could be interpreted as

partitions of a molecular Z25 equivalence classes of building blocks of the molecular structure with
Zn rotational symmetry to subsets of basic building blocks and Virasoro generators Lnk

would
act on various building blocks. A formation of bound states each binding single particle states
associated with nk sheets and created by L1 suggests itself. The reduction of Virasoro algebra
defined in Z to a Virasoro algebra defined in the finite field G(5, 2) or in the ring Z25 is natural in
this framework.

5.4.2 Interpretation in terms of irreducible representations of symmetric group and
braids

Partitions label the conjugacy classes of symmetric group Sn consisting of the permutations of n
objects. The summand nk corresponds to a cyclic permutation of nk objects. Partitions label also
the irreducible representations of Sn. Sn can be defined by generators em representing permutation
of mth and (m+ 1)th object satisfying the conditions



5.4 About The Physical Interpretation For The Thermodynamics Of Partitions Of
N2) 23

emem = enem for |m− n| > 1,

enen+1en = enen+1enen+1 for n = 1, ..., n− 2 ,

e2n = 1 . (5.1)

By dropping the condition e2n = 1 one obtains the defining relations of the braid group Bn of braid
consisting of n strands. The irreducible representations of Bn are projective representations of Sn

and give as a special case the representations of Sn.

1. Could the dynamics for partitions of n correspond to the dynamics for irreducible represen-
tations of Sn?

Sn brings in mind braids and topological quantum computation and the suggestion of [K2] that
DNA and/or RNA might act as a topological quantum computer. The so called number theoretical
braids, which provide representations for Galois groups permuting roots of an nth order irreducible
polynomial are subgroups of Sn (and equal to Sn in the generic case), are in a central role in the
formulation of quantum TGD [K5], [A1].

This interpretation would assign to a given codon a braid with n strands, whose states would
correspond to irreducible representations of Sn [A3]. The thermodynamics would be for the ir-
reducible representations of Sn with the number n of braids varying in the range [6, 24]. Braid
would be a 5-adic thermodynamical system such that all d(n, r) irreducible representations with
a given value of r would have the same value of the 5-adic Hamiltonian h(r) (definitely not the
most general dynamics now). The reason for the absence of n-braids for which n has zeros in its
5-adic expansion could relate to the fact that the quantum phase q = exp(iπ/m) defines a universal
topological quantum computer for m ≥ 5. m = 5 is suggested strongly in case of DNA since it
manifests itself in the geometry of DNA (twisting angle for single nucleotide and the presence of
5-cycles).

2. More general dynamics?

The alternative interpretation forces to reconsider the definition of 5-adic thermodynamics. Let
us denote by (n, r, i) the irrep of Sn corresponding to a particular partition of n with r summands.
It would seem natural to interpret the dimension Dn,r,i of the irrep as the additional degeneracy
factor replacing d(n, r) so that the number d(n, r) of partitions with r summands (subsets) would
be replaced by the degeneracy factor

D(n, r) =
∑
i

Dn,r,i ,

andDn,r,i is the dimension of the irrep in question. The irreps d(n, r, i) are in one-one-correspondence
with Yang tableaus consisting of n boxes in r rows and D(n, r, i) can be calculated using standard
formulas [A4].

One might hope that this modification could allow to simplify the dynamics. The best one
might dream of would be that h(r) could be taken to be Z3 valued: 0 ≤ h(r) ≤ 2. One
could also check whether the definition of the partition sum using modulo 125 arithmetics as
Z =

∑
rD(n, r)5h(r) mod 125 gives sensible results. Only two possible temperatures 1/T5 = 1, 2

besides 1/T5 = 0 corresponding to stopping codon are possible so that doublets pose very strong
conditions on the model. The transformation Z = Z0 + Z15 + Z252 → Z0 + Z25 + Z152 corre-
sponds to the temperature scaling by 2. Hence it is not surprising that the simplest model does
not work. In any case, the modification of earlier computational model to this case involves only
the replacement of d(n, r) with D(n, r).

The dynamics could be however much more flexible. The 5-adic thermodynamics for irre-
ducible representations of Sn instead of partitions allows the replacement of h(r) with h(n, r, i),
say h(n, r, d(n, r, i)), where d(n, r, i) is the dimension of the representation in question. The dy-
namics for a given n would be independent of the dynamics for other values of n unless one
assumes that h(n, r, d(n, r, i)) is some simple function, say h = d(n, r, i) mod 3. In the most gen-
eral case the number of parameters h(n, r, i) would be the number of irreps given by the number
d(n) =

∑
r d(n, r) of partitions. For n = 6 one has d(6) = 11 partitions and n = 24 would give

d(24) = 32 × 52 × 7 = 1575 partitions. Even for h(n, r, i) ∈ Z3 this would increase the number
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of parameters dramatically and might allow to reproduce the genetic code in consistency with the
constraints from the divisor code.

