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Abstract

This chapter represents the most recent (2014) view about particle massivation in TGD
framework. This topic is necessarily quite extended since many several notions and new
mathematics is involved. Therefore the calculation of particle masses involves five chapters. In
this chapter my goal is to provide an up-to-date summary whereas the chapters are unavoidably
a story about evolution of ideas.

The identification of the spectrum of light particles reduces to two tasks: the construction
of massless states and the identification of the states which remain light in p-adic thermo-
dynamics. The latter task is relatively straightforward. The thorough understanding of the
massless spectrum requires however a real understanding of quantum TGD. It would be also
highly desirable to understand why p-adic thermodynamics combined with p-adic length scale
hypothesis works. A lot of progress has taken place in these respects during last years.

1. Physical states as representations of super-symplectic and Super Kac-Moody algebras

The basic constraint is that the super-conformal algebra involved must have five tensor
factors. The precise identification of the Kac-Moody type algebra has however turned out to
be a difficult task. The recent view is as follows. Electroweak algebra U(2)ew = SU(2)L×U(1)
and symplectic isometries of light-cone boundary (SU(2)rot × SU(3)c) give 2+2 factors and
full supersymplectic algebra involving only covariantly constant right-handed neutrino mode
would give 1 factor. This algebra could be associated with the 2-D surfaces X2 defined by the
intersections of light-like 3-surfaces with δM4

± ×CP2. These 2-surfaces have interpretation as
partons.

For conformal algebra there are several candidates. For symplectic algebra radial light-like
coordinate of light-cone boundary replaces complex coordinate. Light-cone boundary S2×R+

allows extended conformal symmetries which can be interpreted as conformal transformations
of S2 depending parametrically on the light-like coordinate of R+. There is infinite-D subgroup
of conformal isometries with S2 dependent radial scaling compensating for the conformal
scaling in S2. Kähler-Dirac equation allows ordinary conformal symmetry very probably
liftable to embedding space. The light-like orbits of partonic 2-surface are expected to allow
super-conformal symmetries presumably assignable to quantum criticality and hierarchy of
Planck constants. How these conformal symmetries integrate to what is expected to be 4-D
analog of 2-D conformal symmetries remains to be understood.

Yangian algebras associated with the super-conformal algebras and motivated by twistorial
approach generalize the super-conformal symmetry and make it multi-local in the sense that
generators can act on several partonic 2-surfaces simultaneously. These partonic 2-surfaces
generalize the vertices for the external massless particles in twistor Grassmann diagrams [?]
The implications of this symmetry are yet to be deduced but one thing is clear: Yangians are
tailor made for the description of massive bound states formed from several partons identified
as partonic 2-surfaces. The preliminary discussion of what is involved can be found in [?]

2. Particle massivation

Particle massivation can be regarded as a generation of thermal mass squared and due to a
thermal mixing of a state with vanishing conformal weight with those having higher conformal
weights. The obvious objection is that Poincare invariance is lost. One could argue that one
calculates just the vacuum expectation of conformal weight so that this is not case. If this is
not assumed, one would have in positive energy ontology superposition of ordinary quantum
states with different four-momenta and breaking of Poincare invariance since eigenstates of
four-momentum are not in question. In Zero Energy Ontology this is not the case since all
states have vanishing net quantum numbers and one has superposition of time evolutions with
well-defined four-momenta. Lorentz invariance with respect to the either boundary of CD is
achieved but there is small breaking of Poincare invariance characterized by the inverse of
p-adic prime p characterizing the particle. For electron one has 1/p = 1/M127 ∼ 10−38.

One can imagine several microscopic mechanisms of massivation. The following proposal
is the winner in the fight for survival between several competing scenarios.

1. Instead of energy, the Super Kac-Moody Virasoro (or equivalently super-symplectic) gen-
erator L0 (essentially mass squared) is thermalized in p-adic thermodynamics (and also in
its real version assuming it exists). The fact that mass squared is thermal expectation of
conformal weight guarantees Lorentz invariance. That mass squared, rather than energy,
is a fundamental quantity at CP2 length scale is also suggested by a simple dimensional
argument (Planck mass squared is proportional to ~ so that it should correspond to a
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generator of some Lie-algebra (Virasoro generator L0!)). What basically matters is the
number of tensor factors involved and five is the favored number.

