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1. Introduction 2

Abstract

Absolute Galois Group defined as Galois group of algebraic numbers regarded as extension
of rationals is very difficult concept to define. The goal of classical Langlands program is to
understand the Galois group of algebraic numbers as algebraic extension of rationals - Absolute
Galois Group (AGG) - through its representations. Invertible adeles -ideles - define Gl1 which
can be shown to be isomorphic with the Galois group of maximal Abelian extension of rationals
(MAGG) and the Langlands conjecture is that the representations for algebraic groups with
matrix elements replaced with adeles provide information about AGG and algebraic geometry.

I have asked already earlier whether AGG could act is symmetries of quantum TGD. The
basis idea was that AGG could be identified as a permutation group for a braid having infinite
number of strands. The notion of quantum adele leads to the interpretation of the analog of
Galois group for quantum adeles in terms of permutation groups assignable to finite l braids.
One can also assign to infinite primes braid structures and Galois groups have lift to braid
groups.

Objects known as dessins d’enfant provide a geometric representation for AGG in terms
of action on algebraic Riemann surfaces allowing interpretation also as algebraic surfaces in
finite fields. This representation would make sense for algebraic partonic 2-surfaces, and could
be important in the intersection of real and p-adic worlds assigned with living matter in TGD
inspired quantum biology, and would allow to regard the quantum states of living matter as
representations of AGG. Adeles would make these representations very concrete by bringing
in cognition represented in terms of p-adics and there is also a generalization to Hilbert adeles.

1 Introduction

Langlands correspondence represents extremely abstract mathematics - perhaps too abstract for
a simple minded physicist with rather mundane thinking habits. It takes years to get just a
grasp about the basic motivations and notions, to say nothing about technicalities. Therefore
I hope that my own prattlings about Langlands correspondence could be taken with a merciful
understanding attitude. I cannot do anything for it: I just want desperately to understand what
drives these mathematical physicists and somehow I am convinced that this exotic mathematics
could be extremely useful for my attempts to develop the TGD view about Universe and everything.
Writing is for me the only way to possibly achieve understanding - or at least a momentary illusion
of understanding - and I can only apologize if the reader has feeling of having wasted time by
trying to understand these scribblings.

Ed Frenkel (see http://tinyurl.com/y8sgk672) lectured again about geometric Langlands
correspondence and quantum field theories and this inspired a fresh attempt to understand what the
underlying notions could mean in TGD framework. Frenkel has also article about the relationship
between geometric Langlands program and conformal field theories [A15]. My own attempt might
be regarded as hopeless but to my view it is worth of reporting.

The challenge of all challenges for a number theorist is to understand the Galois group of al-
gebraic numbers regarded as extension of rationals - by its fundamental importance this group
deserves to be called Absolute Galois Group (see http://tinyurl.com/yaffmruw) (AGG, [A1]).
This group is monstrously big since it is in some sense union of all finite-D Galois groups. Another
fundamental Galois group is the Maximal Abelian Galois Group (MAGG) associated with maximal
Abelian extension of rationals (see http://tinyurl.com/y8dosjut) [A11]. This group is isomor-
phic with a subgroup assignable to the ring of adeles (see http://tinyurl.com/64pgerm) [A3].

1.1 Could AGG Act As Permutation Group For Infinite Number Of
Objects?

My own naive proposal for years ago is that AGG could be identified as infinite-dimensional
permutation group S∞ [?]. What the subscript ∞ means is of course on non-trivial question. The
set of all finite permutations for infinite sequence of objects at integer positions (to make this more
concrete) or also of permutations which involve infinite number of objects? Do these object reside
along integer points of half-line or the entire real line? In the latter case permutations acting as
integer shifts along the real line are possible and bring in discrete translation group.

A good example is provided by 2-adic numbers. If only sequences consisting of a finite number
of non-vanishing bits are allowed, one obtains ordinary integers - a discrete structure. If sequences
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1.2 Dessins D’Enfant 3

having strictly infinite number of non-vanishing bits are allowed, one obtains 2-adic integers forming
a continuum in 2-adic topology, and one can speak about differential calculus. Something very
similar could take place in the case of AGG and already the example of maximal Abelian Galois
group which has been shown to be essentially Cartesian product of real numbers and all p-adic
number fields Qp divided by rationals suggests that Cartesian product of all p-adic continuums is
involved.

What made this proposal so interesting from TGD point of view is that the group algebra of
S∞ defined in proper way is hyper-finite factor of II1 (HFF) [?]. HFFs are fundamental in TGD:
WCW spinors form as a fermionic Fock spaces HFF. This would bring in the inclusions of HFFs,
which could provide new kind understanding of AGG. Also the connection with physics might
become more concrete. The basic problem is to identify how AGG acts on quantum states and
the obvious guess is that they act on algebraic surfaces by affecting the algebraic number valued
coefficients of the polynomials involved. How to formulate this with general coordinate invariant
(GCI) ways is of course a challenge: one should be able to identify preferred coordinates or at least
class of them related by linear algebraic transformations if possible. Symmetries make possible to
consider candidates for this kind of coordinates but it is far from obvious that p-adic CP2 makes
sense - or is even needed!

In [?] I proposed a realization of AGG or rather- its covering replacing elements of permutation
group with flows - in terms of braids. Later I considered the possibility to interpret the mapping
of the Galois groups assignable to infinite primes to symplectic flows on braids [K3]. This group
is covering group of AGG with permutations being replaced with flows which in TGD framework
could be realized as symplectic flows. Again GCI is the challenge. I have discussed the symplectic
flow representation of generalized Galois groups assigned with infinite primes (allowing mapping to
polynomial primes) in [K3] speculating in the framework provided by the TGD inspired physical
picture. Here the notion of finite measurement resolution leading to finite Galois groups played a
key role.

1.2 Dessins D’Enfant

Any algebraic surface defined as a common zero locus of rational (in special case polynomial)
functions with algebraic coefficients defines a geometric representation of AGG. The action on
algebraic coefficients is induced the action of AGG on algebraic numbers appearing as coefficients
and in the roots of the polynomials involved. One can study many things: the subgroups of AGG
leaving given algebraic surface invariant, the orbits of given algebraic surface under AGG, the
subgroups leaving the elements at the orbit invariant, etc.... This looks simple but is extremely
difficult to realize in practice.

One working geometric approach of this kind to AGG relies on so called dessins d’enfant (see
http://tinyurl.com/y927ebvd) [A6] to be discussed later. These combinatorial objects provide
an amazingly simple diagrammatic approach allowing to understand concretely what the action
of AGG means geometrically at the level of algebraic Riemann surfaces. What is remarkable
that every algebraic Riemann surface (with polynomials involved having algebraic coefficients)
is compact by Belyi’s theorem (see http://tinyurl.com/ydxzerkr) [A5] and bi-holomorphisms
generate non-algebraic ones from these.

In TGD partonic 2-surfaces are the basic objects and necessarily compact. This puts bells
ringing and suggests that the old idea about AGG as symmetry group of WCW might make sense
in the algebraic intersection of real and p-adic worlds at the level of WCW identifies as the seat
of life in TGD inspired quantum biology. Could this mean that AGG acts naturally on partonic
2-surfaces and its representations assign number theoretical quantum numbers to living systems?
An intriguing additional result is that all compact Riemann surfaces can be representation as
projective varities in CP3 assigned to twistors. Could there be some connection?