3. What could be the physical interpretation?

One can ask how this picture could relate to the picture provided by the divisor code in which
representations of cyclic group Zn reduced to some of its subgroup with integer 31 ≤ n ≤ 124
being one of the integers associated with a given amino-acid. Is there place in TGD Universe for
these two discrete symmetries? This might be the case if one takes seriously both the hierarchy
of Planck constants involving the generalization of the embedding space concept and the notion of
number theoretic braid.

1. The permutation group Sn2)
, n2) ∈ [6, 24] for braid strands associated with the first two

letters of the codon n > n2) would act on the number theoretical braids with n2) strands.
The increase of n2 could have interpretation as an increase of complexity in the sense that
the number of braid strands increases.

2. The cyclic group Zn, n ∈ [31, ..., 124], possibly associated with electron pairs, could cor-
respond to the Ga covering of M4

± defined by the hierarchy of Planck constants associ-
ated with the hierarchy of fiber bundle structures H± = M4

± × CP2 → H±/Ga × Gb,
Ga ×Gb ⊂ SU(2)× SU(2) ⊂ SL(2, C)× SU(3). Cyclic group Zn would be identified as the
maximal cyclic group of Ga. Note however that topological quantum computer considera-
tions would suggest that Ga has Z5 as maximal cyclic subgroup so that Zn cannot correspond
to the number of sheets in the cyclic covering essential for topological quantum computation.
A more natural interpretation would be as a cyclic group of symmetries for the magnetic flux
quanta action as rotations permuting the flux tubes of the topologically quantized dipole
type magnetic field. What remains a mystery is why n1 = n mod 5, n2 = n− n1 mod 52,
... cannot vanish. Could the irreducible representation of Sn2) corresponding to the partition

n2) =
∑

k nk5k defined by 5-adic expansion and having r = 2 summands have a special role?
IR could the sub-group

∏
k Snk5k of Sn have a special role?

5.4.3 The interpretation in terms of decomposition to many-particle states consisting
of free electron pairs or Cooper pairs

The fact that iL0 corresponds to rotations allows to consider also the interpretation of the partitions
in terms of decompositions of the state to a product of angular momentum eigen states with values
of Jz = nk. Basic building blocks could have spin Sz = 1 so that codon would be characterized by
its total spin Sz = n2 = n mod 52 possible associated with dark Cooper pairs with spin quantum
number Sz = 1. The blocks of the partition would be coherent sub-Bose-Einstein condensates of
dark Cooper pairs and the number theoretic Hamiltonian would characterize the change of energy
like quantity as this kind of state is formed.

This interpretation conforms with the general TGD based view about living matter. High
Tc superconductivity indeed plays a key role in TGD based model of living matter [K3, K4] and
there is experimental evidence that DNA can have anomalously high conductivity [I2]. TGD based
model [K4] relies on the hypothesis that free electron pairs associated with the 5- and/or 6-rings
of sugars in the backbone of DNA correspond to dark matter with Planck constant ~ = n~0, n = 5
and/or n = 6. Also the observation that the twist angle of single nucleotide in double helix is π/5 is
suggestive of 5-adicity. Note that n = 5 defines the minimum value of n making possible universal
topological quantum computation and in [K2] it is proposed that DNA and/or RNA could act as
topological quantum computer.

5.5 A Possible Interpretation For The P-Adic Prime Labeling Amino-
Acid And DNAs Coding It

The notion of field body or magnetic body is central for the TGD inspired model of living matter
[K7] , [L2]. This notion is justified by so called topological quantization of classical fields making
it possible to assign to a given physical system a field body which is typically much larger than
the physical body. For instance, in case of brain the magnetic body is of astrophysical size (EEG
wavelengths are of order Earth size). Dark magnetic body containing Bose Einstein condensates of
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ions with large value of Planck constant would be the fundamental bio-controller utilizing biological
body as a sensory receptor and motor instrument [K7].

A possible interpretation for the p-adic prime labeling amino-acid and DNAs coding for it could
be as a characterizer of the effective p-adic topology associated with their magnetic bodies and the
genuine p-adic topology for their p-adic counterparts obeying same algebraic equations. This is
possible since for large values of Planck constant possibly associated with the magnetic body the
small p-adic primes could correspond to size scales of order EEG wave lengths. Notice however
that the p-adic primes characterizing elementary particles are much larger. For instance, electron
is characterized by Mersenne prime M127 = 2127 − 1.