2. There is also a modular contribution to the mass squared, which can be estimated using
elementary particle vacuum functionals in the conformal modular degrees of freedom of
the partonic 2-surface. It dominates for higher genus partonic 2-surfaces. For bosons
both Virasoro and modular contributions seem to be negligible and could be due to the
smallness of the p-adic temperature.

3. A natural identification of the non-integer contribution to the mass squared is as stringy
contribution to the vacuum conformal weight (strings are now “weak strings”). TGD
predicts Higgs particle and Higgs is necessary to give longitudinal polarizations for gauge
bosons. The notion of Higgs vacuum expectation is replaced by a formal analog of Higgs
vacuum expectation giving a space-time correlate for the stringy mass formula in case of
fundamental fermions. Also gauge bosons usually regarded as exactly massless particles
would naturally receive a small mass from p-adic thermodynamics. The theoretetical
motivation for a small mass would be exact Yangian symmetry which broken at the
QFT limit of the theory using GRT limit of many-sheeted space-time.

4. Hadron massivation requires the understanding of the CKM mixing of quarks reducing
to different topological mixing of U and D type quarks. Number theoretic vision suggests
that the mixing matrices are rational or algebraic and this together with other constraints
gives strong constraints on both mixing and masses of the mixed quarks.

p-Adic thermodynamics is what gives to this approach its predictive power.

1. p-Adic temperature is quantized by purely number theoretical constraints (Boltzmann
weight exp(−E/kT ) is replaced with pL0/Tp , 1/Tp integer) and fermions correspond to
Tp = 1 whereas Tp = 1/n, n > 1, seems to be the only reasonable choice for gauge
bosons.

2. p-Adic thermodynamics forces to conclude that CP2 radius is essentially the p-adic length
scale R ∼ L and thus of order R ' 103.5

√
~G and therefore roughly 103.5 times larger

than the naive guess. Hence p-adic thermodynamics describes the mixing of states with
vanishing conformal weights with their Super Kac-Moody Virasoro excitations having
masses of order 10−3.5 Planck mass.

1 Introduction

This chapter represents the most recent view about particle massivation in TGD framework. This
topic is necessarily quite extended since many several notions and new mathematics is involved.
Therefore the calculation of particle masses involves five chapters [K1, K7, K12, K8, K9] of [K11].
In the following my goal is to provide an up-to-date summary whereas the chapters are unavoidably
a story about evolution of ideas.

The identification of the spectrum of light particles reduces to two tasks: the construction of
massless states and the identification of the states which remain light in p-adic thermodynamics.
The latter task is relatively straightforward. The thorough understanding of the massless spectrum
requires however a real understanding of quantum TGD. It would be also highly desirable to
understand why p-adic thermodynamics combined with p-adic length scale hypothesis works. A
lot of progress has taken place in these respects during last years.

Zero energy ontology providing a detailed geometric view about bosons and fermions, the
generalization of S-matrix to what I call M -matrix, the notion of finite measurement resolution
characterized in terms of inclusions of von Neumann algebras, the derivation of p-adic coupling
constant evolution and p-adic length scale hypothesis from the first principles, the realization
that the counterpart of Higgs mechanism involves generalized eigenvalues of the Kähler-Dirac
operator: these are represent important steps of progress during last years with a direct relevance
for the understanding of particle spectrum and massivation although the predictions of p-adic
thermodynamics are not affected.

Since 2010 a further progress took place. These steps of progress relate closely to ZEO, bosonic
emergence, the discovery of the weak form of electric-magnetic duality, the realization of the
importance of twistors in TGD, and the discovery that the well-definedness of em charge forces the
modes of Kähler-Dirac operator to 2-D surfaces - string world sheets and possibly also partonic
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2-surfaces. This allows to assign to elementary particle closed string with pieces at two parallel
space-time sheets and accompanying a Kähler magnetic flux tube carrying monopole flux.