1.3 Langlands Program

Another approach to AGG is algebraic and relies on finite-dimensional representations of AGG.
If one manages to construct a matrix representation of AGG, one can identify AGG invariants as
eigenvalues of the matrices characterizing their AGG conjugacy class. Langlands correspondence

http://tinyurl.com/y927ebvd
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(see http://tinyurl.com/ybmcnqh8) [A15, A14] is a conjecture stating that the representations
of adelic variants of algebraic matrix groups (see http://tinyurl.com/yde5mras) [A2].

Adelic representations are obtained by replacing the matrix elements with elements in the ring
of rational adeles which is tensor product of rationals with Cartesian product of real numbers and
all p-adic number fields with and they provide representations of AGG. Ideles represent elements of
abelianization of AGG. Various completions of rationals are simply collected to form single super
structure.

Number theoretic invariants - such as numbers for points of certain elliptic curves (polynomials
with integer coefficients) - correspond to invariants for the representations of algebraic groups
assignable to the automorphic functions defined in the upper plane H = SL(2, R)/O(2) and
invariant under certain subgroup Γ of modular group acting as modular symmetries in this space
and defining in this way an algebraic Riemann surface as a coset space H/Γ with finite number of
cusps in which the automorphic function vanishes. The vanishing conditions coded by Γ code also
for number theoretic information.

The conjecture is that number theoretic questions could allow translation to questions of har-
monic analysis and algebraic equations would be replaced by differential equations much simpler
to handle. Also a direct connection with subgroups of modular group Γ of SL(2, Z) emerges and
number theoretic functions like zeta and η functions emerge naturally in the complex analysis.

The notion of adeles generalizes. Instead of rationals one can consider any extension of rationals
and the MAGG and AGG associated with it. p-Adic number fields of the adele are replaced with
their extensions and algebraic extension of rationals appears as entanglement coefficients. This also
conforms with the TGD based vision about evolution and quantum biology based on a hierarchy
of algebraic extensions of rationals. For these reasons it seems that adeles or something akin to
them is tailor-made for the goals and purposes of TGD.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [?].

2 Langlands Program

Langlands programs starts from the idea that finite-dimensional representations of AGG provide
information about AGG. If one manages to construct a matrix representation of AGG, one can
identify AGG invariants as eigenvalues of the matrices characterizing their AGG conjugacy class.
Langlands correspondence (see http://tinyurl.com/ybmcnqh8) [A15, A14] is a conjecture stating
that the representations of adelic variants of algebraic matrix groups (see http://tinyurl.com/

yde5mras) [A2].
Adelic representations are obtained by replacing the matrix elements with elements in the ring

of adeles and they provide representations of AGG. Number theoretic invariants - such as numbers
for points of certain elliptic curves (polynomials with integer coefficients) - correspond to invariants
for the representations of algebraic groups assignable to the automorphic functions defined in the
upper plane H = SL(2, R)/O(2) and invariant under certain subgroup Γ of modular group acting
as modular symmetries in this space and defining in this manner an algebraic Riemann surface as
a coset space H/Γ with finite number of cusps in which the automorphic function vanishes. The
vanishing conditions coded by Γ code also for number theoretic information.

Langlands conjecture states that number theoretic questions could allow translation to questions
of harmonic analysis and algebraic equations would be replaced by differential equations much
simpler to handle. Also a direct connection with subgroups of modular group Γ of SL(2, Z)
emerges and number theoretic functions like zeta and η functions emerge naturally in the analysis.
I hasten to admit that I have failed to understand intuitively the deeper motivations for this
conjecture but there is support for it.

2.1 Adeles

This approach leads to adeles [A3].

1. AGG is extremely complex and the natural approach is to try something less ambitious first
and construct representations of the Maximal Abelian Galois Group of rationals (MAGG)

http://tinyurl.com/ybmcnqh8
http://tinyurl.com/yde5mras
http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
http://tinyurl.com/ybmcnqh8
http://tinyurl.com/yde5mras
http://tinyurl.com/yde5mras
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[A11] assigned to an extension containing all possible roots of unity. One can show that
MAGG is isomorphic to the group of invertible adeles divided by rationals. This is something
concrete as compared to AGG albeit still something extremely complex.

2. The ring of rational adeles (see http://tinyurl.com/64pgerm) [A3] discovered by Cheval-
ley is formed by the Cartesian product of all p-adic number fields and of reals and its
non-vanishing elements have the property that only finite number of p-adic numbers in
(...., apn , ....)× a are not p-adic integers (that is possess norm > 1). Algebraic operations are
purely local: multiplications in every completion of rationals involved. One can also under-
stand this space as a tensor product of rationals with integer adeles defined by the cartesian
product of reals and various p-adic integers. One can say that adeles organize reals and all
p-adic number fields to infinite-dimensional Cartesian product and that identified rational
numbers as common to all of them so that multiplication by rational acts just as it act in a
finite dimensional Cartesian product. The idea that rationals are common to all completions
of rationals is fundamental for quantum TGD so that adeles are expected to be important.

3. The ring property of adeles makes possible to talk about polynomials of adele valued argument
having rational coefficients and one can extend algebraic geometry to adeles as long as one
talks about varieties defined by polynomials. Existence of polynomials makes it possible to
talk about matrices with adele valued elements. The notion of determinant is well-defined
and one can also define the inverse of adele matrix so that classical algebraic groups have
also adele counterpart. This is of utmost significance in Langlands program and means a
breathtaking achievement in book keeping: all the p-adic number fields would be caught
under single symbol “A” !

4. Ideles are rational adeles with inverse. Ideles form a group but sum of two ideles is not always
idele so that ideles do not form a number field and one cannot dream of constructing genuine
differential calculus of ideles or talking about rational functions of ideles. Also rational
functions fail to make sense. This means quite a strong constraint: if one wants adelic
generalization of physics the solutions of field equations must be representable in terms of
polynomials or infinite Taylor series.

The conjecture of Langlands is that the algebraic groups with matrix elements replaced with
adeles provide finite-dimensional representations of adeles in what can be loosely called group
algebra of adelic algebraic group.

The construction of representation uses complex valued functions defined in the ring of adeles.
This function algebra decomposes naturally to a tensor product of function algebras associated
with reals and various p-adic number fields and one can speak about rational entanglement between
these functions. From the TGD point of view this is very interesting since rational entanglement
plays a key role in TGD inspired quantum biology.

2.2 Construction Of Representations Of Adelic Gl2

I have explained some details about the construction of the representation of adelic Gl2 in the
Appendix and earlier in [K2].

1. The basic idea is to start from the tensor product of representations in various completions of
rationals using the corresponding group algebras. It is natural to require that the functions
are invariant under the left multiplication by Gl2(Q) and eigenstates of Gl2(R) Casimir
operator C under the right multiplication. The functions are smooth in the sense that they
are smooth in Gl2(R) and locally constant in Gl2(Qp).

2. The diagonal subgroup Z(A) consists of products of diagonal matrices in Gl2(A). Charac-
ters (see http://tinyurl.com/ybeheayk) are defined in Z(A) as group homomorphisms to
complex numbers. The maximal compact subgroup K ⊂ Gl2(A) is the Cartesian product
of Gl2(Zp) and O2(R) and finite-dimensionality under the action of these groups is also a
natural condition.

http://tinyurl.com/64pgerm
http://tinyurl.com/ybeheayk
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3. The representations functions satisfy various constraints described in detail in the appendix
and in the article of Frenkel (see http://tinyurl.com/y7fhl75f) [A15]. I just try to explain
what I see as the basic ideas.