The preferred values of na and nb are given by ni = 2k
∏
Fi, where Fi are distinct Fermat

primes (only four of them corresponding to F = 3, 5, 17, 257, 216 + 1 are known). The 2-adic
hierarchy na = 2k could provide a deeper justification for the p-adic length scales hypothesis.

The 2-adic sub-hierarchy na = 2k11, k = 0, 1, 2... is especially interesting. For nb = 1 k = 11
would correspond to the time scale T121 = T (127)/64, T127(2) = .1 s, which defines the fundamental
10 Hz biorhythm. T121 ' 1.6 ms corresponds to a typical time scale for nerve pulse activity. For
this option primary resp. secondary p-adic length scales associated with an amino-acid labeled by
prime p would be Tp =

√
pT121 resp. Tp = pT121 and could define a small-p p-adic hierarchy of

time scales of neuronal activity.
Obviously, the maximal cyclic subgroup of Ga containing 2121 elements and acting naturally

as symmetries of magnetic and electric flux tube structures accompanying DNA and amino-acids
cannot correspond to the group Zn, n ≤ 124 associated with DNA and amino-acid molecules.
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6 Appendix: 4-Adic Realization Of N → N + 32 Symme-
try,Divisor Code, And Labeling Of Amino-Acids By Primes
Are Not Mutually Consistent

For the four-adic realization of the divisor code geometrically 18 amino-acids would correspond
to primes p < 63 whereas the integers n = 0 and n = 1 would correspond to special amino-
acids. n → n + 32 symmetry means that 4-columns of the code table contain either even or
odd integers depending on whether the row is odd or even. Hence the 4-columns containing even
integers cannot contain the prime coding for the amino-acid so that the geometric realization in
which DNAs coding amino-acid contain both prime labeling for the amino-acid and the integer
characterizing the degeneracy of the amino-acid as the number of its divisors is not possible.

One could weaken the condition by requiring that n(p) = p holds true only when one of the
coding codons is labeled by a prime. This however leads to a further difficulty since the primes
(5, 5 + 32 = 27) and (11, 11 + 32 = 43) belong to same 4-column and should code for same amino-
acid. Hence the assumption that amino-acids correspond to n = 0, 1 and 18 primes p < 63 does
not look natural. One could however consider a less ambitious realization of the divisor code by
giving up this requirement altogether and requiring only that one of the DNAs is labeled by an
integer for which the number of divisors equals to the degeneracy of the corresponding codon.

For eukaryote code Met would naturally correspond to n = 1. For mitochondrial code the
multiplets containg n = 0 and n = 1 DNA would contain also second DNA. The problem is that
the number of its divisors should be n = 2 for the mitochondrial code for both Met and Ile and
one end ups with a contradiction unless one somehow loosens the rules. One could say that the
prime n = 17 determines the degeneracy of Ile for mitochondrial code so that Met takes the rest.

The multiplet coding for a particular amino-acid would contain DNA labeled by the prime
coding for amino-acid and an integer with a number of divisors equal to the degeneracy of the
codon. For odd rows of the code table 4-columns contain only even primes so that primes are
contained in 4-columns in even rows of the table.

Table 5 represents the best variant found hitherto. One of the integers in 4-column is consistent
with the degeneracy of amino-acid according to divisor code and for each amino-acid one of DNAs
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UCC Ser AGC Ser CCC Pro CUC Leu
UCA Ser AGA Stop CCA Pro CUA Leu (16)
UCU Ser 20 AGU Ser CCU Pro CUU Leu 0
UCG Ser (4) AGG Stop 8 CCG Pro 12 CUG Leu
(49) AUC Ile 53 CAC His 57 GUC Val 61 UUC Leu (33)
AUA Ile (37) CAA Gln (41) GUA Val (45) UUA Phe 17
AUU Ile CAU His GUU Val 29 UUU Leu 1
AUG Met 5 CAG Gln (9) GUG Val 13 UUG Phe
CGC Arg GCC Ala ACC Thr GGC Gly 34
GGA Arg GCA Ala ACA Thr GGA Gly 18
GGU Arg GCU Ala ACU Thr GGU Gly 2
GGG Arg 6 GCG Ala 10 ACG Thr 14 GGG Gly
GAC Asp UGC Cys 59 AACAsn 63 UAC Tyr
GAA Glu 39 UGA Trp (43) AAA Lys (47) UAA Stop 19
GAU Asp 23 UGU Cys AAU Asn (31) UAU Tyr 3
GAG Glu 7 UGG Trp 11 AAG Lys (15) UAG Stop

Table 5: Best variant of the code table

corresponds to the integers consistent with the degeneracy. For Trp in case of eukaryote code stop
breaks the symmetry. 7 codes only for a singlet (Trp).
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