Twistor approach and the understanding of the solutions of Kähler-Dirac Dirac operator served
as a midwife in the process giving rise to the birth of the idea that all fundamental fermions are
massless and that both ordinary elementary particles and string like objects emerge from them.
Even more, one can interpret virtual particles as being composed of these massless on mass shell
particles assignable to wormhole throats. Four-momentum conservation poses extremely powerful
constraints on loop integrals but does not make them manifestly finite as believed first. String
picture is necessary for getting rid of logarithmic divergences.

The weak form of electric-magnetic duality led to the realization that elementary particles
correspond to bound states of two wormhole throats with opposite Kähler magnetic charges with
second throat carrying weak isospin compensating that of the fermion state at second wormhole
throat. Both fermions and bosons correspond to wormhole contacts: in the case of fermions
topological condensation generates the second wormhole throat. This means that altogether four
wormhole throats are involved with both fermions, gauge bosons, and gravitons (for gravitons this
is unavoidable in any case). For p-adic thermodynamics the mathematical counterpart of string
corresponds to a wormhole contact with size of order CP2 size with the role of its ends played by
wormhole throats at which the signature of the induced 4-metric changes. The key observation
is that for massless states the throats of spin 1 particle must have opposite three-momenta so
that gauge bosons are necessarily massive, even photon and other particles usually regarded as
massless must have small mass which in turn cancels infrared divergences and give hopes about
exact Yangian symmetry generalizing that of N = 4 SYM. Besides this there is weak “stringy”
contribution to the mass assignable to the magnetic flux tubes connecting the two wormhole throats
at the two space-time sheets.

One cannot avoid the question about the relation between p-adic mass calculations and Higgs
mechanism. Higgs is predicted but does the analog of Higgs vacuum expectation emerge as the
existence of QFT limit would suggest? Boundary conditions for Kähler-Dirac action with mea-
surement interaction term for four-momentum lead to what looks like an as algebraic variant of
masssless Dirac equation in Minkowski space coupled to the analog of Higgs vacuum expectation
value restricted at fermionic strings. This equation does not however provide an analog of Higgs
mechanism but a space-time correlate for the stringy mass formula coming from the vanishing of
the scaling generator L0 of superconformal algbra. It could also give a first principle explanation
for the necessarily tachyonic ground state with half integer conformal weight.

For p-adic thermodynamics the mathematical counterpart of string corresponds to a wormhole
contact with size of order CP2 size with the role of its ends played by wormhole throats at which
the signature of the induced 4-metric changes. The key observation is that for massless states the
throats of spin 1 particle must have opposite three-momenta so that gauge bosons are necessarily
massive, even photon and other particles usually regarded as massless must have small mass which
in turn cancels infrared divergences and give hopes about exact Yangian symmetry generalizing
that of N = 4 SYM.

Besides this there is weak “stringy” contribution to the mass assignable to the magnetic flux
tubes connecting the two wormhole throats at the two space-time sheets. In fact, this contribution
can be assigned to the additional conformal weight assignable to the stringy curve. The extension
of this conformal algebra to Yangian brings in third integer characterizing the poly-locality of
the Yangian generator (n-local generator acts on n partonic 2-surfaces simultaneously. Therefore
three integers would characterize the generators of the full symmetry algebra as the very naive
expectation on basis of 3-dimensionality of the fundamental objects would suggest. p-Adic mass
calculations should be carried out for Yangian generalization of p-adic thermodynamics.

1.1 Physical States As Representations Of Super-Symplectic And Super
Kac-Moody Algebras

Physical states belong to the representations of super-symplectic algebra and Super Kac-Moody
algebran. The precise identification of the two algebras has been rather tedious task but the recent
progress in the construction of WCW geometry and spinor structure led to a considerable progress
in this respect [K14].
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1. In the generic case the generators of both algebras receive information from 1-D ends of
2-D string world sheets at which the modes of induced spinor fields are localized by the
condition that the modes are eigenstates of electromagnetic charge. Right-handed neutrino
is an exception since it has no electroweak couplings. One must however require that right-
handed neutrino does not mix with the left-handed one if the mode is de-localized at entire
space-time sheet.