(a) Functions f form a finite-dimensional vector space under the action of elements of the
maximal compact subgroup K. Multiplication from left by diagonal elements reduces to
a multiplication with character. The functions are eigenstates of the Casimir operator
of Gl2(R) acting from left with a discrete spectrum of eigen values. they are bounded
in Gl2(A). These conditions are rather obvious.

(b) Besides this the functions satisfy also the so called cuspidality conditions, the content
of which is not obvious for a novice like me. These conditions imply that the functions
are invariant under the action for Gl2(Zp) apart from finite number of primes called
ramified. For these primes invariance holds true only under subgroup Γ0(pnk) of Sl2(Zp)
consisting of 2× 2-matrices for which the elements a21 ≡ c vanish modulo pn.

(c) What is non-trivial and looks like a miracle to a physicist is that one can reduce ev-
erything to the study of so called automorphic functions (see http://tinyurl.com/

ybwzg73x) [A4] defined in Γ0(N)/Sl(2, R), N =
∏
pnk . Intuitively one might try to

understand this from the idea that adeles for which elements in Zp are powers of p rep-
resent rational numbers. That various p-adic physics somehow factorize the real physics
would be the misty idea which in TGD inspired theory of consciousness translates to the
idea that various p-adic physics make possible cognitive representations of real physics.
Somehow the whole adele effectively reduces to a real number. Automorphic functions
have a number theoretic interpretation and this is certainly one of the key motivations
between Langlands program.

4. Automorphic functions reduce to complex analytic functions in the upper half plane H =
SL2(R)/O(2) transforming in a simple manner under Γ0(N) (modular form of weight k).
What one is left with are modular forms of weight k and level N in upper half plane.

(a) The overall important cuspidality conditions characterized by integer N imply that
the automorphic functions vanish at the cusp points of the algebraic Riemann surface
defined as H/Γ0(N). The modular form can be expanded in Fourier series f =

∑
anq

n

in powers of q = exp(i2πτ), where τ parameterizes upper half plane.

(b) The Fourier coefficients an satisfy the condition amn = aman and one ends up with
the conclusion that for each elliptic curve (see http://tinyurl.com/ybsdt65r) [A7]
y2 = x3 + ax+ b (a and b are rational numbers satisfying 4a3 + 27b2 6= 0 and reduce to
integer is the recent case) there should exist a modular form with the property that ap
codes for the numbers of points of this elliptic curve in finite field Fp for all but finite
number of primes! This is really amazing and mysterious looking result.

(c) τ can be interpreted as a complex coordinate parametrizing the conformal moduli of
tori. Is this a pure accident or could this relate to the fact that the coefficients turn out
to give numbers of roots for algebraic elliptic surfaces, which are indeed tori? Could
cuspidality conditions have interpretation as vanishing of the modular forms for tori
with moduli corresponding to cusps: could these be are somehow singular as elliptic
surfaces? The objection is that the elliptic surfaces as sub-manifolds of C2 have a
unique induced metric and therefore correspond to a unique conformal modulus τ . But
what about other Kähler metrics than the standard metric for C2 and embeddings to
other complex spaces as algebraic surfaces? Could adelic Gl2 representations generalize
to adelic representations of Gl2g acting on Teichmueller parameters of Riemann surface
with genus g?

The notion of adeles generalizes. Instead of rationals one can consider any extension of rationals
and the MAGG and AGG associated with it. p-Adic number fields of the adele are replaced with
their extensions and algebraic extension of rationals appears as entanglement coefficients. This also
conforms with the TGD based vision about evolution and quantum biology based on a hierarchy
of algebraic extensions of rationals. For these reasons it seems that adeles or something akin to
them is tailor-made for the goals and purposes of TGD.

http://tinyurl.com/y7fhl75f
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http://tinyurl.com/ybwzg73x
http://tinyurl.com/ybsdt65r


3. Compactness Is Guaranteed By Algebraicity: Dessins D’Enfant 7

3 Compactness Is Guaranteed By Algebraicity: Dessins D’Enfant

This discovery, which is technically so simple, made a very strong impression on me,
and it represents a decisive turning point in the course of my reflections, a shift in
particular of my centre of interest in mathematics, which suddenly found itself strongly
focussed. I do not believe that a mathematical fact has ever struck me quite so strongly
as this one, nor had a comparable psychological impact. This is surely because of the very
familiar, non-technical nature of the objects considered, of which any child’s drawing
scrawled on a bit of paper (at least if the drawing is made without lifting the pencil)
gives a perfectly explicit example. To such a dessin we find associated subtle arithmetic
invariants, which are completely turned topsy-turvy as soon as we add one more stroke.

This piece of text was written by Grothendieck. He described here the profound impact of
the notion of dessins d’enfant (see http://tinyurl.com/y927ebvd) [A6] on him. The translation
of the notion to english is “child’s drawings”. These drawings are graphical representations of
Riemann surfaces (see http://tinyurl.com/cgl2pj) understood as pairs formed by an algebraic
Riemann surface and its universal covering space from which Riemann surface is obtained as a
projection which can be many-to-one one map. This diagram allows to construct the Riemann
surface modulo bi-holomorphism. Algebraic Riemann surface means that the equations defining
it involve only rational functions with coefficients which are algebraic numbers. This implies that
the action of AGG on the algebraic Riemann surface is well defined as action on the coefficients.
One can assign to the dessin d’enfant combinatorial invariants for the action of AGG.

3.1 Dessins D’Enfant

1. Dessin d’enfant is a bipartite graph (see http://tinyurl.com/3x2cjf) [A16] meaning that
it is possible to label the nodes of the graphs by black and white points in such a way
that the black and white points alternate along edge paths. One can identify black and
white nodes as sets U and V and every edge of the graph connects points of U and V. For
instance, bipartite graph does not posses any odd edge cycles. Every tree is bipartite and
every planar graphs with even number of edges is bipartite. The vertices of the bipartite
graph are topologically characterized by the number of lines emerging to the vertex and also
2-vertices are possible. The surface and the embedding can be described combinatorially
using rotation system assigned with each vertex of the graph and telling the order in which
the edges would be crossed by a path that travels clockwise on the surface around the vertex.

2. The notions of dessin d’enfant and counterpart for Belyi function [A5] defining the projection
from the covering of sphere to sphere dates back to the work of Felix Klein. A very deep and
very surprising theorem by Belyi (http://tinyurl.com/ydxzerkr ) states that all algebraic
curves represent compact Riemann surfaces. These surfaces are ramified coverings of the
Riemann sphere ramified at three points only which in suitable complex coordinates can be
taken to be the rational points 0, 1, ∞ of real axis. Ramification means that the rational
function f with algebraic number coefficients - known as Belyi’s function - projecting the
Riemann surface as covering of sphere to sphere has critical points which are pre-images of
these three points. In the neighborhood of the critical points the projection map known as
Belyi’s function is characterized by degree telling how many points are mapped to single
point of sphere. At the critical point itself these points coincide. A simplified example of
criticality is zn at origin.