Either the preferred extremal is such that Kähler-Dirac gamma matrices defined in terms of
canonical momentum currents of Kähler action consist of only M4 or CP2 type flat space
gammas so that there is no mixing with the left-handed neutrino. Or the CP2 and M4 parts
of the Kähler Dirac operator annihilate the right-handed neutrino mode separately. One can
of course have also modes which are mixtures of right- and left handed neutrinos but these
are necessarily localized at string world sheets.

2. The definition of super generator involves integration of string curve at the boundary of causal
diamond (CD) so that the generators are labelled by two conformal weights: that associated
with the radial light-like coordinate and that assignable with the string curve. This strongly
suggests that the algebra extends to a 4-D Yangian involving multi-local generators (locus
means partonic surface now) assignable to various partonic surfaces at the boundaries of CD
- as indeed suggested [K19].

3. As before, the symplectic algebra corresponds to a super-symplectic algebra assignable to
symplectic transformations of δM4

± × CP2. One can regard this algebra as a symplectic
algebra of S2 × CP2 localized with respect to the light-like radial coordinate rM taking the
role of complex variable z in conformal field theories. Super-generators are linear in the
modes of right-handed neutrino. Covariantly constant mode and modes decoupling from
left-handed neutrino define the most important modes.

4. Second algebra corresponds to the Super Kac-Moody algebra. The corresponding Lie algebra
generates symplectic isometries of δM4

±×CP2. Fermionic generators are linear in the modes
of induced spinor field with non-vanishing electroweak quantum numbers: that is left-hand
neutrinos, charged leptons, and quarks.

5. The overall important conclusion is that overall Super Virasoro algebra has five tensor factors
corresponding to one tensor factor for super-symplectic algebra, and 4 tensor factors for Super
Kac-Moody algebra SO(2) × SU(3) × SU(2)rot × U(2)ew (CP2 isometries, S2 isometries,
electroweak SU(2)ew × U(1)). This is essential for mass calculations.

What looks like the most plausible option relies on the generalization of a coset construction
proposed already for years ago but badly mis-interpreted. The construction itself is strongly
supported and perhaps even forced by the vision that WCW is union of homogenous or even
symmetric spaces of form G/H [K14], where G is the isometry group of WCW and H its subgroup
leaving invariant the chosen point of WCW (say the 3-surface corresponding to a maximum of
Kähler function in Euclidian regions and stationary point of the Morse function defined by Kähler
action for Minkowskian space-time regions). It seems clear that only the Super Virasoro associated
with G can involve four-momentum so that the original idea that there are two identical four-
momenta identifiable as gravitational and inertial four-momenta must be given up. This boils dow
to the following picture.

1. Assume a generalization of the coset construction so that the differences of G and H super-
conformal generators On annihilate the physical states: (On(G)−On(H))|phys〉 = 0.

2. In zero energy ontology (ZEO) p-adic thermodynamics must be replaced with its square
root so that one consideres genuine quantum states rather than thermodynamical states.
Hence the system is quantum coherent. In the simplest situation this implies only that
thermodynamical weights are replaced by their square roots possibly multiplied by square
roots irrelevant for the mass squared expectation value.

3. Construct first ground states with negative conformal weight annihilated by G and H gen-
erators Gn, Ln, n < 0. Apply to these states generators of tensor factors of Super Viraroso
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algebras to obtain states with vanishing G and H conformal weights. After this construct
thermal states as superpositions of states obtained by applying H generators and corre-
sponding G generators Gn,Ln, n > 0. Assume that these states are annihilated by G and H
generators Gn, Ln,n > 0 and by the differences of all G and H generators.

4. Super-symplectic algebra represents a completely new element and in the case of hadrons
the non-perturbative contribution to the mass spectrum is easiest to understand in terms of
super-symplectic thermal excitations contributing roughly 70 per cent to the p-adic thermal
mass of the hadron.

Yangian algebras associated with the super-conformal algebras and motivated by twistorial
approach generalize the already generalized super-conformal symmetry and make it multi-local in
the sense that generators can act on several partonic 2-surfaces simultaneously. These partonic
2-surfaces generalize the vertices for the external massless particles in twistor Grassmann diagrams
[K19]. The implications of this symmetry are yet to be deduced but one thing is clear: Yangians
are tailor made for the description of massive bound states formed from several partons identified
as partonic 2-surfaces. The preliminary discussion of what is involved can be found in [K19].

1.2 Particle Massivation

Particle massivation can be regarded as a generation of thermal conformal weight identified as
mass squared and due to a thermal mixing of a state with vanishing conformal weight with those
having higher conformal weights. The observed mass squared is not p-adic thermal expectation of
mass squared but that of conformal weight so that there are no problems with Lorentz invariance.

One can imagine several microscopic mechanisms of massivation. The following proposal is the
winner in the fight for survival between several competing scenarios.

The original observation was that the pieces of CP2 type vacuum extremals representing ele-
mentary particles have random light-like curve as an M4 projection so that the average motion
correspond to that of massive particle. Light-like randomness gives rise to classical Virasoro con-
ditions. This picture generalizes since the basic dynamical objects are light-like but otherwise
random 3-surfaces. The identification of elementary particles developed in three steps.

1. Originally germions were identified as light-like 3-surfaces at which the signature of induced
metric of deformed CP2 type extremals changes from Euclidian to the Minkowskian signature
of the background space-time sheet. Gauge bosons and Higgs were identified as wormhole
contacts with light-like throats carrying fermion and anti-fermion quantum numbers. Gravi-
tons were identified as pairs of wormhole contacts bound to string like object by the fluxes
connecting the wormhole contacts. The randomness of the light-like 3-surfaces and associ-
ated super-conformal symmetries justify the use of thermodynamics and the question remains
why this thermodynamics can be taken to be p-adic. The proposed identification of bosons
means enormous simplification in thermodynamical description since all calculations reduced
to the calculations to fermion level. This picture generalizes to include super-symmetry.
The fermionic oscillator operators associated with the partonic 2-surfaces act as generators
of badly broken SUSY and right-handed neutrino gives to the not so badly broken N = 1
SUSY consistent with empirical facts.

Of course, “badly” is relative notion. It is quite possible that the mixing of right-handed
neutrino with left-handed one becomes important only in CP2 scale and causes massivation.
Hence spartners might well have mass of order CP2 mass scale. The question about the mass
scale of right-handed neutrino remains open.

2. The next step was to realize that the topological condensation of fermion generates second
wormhole throat which carries momentum and symplectic quantum numbers but no fermionic
quantum numbers. This is also needed to the massivation by p-adic thermodynamics applied
to the analogs of string like objects defined by wormhole throats with throats taking the role
of string ends. p-Adic thermodynamics did not however allow a satisfactory understanding
of the gauge bosons masses and it became clear that some additional contribution - maybe
Higgsy or stringy contribution - dominates for weak gauge bosons. Gauge bosons should
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also somehow obtain their longitudinal polarizations and here Higgs like particles indeed
predicted by the basic picture suggests itself strongly.

3. A further step was the discovery of the weak form of electric-magnetic duality, which led
to the realization that wormhole throats possess Kähler magnetic charge so that a wormole
throat with opposite magnetic charge is needed to compensate this charge. This wormhole
throat can also compensate the weak isospin of the second wormhole throat so that weak
confinement and massivation results. In the case of quarks magnetic confinement might take
place in hadronic rather than weak length scale. Second crucial observation was that gauge
bosons are necessarily massive since the light-like momenta at two throats must correspond
to opposite three-momenta so that no Higgs potential is needed. This leads to a picture in
which gauge bosons eat the Higgs scalars and also photon, gluons, and gravitons develop
small mass.