The Riemann surface in question can be taken to be H/Γ compactified by finite number of
cusp points. Here H is upper half plane Γ a subgroup of modular group having finite index

3. Dessin d’enfant allows to code combinatorially the data about the Belyi function so that
one can construct both the surface and its Belyi function from this data apart from bi-
holomorhism. The interpretation as projection from covering allows to get grasp about the
geometric meaning of dessin d’enfant. Physicist reader is probably familiar with the graphical
representation of cusp catastrophe. The projection of the critical points and curves of cusp
catastrophe as function of the two control parameters to the control parameter plane replaced
in the recent case by complex plane is highly analogous to dessin d’enfant. The boundary

http://tinyurl.com/y927ebvd
http://tinyurl.com/cgl2pj
http://tinyurl.com/3x2cjf
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of cusp catastrophe in which cusp projection is three-to-one has V -shape and at the sides of
V the covering of plane is 2-to-1 and and at the vertex and outside cusp region 1-to-1. The
edges of V correspond to the edges of the dessin d’enfant and the vertex of V to a node of
dessin d’enfant.

The number of edges entering given critical point tells the degree of the Belyi function at
that critical point. Dessin d’enfant is imbedded on an oriented surface - plane in the simplest
situation but also sphere and half plane can be considered. The lines of the graph correspond
to curves at which two branches of the covering coincide.

The Wikipedia article (see http://tinyurl.com/y927ebvd) [A6] about dessin d’enfant dis-
cusses a nice example about the construction of dessin d’enfant and is recommended for the
reader.

4. The Belyi function could be any holomorphic function from X to Riemann sphere having only
0, 1, and ∞ as critical values and the function f is determined only up to bi-holomorphism.
If X is algebraic surface, f is rational function with algebraic coefficients.

5. What makes the dessin d’enfant so remarkable is that AGG has natural action on the algebraic
coefficients of the rational functions defining algebraic Riemann surfaces and therefore on
dessin d’enfant. For instance, the sequence of integers form by the degrees of the projection
map at the critical points is geometric Galois invariant. One can identify the stabilize of
dessin as the sub-group of AGG leaving dessin d’enfant invariant. One can identify the orbit
of dessin d’enfant under AGG and the subgroup of AGG leaving the points of orbit invariant.

3.2 Could One Combine Quantum Adelic Representations With Dessin
D’Enfant Representations?

As already noticed, dessin d’enfant representation of AGG allows to have representations of AGG
at the orbits of dessins d’enfant. If the orbit consists of a finite number n of points, one obtains
representations of AGG in the finite-dimensional discrete Hilbert space spanned by the points, and
representation matrices are n× n matrices.

Suppose that the Galois group of quantum adeles is indeed isomorphic with the commutator
group of AGG. If this is the case then quantum adele valued amplitudes defined in the discrete space
formed by the orbits of dessins d’enfant would provide a representation of AGG with commutator
group acting on the fiber analogous to spin degrees of freedom and AGG on the base space having
role analogous to that of Minkowski space.

One can imagine an approach mimicking the construction of induced representations (see http:
//tinyurl.com/y9nfp438) [A8] of Mackey inspired by the representations of Poincare group. In
this approach one identifies orbit of group G as a space carrying the fields with spin. The subgroup
H of G leaving a given point of representation space invariant is same at all points of orbit apart
from conjugation. The field would have values in H or group algebra of H or in space in which H
acts linearly. In the recent case H could adelic Galois group of quantum adeles identified as AGG
or the subgroup GI of AGG leaving the dessins d’enfant invariant.

What can one say about GI . How large it is? Can one identify it or its abelization AGI
and

assign it to the points of orbits to construct analogs of induced representations?

1. If the orbit of dessin d’enfant is finite as the fact that the number of its points is invariant
under the action of AGG suggests, GI must be infinite. This would suggests that also AGI

is infinite. Does AGI
possess adele representation? Is this adele representation identifiable

as a sub-adele of AAGG in some sense? Could it be obtained by dropping some quantum
variants of Zp: from the decomposition of adele? What the interpretation of these lacking
primes could be? Could these primes correspond to the primes which split in the extensions.
If this is the case one could consider the representations in which AGI

forms the fiber space
at each point of dessin d’enfant.

2. One can consider also weaker option for which only so called ramified primes are dropped from
the adele for rationals to obtain the adele for algebraic extension. In adele construction there
are problematic primes p. For rational primes (or corresponding ideals) the representation

http://tinyurl.com/y927ebvd
http://tinyurl.com/y9nfp438
http://tinyurl.com/y9nfp438
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of p is as a product of primes of extension as p =
∏
P eii ei are called degrees of ramification.

For some ei > 1 one has ramification analogous to the dependence of form (z − z0)n, n > 1
of holomorphic function around critical point have interpretation as ramified primes and
corresponding factors Zp are dropped from the adele. To eliminate the problems cause by
number theoretic ramification one can drop ramified primes from the adele in the extensions
of algebraic numbers associated with the roots of the polynomials appearing in the Belyi
map. Could the resulting adele be the counterpart for the reduced MGGA?

3.3 Dessins D’Enfant And TGD

What might be the relevance of Belyi’s theorem and dessins d’enfant for TGD?

1. In TGD framework effective 2-dimensionality implies that basic objects are partonic 2-
surfaces together with their data related to the 4-D tangent space a them. I have already
earlier proposed that Absolute Galois group could have a natural action in the world of the
classical worlds ( WCW ). The horrible looking problem is how to achieve General Coordinate
Invariance (GCI) for this action.

Partonic 2-surfaces are compact so that they allow a representation as algebraic surfaces.
The notion of dessin d’enfant suggests that partonic 2-surfaces could be described as sim-
ple combinatorial objects defined by dessin d’enfant as far as the action of Galois group is
considered. This representation would be manifestly general coordinate invariant and would
allow to construct representations as Galois group in terms of discrete wave functions at the
orbits of dessin d’enfant. One can also expect that the representation reduces to those of
finite Galois groups.

2. Second central problem is the notion of braid which is proposed to provide a realization for
the notion of finite measurement resolution.The recent view is that time-like braids on light
like surfaces and space-like braids at the 3-surfaces defining the ends of space-time surfaces
contain braid strands as Legendrian knots for which the projection of Kähler gauge potential
has vanishing inner product with the tangent vector of the braid strand. For light-like 3-
surfaces this does not imply that the tangent vector of strand is orthogonal to the strand:
if the tangent vector is light-like the condition is automatically satisfied and light-like braid
strands define a good but - as it seems - not a unique guess for what the braid strands are.
Note however that the condition that braid strands correspond to boundaries of string world
sheets gives additional conditions. At space-like 3-surfaces orthogonality to induced Kähler
gauge potential fixes the direction of the tangent vector field only partially.

Suppose one manages to fix completely the equations for braid strands - say by the iden-
tification as light-like strands. What about the end points of strands? How uniquely their
positions are determined? Number theoretical universality suggests that the end points are
rational or algebraic points as points of embedding space but again GCI poses a problem.
Symmetry arguments suggest that one could use group theoretically preferred coordinates
for M4 and CP2 and identify also the coordinates of partonic 2-surface as embedding space
coordinates for their projections to geodesic spheres of δM4

± and geodesic sphere of CP2.

A possible resolution of this problem comes from the fact that partonic 2-surface allows an
interpretation as algebraic surface. Braid ends could correspond to the critical points of the
Belyi function defining the projection from the covering so that they would be algebraic points
in the complex coordinates of partonic 2-surfaces fixed apart from algebraic bi-holomorphism.
One would a concrete topological interpretation for why the braid ends are so special. I have
already earlier proposed that braid ends could correspond to singularities associated with
coordinate patches.