4. A further step was the realization that although the existence of Higgs is established, it
need not contribute to neither fermion or gauge boson masses. CP2 geometry does not
even allow covariantly constant holomorphic vector field as a representation for the vacuum
expectation value of Higgs. Elementary particles are string like objects and string tension
can give additional contribution to the mass squared. This would explain the large masses
of weak bosons as compared to the mass of photon predicted also to be non-vanishing in
principle. Also a small contribution to fermion masses is expected.

Higgs vacuum expectation would be replaced with the stringy contribution to the mass
squared, which by perturbative argument should apart from normalization factor have the
form ∆m2 ∝ g2T , where g is the gauge coupling assignable to the weak boson, and T is the
analog of hadronic string tension but in weak scale. This predicts correctly the ratio of W
and Z boson masses in terms of Weinberg angle.

5. The conformal weight characterizing fermionic masses in p-adic thermodynamics can be
assigned to the very short piece of string connecting the opposite throats of wormhole contact.
The conformal weight associated with the long string connecting the throats of two wormhole
contacts should give the dominant contribution to the masses of weak gauge bosons. Five
tensor factors are needed in super-conformal algebra and super-symplectic and super-Kac
Moody contributions assignable to symplectic isometries give five factors.

One can assign conformal weights to both the light-like radial coordinate rM of δM4
± and

string. A third integer-valued quantum number comes from the extension of the extended
super-conformal algebra to multi-local Yangian algebra. Yangian extension should take place
for quark wormhole contacts inside hadrons and give non-perturbative multi-local contribu-
tions to hadron masses and might explain most of hadronic mass since quark contribution
is very small. That three integers classify states conforms with the very naive first guess
inspired by 3-dimensionality of the basic objects.

The details of the picture are however still fuzzy. Are the light-like radial and stringy con-
formal weights really independent quantum numbers as it seems? These conformal weights
however must be additive in the expression for mass squared to get five tensor factors. Could
one identify stringy coordinate with the light-like radial coordinate rM in Minkowskian space-
time regions to explain the additivity? The dominating contribution to the vacuum conformal
weight must be negative and half-integer valued. What is the origin of this tachyonic contri-
bution?

The fundamental parton level description of TGD is based on almost topological QFT for
light-like 3-surfaces.

1. Dynamics is constrained by the requirement that CP2 projection is for extremals of Chern-
Simons action 2-dimensional and for off-shell states light-likeness is the only constraint.
Chern-Simons action and its Dirac counterpart result as boundary terms of Kähler action
and its Dirac counterpart for preferred extremals. This requires that j · A contribution to
Kähler action vanishes for preferred extremals plus weak form of electric-magnetic duality.

The addition of 3-D measurement interaction term - essentially Dirac action associated with
3-D light-like orbits of partonic 2-surfaces implies that Chern-Simons Dirac operator plus
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Lagrangian multiplier term realizing the weak form of electric magnetic duality acts like
massless M4 Dirac operator assignable to the four-momentum propagating along the line
of generalized Feynman diagram. This simplifies enormously the definition of the Dirac
propagator needed in twistor Grassmannian approach [K19].

2. That mass squared, rather than energy, is a fundamental quantity at CP2 length scale is
besides Loretnz invariance suggested by a simple dimensional argument (Planck mass squared
is proportional to ~ so that it should correspond to a generator of some Lie-algebra (Virasoro
generator L0!)).

Mass squared is identified as the p-adic thermal expectation value of mass squared operator
m2 appearing as M4 contribution in the scaling generator L0(G) in the superposition of states
with vanishing total conformal weight but with varying mass squared eigenvalues associated
with the difference L0(G) − L0(H) annihilating the physical state. This definition does not
break Lorentz invariance in zero energy ontology. The states appearing in the superposition
of different states with vanishing total conformal weight give different contribution to the p-
adic thermodynamical expectation defining mass squared and the ability to physically observe
this as massivation might be perhaps interpreted as breaking of conformal invariance.

3. There is also a modular contribution to the mass squared, which can be estimated using
elementary particle vacuum functionals in the conformal modular degrees of freedom of the
partonic 2-surface. It dominates for higher genus partonic 2-surfaces. For bosons both
Virasoro and modular contributions seem to be negligible and could be due to the smallness
of the p-adic temperature.

4. A long standing problem has been whether coupling to Higgs boson is needed to explain gauge
boson masses via a generation of Higgs vacuum expectation having possibly interpretation in
terms of a coherent state. Before the detailed model for elementary particles in terms of pairs
of wormhole contacts at the ends of flux tubes the picture about the situation was as follows.
From the beginning it was clear that is that ground state conformal weight must be negative.
Then it became clear that the ground state conformal weight need not be a negative integer.
The deviation ∆h of the total ground state conformal weight from negative integer gives rise
to stringy contribution to the thermal mass squared and dominates in case of gauge bosons
for which p-adic temperature is small. In the case of fermions this contribution to the mass
squared is small. The possible Higgs vacuum expectation makes sense only at QFT limit
perhaps allowing to describe the Yangian aspects, and would be naturally proportional to
∆h so that the coupling to Higgs would only apparently cause gauge boson massivation.

5. A natural identification of the non-integer contribution to the conformal weight is as stringy
contribution to the vacuum conformal weight. In twistor approach the generalized eigenvalues
of Chern-Simons Dirac operator for external particles indeed correspond to light-like momenta
and when the three-momenta are opposite this gives rise to non-vanishing mass. Higgs is
necessary to give longitudinal polarizations for weak gauge bosons.

An important question concerns the justification of p-adic thermodynamics.

1. The underlying philosophy is that real number based TGD can be algebraically continued to
various p-adic number fields. This gives justification for the use of p-adic thermodynamics
although the mapping of p-adic thermal expectations to real counterparts is not completely
unique. The physical justification for p-adic thermodynamics is effective p-adic topology
characterizing the 3-surface: this is the case if real variant of light-like 3-surface has large
number of common algebraic points with its p-adic counterpart obeying same algebraic equa-
tions but in different number field. In fact, there is a theorem stating that for rational surfaces
the number of rational points is finite and rational (more generally algebraic points) would
naturally define the notion of number theoretic braid essential for the realization of number
theoretic universality.

2. The most natural option is that the descriptions in terms of both real and p-adic thermody-
namics make sense and are consistent. This option indeed makes if the number of generalized
eigen modes of Kähler-Dirac operator is finite. This is indeed the case if one accepts periodic
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boundary conditions for the Chern-Simons Dirac operator. In fact, the solutions are localized
at the strands of braids. This makes sense because the theory has hydrodynamic interpreta-
tion. This reduces N = ∞ to finite SUSY and realizes finite measurement resolution as an
inherent property of dynamics.

The finite number of fermionic oscillator operators implies an effective cutoff in the number
conformal weights so that conformal algebras reduce to finite-dimensional algebras. The
first guess would be that integer label for oscillator operators becomes a number in finite
field for some prime. This means that one can calculate mass squared also by using real
thermodynamics but the consistency with p-adic thermodynamics gives extremely strong
number theoretical constraints on mass scale. This consistency condition allows also to solve
the problem how to map a negative ground state conformal weight to its p-adic counterpart.
Negative conformal weight is divided into a negative half odd integer part plus positive part
∆h, and negative part corresponds as such to p-adic integer whereas positive part is mapped
to p-adic number by canonical identification.

p-Adic thermodynamics is what gives to this approach its predictive power.

1. p-Adic temperature is quantized by purely number theoretical constraints (Boltzmann weight
exp(−E/kT ) is replaced with pL0/Tp , 1/Tp integer) and fermions correspond to Tp = 1
whereas Tp = 1/n, n > 1, seems to be the only reasonable choice for gauge bosons.