3. Is it possible to have compact Riemann which cannot be represented as algebraic surfaces?
Belyi’s theorem does not deny this. For instance rational functions with real coefficients for
polynomials are possible and must give rise to compact surfaces. Inherently non-algebraic
partonic 2-surfaces are possible and for them one cannot define representations of AGG at
the orbits of dessin d’denfant since the action of AGG on f is not well defined now.
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This relates in an interesting manner to the conjecture [K4] that life resides in the in the
intersection of real and p-adic worlds. At WCW level this would mean that the equations for
the partonic 2-surfaces makes sense in any completion of rationals. For algebraic partonic
2-surfaces this is indeed the case if arbitrary high-dimensional algebraic extensions of p-
adic numbers are allowed. Taking this seriously one can ask whether the existence of the
representations of Galois group at the level of WCW is an essential aspect of what it is to be
living. Could one assign Galois quantum numbers to the quantum states of living system?
These would be realized in the discrete space provided by different quantum counterparts of
a given integer and one would have discrete wave functions in these discrete spaces.

4. One also learns from Wikipedia (see http://tinyurl.com/cgl2pj) that any compact Rie-
mann surface is a projective variety and thus representable using polynomial equations in
projective space. It also allows an embedding as as a surface n 3-dimensional complex pro-
jective space CP3. Wikipedia states that if compactness condition is added the Riemann
the surface is necessarily algebraic: here however algebraic means rational functions with
arbitrary real or complex coefficients. Above it means algebraic coefficients. Whether this
CP3 could have anything to do with the twistor space appearing in Witten’s twistor string
model [B1] and also in the speculated twistorial formulation of TGD [K5] remains an open
question.

5. Modular invariance plays central role in TGD [K1], and a natural additional condition on the
representations of AGG would be that the quantum states in WCW are modular invariant.
The action of AGG induces a well-defined action on the conformal moduli of the partonic
2-surfaces and therefore on Teichmueller parameters. This discrete action need not be simple
- say linear- but it would be action in n-dimensional space. Modular invariance requires that
the action of AGG transformation induces a conformal scaling of the induced metric and
changes the conformal moduli by an action of modular group Sl(2g, Z). For torus topology
this group is Sl(2, Z) appearing in modular invariant functions assigned to the representations
of AGG in the group algebra of adelic algebraic groups.

6. Could the combination of dessins d’enfant as a geometric representation and adelic matrix
representations for the abelianizer of the isotropy group GI of dessin d’enfant provide addi-
tional insights in to Langlands conjecture? The problem is that AGG elements do not leave
MGGA invariant.

7. Bi-partite graphs (see http://tinyurl.com/3x2cjf) appear also in the construction of in-
clusions of hyper-finite factors of type II1 (HFF). The TGD inspired proposal that AGG
allows identification as S∞ and the group algebra of permutation group S∞ is HFF. In op-
timistic mood one might see dessins d’enfant as a piece of evidence for this identification of
AGG and adele formed from the Galois group of quantum p-adic integers as its commutator
group.

4 Appendix: Basic Concepts And Ideas Related To The
Number Theoretic Langlands Program

The following representation of the basic ideas of Langlands program reflects my very limited
understanding of the extremely refined conceptual framework involved. This pieces of text can
be found almost as such also in [K2] and Ed Frenkel provides more detailed discussion in his
article [A15, A14].

4.1 Langlands Correspondence And AGG

The representations of group carry information about the group and the natural question is how
to represent the AGG and deduce invariants of AGG in this manner. Eigenvalues for the repre-
sentation matrices are invariants characterizing conjugacy classes of the group. The generators of
MAGG abelled by primes define so called Frobenius elements and the eigenvalues and traces for
their representation matrics defined invariants of this kind. The big question is how to construct
representations of the AGG. Langlands program is an attempt to answer this question.

http://tinyurl.com/cgl2pj
http://tinyurl.com/3x2cjf
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1. 1-D representations of AGG corresponds those of maximal Abelian Galois group which is
the factor group of AGG by its commutator group. The natural intuitive guess is that the
n-dimensional representations of AGG in the group algebra of adelic algebraic group Gl(n)
could provide higher-dimensional representations of AGG. Gl(n) would give rise to a kind of
AGG spin. The action of AGG commutator group would be mapped toGLn(A) action. Does
this mean that AGG is mapped homomorphically to adelic matrices in Gln(A) as one might
first think? I am not able to answer the question. From Wikipedia one learns that so called
Langlands dual (see http://tinyurl.com/yclcloaj) [A9] extends AGG by the algebraic
Lie group GL so that one obtains semi-direct product of complex GL with the AGG which
acts on the algebraic root data of GL. The adelic representations of GL are said to control
those of G. In this form the correspondence gives information about group representations
rather than number theory.

Remark: One näıve guess would be that one could realize the representations of AGG by
adjoint action x → gxg−1 in the commutator subgroup of AGG, which is maximal normal
subgroup and closed with respect to this action. Also the adjoint action of the factor group
defined my maximal Abelian group in this group could define representation? The guess of
the outsider is that the practical problem is that the commutator group is not known.

2. Number theoretic Langlands program is however more than study of the relationships be-
tween representations of Gl(F ) and its adelic variant Gl(AF ). The basic conjecture is the
existence of duality between number theory and harmonic analysis. On number theoretical
side one typically studies algebraic curves. Typical question concerns the number of rational
points in modulo p approximation to the equations determining the algebraic curve. The
conjecture about number theoretic Langlands correspondence was inspired by the observa-
tion that Fourier series expansions of automorphic forms code via their coefficients this kind
of data and the proof of Fermat’s theorem can be seen as application of this correspondence.

There is support for the conjecture that adelic representations carry purely number theoretic
information in the case of Gl(n). The number theoretical invariants defined by the trace
for the representation matrix for the Frobenius element generating the Abelian Galois group
would corresponds to the trace of so called Hecke operator at the side of the harmonic
analysis.

3. Intuitive motivations for the Langlands duality come from the fact the notion of algebraic
surface defined by a polynomials with integer coefficients is number theoretically universal:
the argument can belong to finite field, rational numbers or their extension, real numbers,
or any p-adic number field and can represent even element of function field. Function fields
defined algebraic functions at algebraic curves in finite fields are somehow between classical
number fields and function fields associated with Riemann surfaces to which one can apply
the tools of harmonic analysis.

4.2 Abelian Class Field Theory And TGD

The context leading to the discovery of adeles (http://tinyurl.com/64pgerm ) was so called
Abelian class field theory. Typically the extension of rationals means that the ordinary primes
decompose to the primes of the extension just like ordinary integers decompose to ordinary primes.
Some primes can appear several times in the decomposition of ordinary non-square-free integers
and similar phenomenon takes place for the integers of extension. If this takes place one says that
the original prime is ramified. The simplest example is provided Gaussian integers Q(i). All odd
primes are unramified and primes p mod 4 = 1 they decompose as p = (a + ib)(a − ib) whereas
primes p mos 4 = 3 do not decompose at all. For p = 2 the decomposition is 2 = (1 + i)(1− i) =
−i(1 + i)2 = i(1 − i)2 and is not unique {±1,±i} are the units of the extension. Hence p = 2 is
ramified.

There goal of Abelian class field theory (see http://tinyurl.com/y8aefmg2) is to understand
the complexities related to the factorization of primes of the original field. The existence of the
isomorphism between ideles modulo rationals - briefly ideles - and maximal Abelian Galois Group
of rationals (MAGG) is one of the great discoveries of Abelian class field theory. Also the maximal
- necessarily Abelian - extension of finite field Gp has Galois group isomorphic to the ideles. The

http://tinyurl.com/yclcloaj
http://tinyurl.com/64pgerm
http://tinyurl.com/y8aefmg2
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Galois group of Gp(n) with pn elements is actually the cyclic group Zn. The isomorphism opens
up the way to study the representations of Abelian Galois group and also those of the AGG. One
can indeed see these representations as special kind of representations for which the commutator
group of AGG is represented trivially playing a role analogous to that of gauge group.

This framework is extremely general. One can replace rationals with any algebraic extension of
rationals and study the maximal Abelian extension or algebraic numbers as its extension. One can
consider the maximal algebraic extension of finite fields consisting of union of all all finite fields
associated with given prime and corresponding adele. One can study function fields defined by the
rational functions on algebraic curve defined in finite field and its maximal extension to include
Taylor series. The isomorphisms applies in al these cases. One ends up with the idea that one can
represent maximal Abelian Galois group in function space of complex valued functions in GLe(A)
right invariant under the action of GLe(Q). A denotes here adeles.

In the following I will introduce basic facts about adeles and ideles and then consider a possible
realization of the number theoretical vision about quantum TGD as a Galois theory for the algebraic
extensions of classical number fields with associativity defining the dynamics. This picture leads
automatically to the adele defined by p-adic variants of quaternions and octonions, which can be
defined by posing a suitable restriction consistent with the basic physical picture provide by TGD.

4.2.1 Adeles and ideles

Adeles and ideles are structures obtained as products of real and p-adic number fields. The formula
expressing the real norm of rational numbers as the product of inverses of its p-adic norms inspires
the idea about a structure defined as produc of reals and various p-adic number fields.

Class field theory (http://tinyurl.com/y8aefmg2 ) studies Abelian extensions of global fields
(classical number fields or functions on curves over finite fields), which by definition have Abelian
Galois group acting as automorphisms. The basic result of class field theory is one-one corre-
spondence between Abelian extensions and appropriate classes of ideals of the global field or open
subgroups of the ideal class group of the field. For instance, Hilbert class field, which is maximal
unramied extension of global field corresponds to a unique class of ideals of the number field. More
precisely, reciprocity homomorphism generalizes the quadratic resiprocity for quadratic extensions
of rationals. It maps the idele class group of the global field defined as the quotient of the ideles
by the multiplicative group of the field - to the Galois group of the maximal Abelian extension of
the global field. Each open subgroup of the idele class group of a global field is the image with
respect to the norm map from the corresponding class field extension down to the global field.

The idea of number theoretic Langlands correspondence, [K2, A15, A14]. is that n-dimensional
representations of Absolute Galois group correspond to infinite-D unitary representations of group
Gln(A). Obviously this correspondence is extremely general but might be highly relevant for TGD,
where embedding space is replaced with Cartesian product of real embedding space and its p-adic
variants - something which might be related to octonionic and quaternionic variants of adeles.
It seems however that the TGD analogs for finite-D matrix groups are analogs of local gauge
groups or Kac-Moody groups (in particular symplectic group of δM4

+ × CP2) so that quite heavy
generalization of already extremely abstract formalism is expected.

The following gives some more precise definitions for the basic notions.

1. Prime ideals of global field, say that of rationals, are defined as ideals which do not decompose
to a product of ideals: this notion generalizes the notion of prime. For instance, for p-adic
numbers integers vanishing mod pn define an ideal and ideals can be multiplied. For Abelian
extensions of a global field the prime ideals in general decompose to prime ideals of the
extension, and the decompostion need not be unique: one speaks of ramification. One of the
challenges of tjhe class field theory is to provide information about the ramification. Hilbert
class field is define as the maximal unramified extension of global field.

2. The ring of integral adeles (see http://tinyurl.com/64pgerm ) is defined as AZ = R × Ẑ,
where Ẑ =

∏
p Zp is Cartesian product of rings of p-adic integers for all primes (prime

ideals) p of assignable to the global field. Multiplication of element of AZ by integer means
multiplication in all factors so that the structure is like direct sum from the point of view of
physicist.

http://tinyurl.com/y8aefmg2
http://tinyurl.com/64pgerm
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3. The ring of rational adeles can be defined as the tensor product AQ = Q ⊗Z AZ . Z means
that in the multiplication by element of Z the factors of the integer can be distributed freely
among the factors Ẑ. Using quantum physics language, the tensor product makes possible
entanglement between Q and AZ .

4. Another definition for rational adeles is as R ×
∏′
pQp: the rationals in tensor factor Q

have been absorbed to p-adic number fields: given prime power in Q has been absorbed to
corresponding Qp. Here all but finite number of Qp elements ar p-adic integers. Note that
one can take out negative powers of pi and if their number is not finite the resulting number
vanishes.The multiplication by integer makes sense but the multiplication by a rational does
not smake sense since all factors Qp would be multiplied.

5. Ideles are defined as invertible adeles (http://tinyurl.com/yc3yrcxxIdele class group ).
The basic result of the class field theory is that the quotient of the multiplicative group of
ideles by number field is homomorphic to the maximal Abelian Galois group!

4.3 Langlands Correspondence And Modular Invariance

A strong motivation for Langlands correspondence is modular invariance - or rather its restricted
form - which emerges in both number theory and in the automorphic representations of Gl2 and
relates directly to the ramification of primes for Galois extensions- now maximal Abelian extension.
In TGD framework the restricted modular invariance could have interpretation in terms of con-
crete representations of AGG involving the action of AGG on the adelic variants of Teichmueller
parameters characterizing the algebraic surfaces its variants in various number fields.

It is not necessary to know the explicit action of AGG to modular parameters. What is however
needed is modular invariance in some sense. The first - and hard-to-realize - option is that allowed
subgroup of AGG leaves the conformal equivalence class of Riemann surface invariant. Second
option is that the action of both AGG and modular group Sl(2g, Z) or its subgroup leave the
states of representation invariant. This is the case if AGG induces Gl2g transformations in each
Cartesian factor of the adele and the states defined in the group algebra of Gl2g are invariant. For
ramified primes however modular invariance can break down to subgroup of Sl2g. These conditions
lead to automorphic modular forms.

These arguments are very heuristic and following arguments due to Frenkel give better view
about the situation.

1. Gal(Q/Q) is a poorly understood concept. The idea is to define this group via its repre-
sentations and construct representations in terms of group GLe(2, A) and more generally
GLe(n,A), where A refers to adeles. Also representations in any reductive group can be con-
sidered. The so called automorphic representations of these groups have a close relationship
to the modular forms [A12], which inspires the conjecture that n-dimensional representations
of Gal(Q/Q) are in 1-1 correspondence with automorphic representations of GLe(n,A).

2. This correspondence predicts that the invariants characterizing the n-dimensional representa-
tions of Gal(Q/Q) resp. GLe(n,A) should correspond to each other. The invariants at Galois
sides are the eigenvalues of Frobenius conjugacy classes Frp in Gal(Q/Q). The non-trivial
implication is that in the case of l-adic representations the latter must be algebraic numbers.
The ground states of the representations of Gl(n,R) are in turn eigen states of so called
Hecke operators Hp,k, k = 1, .., n acting in group algebra of Gl(n,R). The eigenvalues of
Hecke operators for the ground states of representations must correspond to the eigenvalues
of Frobenius elements if Langlands correspondence holds true.

3. The characterization of the K-valued representations of reductive groups in terms of Weyl
group WF associated with the algebraic extension K/F allows to characterize the represen-
tations in terms of homomorphisms of Weyl group to the Langlands dual GLe (F ) of G(F ).

http://tinyurl.com/yc3yrcxx
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4.4 Correspondence Between N-Dimensional Representations Of Gal(F/F )
And Representations Of GlE(N,AF ) In The Space Of Functions In
GlE(N,F )\GlE(N,AF )

The starting point is that the maximal abelian subgroup Gal(Qab/Q) of the Galois group of
algebraic closure of rationals is isomorphic to the infinite product Ẑ =

∏
p Z
×
p , where Z×p consists

of invertible p-adic integers [A15].
By introducing the ring of adeles one can transform this result to a slightly different form.

Adeles are defined as collections ((fp)p∈P , f∞), P denotes primes, fp ∈ Qp, and f∞ ∈ R, such that
fp ∈ Zp for all p for all but finitely many primes p. It is easy to convince oneself that one has

AQ = (Ẑ ⊗Z Q)×R and Q×\AQ = Ẑ × (R/Z). The basic statement of abelian class field theory
is that abelian Galois group is isomorphic to the group of connected components of F×\A×F .

This statement can be transformed to the following suggestive statement:
1) 1-dimensional representations of Gal(F/F ) correspond to representations of GLe(1, AF ) in

the space of functions defined in GLe(1, F )\GLe(1, AF ).
The basic conjecture of Langlands was that this generalizes to n-dimensional representations

of Gal(F/F ).
2) The n-dimensional representations of Gal(F/F ) correspond to representations of GLe(n,AF )

in the space of functions defined in GLe(n, F )\GLe(n,AF ).
This relation has become known as Langlands correspondence.
It is interesting to relate this approach to that discussed in this chapter.

1. In TGD framework adeles do not seem natural although p-adic number fields and l-adic
representations have a natural place also here. The new view about numbers is of course an
essentially new element allowing geometric interpretation.

2. The irreducible representations of Gal(F , F ) are assumed to reduce to those for its finite
subgroup G. If Gal(F , F ) is identifiable as S∞, finite dimensional representations cannot
correspond to ordinary unitary representations since, by argument to be represented later,
their dimension is of order order n→∞ at least. Finite Galois groups can be however inter-
preted as a sub-group of outer automorphisms defining a sub-factor of Gal(Q,Q) interpreted
as HFF. Outer automorphisms result at the limit n→∞ from a diagonal embedding of finite
Galois group to its nth Cartesian power acting as automorphisms in S∞. At the limit n→∞
the embedding does not define inner automorphisms anymore. Physicist would interpret the
situation as a spontaneous symmetry breaking.

3. These representations have a natural extension to representations of Gl(n, F ) and of general
reductive groups if also realized as point-wise symmetries of sub-factors of HFF. Continuous
groups correspond to outer automorphisms of group algebra of S∞ not inducible from outer
automorphisms of Sinfty. That finite Galois groups and Lie groups act in the same repre-
sentation space should provide completely new insights to the understanding of Langlands
correspondence.

4. The l-adic representations of Gal(Q/Q) could however change the situation. The repre-
sentations of finite permutation groups in R and in p-adic number fields p < n are more
complex and actually not well-understood [A13]. In the case of elliptic curves [A15] (say
y2 = x3 + ax + b, a, b rational numbers with 4a3 + 27b2 6= 0) so called first etale co-
homology group is Q2

l and thus 2-dimensional and it is possible to have 2-dimensional
representations Gal(Q/Q) → GLe(2, Ql). More generally, l-adic representations σ of of
Gal(F/F )→ GLe(n,Ql) is assumed to satisfy the condition that there exists a finite exten-
sion E ⊂ Ql such that σ factors through a homomorphism to GLe(n,E).

Assuming Gal(Q/Q) = S∞, one can ask whether l-adic or adelic representations and the
representations defined by outer automorphisms of sub-factors might be two alternative ways
to state the same thing.

4.4.1 Frobenius automorphism

Frobenius automorphism is one of the basic notions in Langlands correspondence. Consider a field
extension K/F and a prime ideal v of F (or prime p in case of ordinary integers). v decomposes
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into a product of prime ideals of K: v =
∏
wk if v is unramified and power of this if not. Consider

unramified case and pick one wk and call it simply w. Frobenius automorphism Frv is by definition
the generator of the Galois group Gal(K/w,F/v), which reduces to Z/nZ for some n.

Since the decomposition group Dw ⊂ Gal(K/F ) by definition maps the ideal w to itself
and preserves F point-wise, the elements of Dw act like the elements of Gal(OK/w,OF /v) (OX
denotes integers of X). Therefore there exists a natural homomorphism Dw : Gal(K/F ) →
Gal(OK/w,OF /v) (= Z/nZ for some n). If the inertia group Iw identified as the kernel of the
homomorphism is trivial then the Frobenius automorphism Frv, which by definition generates
Gal(OK/w,OF /v), can be regarded as an element of Dw and Gal(K/F ). Only the conjugacy class
of this element is fixed since any wk can be chosen.

The significance of the result is that the eigenvalues of Frp define invariants characterizing the
representations of Gal(K/F ). The notion of Frobenius element can be generalized also to the case
of Gal(Q/Q) [A15]. The representations can be also l-adic being defined in GLe(n,El) where El
is extension of Ql. In this case the eigenvalues must be algebraic numbers so that they make sense
as complex numbers.

Two examples discussed in [A15] help to make the notion more concrete.

1. For the extensions of finite fields F = G(p, 1) Frobenius automorphism corresponds to x→ xp

leaving elements of F invariant.

2. All extensions of Q having abelian Galois group correspond to so called cyclotomic extensions
defined by polynomials PN (x) = xN + 1. They have Galois group (Z/NZ)× consisting of
integers k < n which do not divide n and the degree of extension is φ(N) = |Z/NZ×|, where
φ(n) is Euler function counting the integers n < N which do not divide N . Prime p is
unramified only if it does not divide n so that the number of “bad primes” is finite. The
Frobenius equivalence class Frp in Gal(K/F ) acts as raising to pth power so that the Frp
corresponds to integer p mod n.

4.4.2 Automorphic representations and automorphic functions

In the following I want to demonstrate that I have at least tried to do my home lessons by trying
to reproduce the description of [A15] for the route from automorphic adelic representations of
GLe(2, R) to automorphic functions defined in upper half-plane.

1. Characterization of the representation

The representations of GLe(2, Q) are constructed in the space of smooth bounded functions
GLe(2, Q)\GLe(2, A) → C or equivalently in the space of GLe(2, Q) left-invariant functions in
GLe(2, A). A denotes adeles and GLe(2, A) acts as right translations in this space. The argument
generalizes to arbitrary number field F and its algebraic closure F .

1. Automorphic representations are characterized by a choice of compact subgroupK ofGLe(2, A).
The motivating idea is the central role of double coset decompositions G = K1AK2, where
Ki are compact subgroups and A denotes the space of double cosets K1gK2 in general rep-
resentation theory. In the recent case the compact group K2 ≡ K is expressible as a product
K =

∏
pKp ×O2.

To my best understandingN =
∏
pekk in the cuspidality condition gives rise to ramified primes

implying that for these primes one cannot find GL2(Zp) invariant vectors unlike for others.
In this case one must replace this kind of vectors with those invariant under a subgroup of
GL2(Zp) consisting of matrices for which the component c satisfies c mod pnp = 0. Hence
for each unramified prime p one has Kp = GLe(2, Zp). For ramified primes Kp consists of
SLe(2, Zp) matrices with c ∈ pnpZp. Here pnp is the divisor of conductor N corresponding to
p. K-finiteness condition states that the right action of K on f generates a finite-dimensional
vector space.

2. The representation functions are eigen functions of the Casimir operator C of gl(2, R) with
eigenvalue ρ so that irreducible representations of gl(2, R) are obtained. An explicit repre-
sentation of Casimir operator is given by
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C =
X2

0

4
+X+X −+X−X+ ,

where one has

X0

(
0 i
−i 0

)
,

(
1 ∓i
∓i −1

)
.

3. The center A× of GLe(2, A) consists of A× multiples of identity matrix and it is assumed
f(gz) = χ(z)f(g), where χ : A× → C is a character providing a multiplicative representation
of A×.

4. Also the so called cuspidality condition∫
Q\NA

f(

(
1 u
0 1

)
g)du = 0

is satisfied [A15]. Note that the integration measure is adelic. Note also that the transfor-
mations appearing in integrand are an adelic generalization of the 1-parameter subgroup of
Lorentz transformations leaving invariant light-like vector. The condition implies that the
modular functions defined by the representation vanish at cusps at the boundaries of funda-
mental domains representing copies Hu/Γ0(N), where N is so called conductor. The “basic”
cusp corresponds to τ = i∞ for the “basic” copy of the fundamental domain.

The groups gl(2, R), O(2) and GLe(2, Qp) act non-trivially in these representations and it can
be shown that a direct sum of irreps of GLe(2, AF )×gl(2, R) results with each irrep occurring
only once. These representations are known as cuspidal automorphic representations.

The representation space for an irreducible cuspidal automorphic representation π is tensor
product of representation spaces associated with the factors of the adele. To each factor one can
assign ground state which is for un-ramified prime invariant under Gl2(Zp) and in ramified case
under Γ0(N). This ground states is somewhat analogous to the ground state of infinite-dimensional
Fock space.

2. From adeles to Γ0(N)\SLe(2, R)

The path from adeles to the modular forms in upper half plane involves many twists.

1. By so called central approximation theorem the group GLe(2, Q)\GLe(2, A)/K is isomor-
phic to the group Γ0(N)\GL+(2, R), where N is conductor [A15]. This means enormous
simplification since one gets ride of the adelic factors altogether. Intuitively the reduction
corresponds to the possibility to interpret rational number as collection of infinite number of
p-adic rationals coming as powers of primes so that the element of Γ0(N) has interpretation
also as Cartesian product of corresponding p-adic elements.

2. The group Γ0(N) ⊂ SLe(2, Z) consists of matrices(
a b
c d

)
, c mod N = 0.

+ refers to positive determinant. Note that Γ0(N) contains as a subgroup congruence sub-
group Γ(N) consisting of matrices, which are unit matrices modulo N . Congruence subgroup
is a normal subgroup of SLe(2, Z) so that also SLe(2, Z)/Γ0(N) is group. Physically modular
group Γ(N) would be rather interesting alternative for Γ0(N) as a compact subgroup and
the replacement Kp = Γ0(pkp) → Γ(pkp) of p-adic groups adelic decomposition is expected
to guarantee this.

3. Central character condition together with assumptions about the action of K implies that the
smooth functions in the original space (smoothness means local constancy in p-adic sectors:
does this mean p-adic pseudo constancy?) are completely determined by their restrictions to
Γ0(N)\SLe(2, R) so that one gets rid of the adeles.
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3. From Γ0(N)\SLe(2, R) to upper half-plane Hu = SLe(2, R)/SO(2)

The representations of (gl(2, C), O(2)) come in four categories corresponding to principal series,
discrete series, the limits of discrete series, and finite-dimensional representations [A15]. For the
discrete series representation π giving square integrable representation in SLe(2, R) one has ρ =
k(k− 1)/4, where k > 1 is integer. As sl2 module, π∞ is direct sum of irreducible Verma modules
with highest weight −k and lowest weight k. The former module is generated by a unique, up to
a scalar, highest weight vector v∞ such that

X0v∞ = −kv∞ , X+v∞ = 0 .

The latter module is in turn generated by the lowest weight vector(
1 0
0 −1

)
v∞ .

This means that entire module is generated from the ground state v∞, and one can focus to the
function φπ on Γ0(N)\SLe(2, R) corresponding to this vector. The goal is to assign to this function
SO(2) invariant function defined in the upper half-plane Hu = SLe(2, R)/SO(2), whose points can
be parameterized by the numbers τ = (a + bi)/(c + di) determined by SLe(2, R) elements. The
function fπ(g) = φπ(g)(ci + d)k indeed is SO(2) invariant since the phase exp(ikφ) resulting in
SO(2) rotation by φ is compensated by the phase resulting from (ci + d) factor. This function is
not anymore Γ0(N) invariant but transforms as

fπ((aτ + b)/(cτ + d)) = (cτ + d)kfπ(τ)

under the action of Γ0(N) The highest weight condition X+v∞ implies that f is holomorphic
function of τ . Such functions are known as modular forms of weight k and level N . It would seem
that the replacement of Γ0(N) suggested by physical arguments would only replace Hu/Γ0(N)
with Hu/Γ(N).

fπ can be expanded as power series in the variable q = exp(2πτ) to give

fπ(q) =

∞∑
n=0

anq
n . (4.1)

Cuspidality condition means that fπ vanishes at the cusps of the fundamental domain of the action
of Γ0(N) on Hu. In particular, it vanishes at q = 0 which which corresponds to τ = −∞. This
implies a0 = 0. This function contains all information about automorphic representation.

4.4.3 Hecke operators

Spherical Hecke algebra (which must be distinguished from non-commutative Hecke algebra asso-
ciated with braids) can be defined as algebra of GLe(2, Zp) bi-invariant functions on GLe(2, Qp)
with respect to convolution product. This algebra is isomorphic to the polynomial algebra in two
generators H1,p and H2,p and the ground states vp of automorphic representations are eigenstates
of these operators. The normalizations can be chosen so that the second eigenvalue equals to unity.
Second eigenvalue must be an algebraic number. The eigenvalues of Hecke operators Hp,1 corre-
spond to the coefficients ap of the q-expansion of automorphic function fπ so that fπ is completely
determined once these coefficients carrying number theoretic information are known [A15].

The action of Hecke operators induces an action on the modular function in the upper half-plane
so that Hecke operators have also representation as what is known as classical Hecke operators.
The existence of this representation suggests that adelic representations might not be absolutely
necessary for the realization of Langlands program.

From TGD point of view a possible interpretation of this picture is in terms of modular invari-
ance. Teichmueller parameters of algebraic Riemann surface are affected by absolute Galois group.
This induces Sl(2g, Z) transformation if the action does not change the conformal equivalence class
and a more general transformation when it does. In the Gl2 case discussed above one has g = 1
(torus). This change would correspond to non-trivial cuspidality conditions implying that ground
state is invariant only under subgroup of Gl2(Zp) for some primes. These primes would correspond
to ramified primes in maximal Abelian extension of rationals.
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