2. p-Adic thermodynamics forces to conclude that CP2 radius is essentially the p-adic length
scale R ∼ L and thus of order R ' 103.5

√
~G and therefore roughly 103.5 times larger than

the naive guess. Hence p-adic thermodynamics describes the mixing of states with vanishing
conformal weights with their Super Kac-Moody Virasoro excitations having masses of order
10−3.5 Planck mass.

1.3 What Next?

The successes of p-adic mass calculations are basically due to the power of super-conformal sym-
metries and of number theory. One cannot deny that the description of the gauge boson and
hadron massivation involves phenomenological elements. There are however excellent hopes that
it might be possible some day to calculate everything from first principles. The non-local Yangian
symmetry generalizing the super-conformal algebras suggests itself strongly as a fundamental sym-
metry of quantum TGD. The generalized of the Yangian symmetry replaces points with partonic
2-surfaces being multi-local with respect to them, and leads to general formulas for multi-local
operators representing four-momenta and other conserved charges of composite states.

In TGD framework even elementary particles involve two wormhole contacts having each two
wormhole throats identified as the fundamental partonic entities. Therefore Yangian approach
would naturally define the first principle approach to the understanding of masses of elementary
particles and their bound states (say hadrons). The power of this extended symmetry might be
enough to deduce universal mass formulas. One of the future challenges would therefore be the
mathematical and physical understanding of Yangian symmetry. This would however require the
contributions of professional mathematicians.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
Pdf representation of same files serving as a kind of glossary can be found at http://tgdtheory.
fi/tgdglossary.pdf [L2].

2 Identification Of Elementary Particles

2.1 Partons As Wormhole Throats And Particles As Bound States Of
Wormhole Contacts

The assumption that partonic 2-surfaces correspond to representations of Super Virasoro algebra
has been an unchallenged assumption of the p-adic mass calculations for a long time although
one might argue that these objects do not possess stringy characteristics, in particular they do
not possess two ends. The progress in the understanding of the Kähler-Dirac equation and the

http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
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introduction of the weak form of electric magnetic duality [K22] however forces to modify the
picture about the origin of the string mass spectrum.

1. The weak form of electric-magnetic duality, the basic facts about Kähler-Dirac equation and
the proposed twistorialization of quantum TGD [K19] force to conclude that both strings
and bosons and their super-counterparts emerge from massless fermions moving collinearly
at partonic two-surfaces. Stringy mass spectrum is consistent with this only if p-adic thermo-
dynamics describes wormhole contacts as analogs of stringy objects having quantum numbers
at the throats playing the role of string ends. For instance, the three-momenta of massless
wormhole throats could be in opposite direction so that wormhole contact would become
massive. The fundamental string like objects would therefore correspond to the wormhole
contacts with size scale of order CP2 length. Already these objects must have a correct
correlation between color and electroweak quantum numbers. The colored super-generators
taking care that anomalous color is compensated can be assigned with purely bosonic quanta
associated with the wormhole throats which carry no fermion number.

2. Second modification comes from the necessity to assume weak confinement in the sense that
each wormhole throat carrying fermionic numbers is accompanied by a second wormhole
throat carrying neutrino pair cancelling the net weak isospin so that only electromagnetic
charge remains unscreened. This screening must take place in weak length scale so that
ordinary elementar particles are predicted to be string like objects. This string tension
has however nothing to do with the fundamental string tension responsible for the mass
spectrum. This picture is forced also by the fact that fermionic wormhole throats necessarily
carry Kähler magnetic charge [K22] so that in the case of leptons the second wormhole throat
must carry a compensating Kähler magnetic charge. In the case of quarks one can consider
the possibility that magnetic charges are not neutralized completely in weak scale and that
the compensation occurs in QCD length scale so that Kähler magnetic confinement would
accompany color confinement. This means color magnetic confinement since classical color
gauge fields are proportional to induced Kähler field.

These modifications do not seem to appreciably affect the results of calculations, which depend
only on the number of tensor factors in super Virasoro representation, they are not taken explicitly
into account in the calculations. The predictions of the general theory are consistent with the
earliest mass calculations, and the earlier ad hoc parameters disappear. In particular, optimal
lowest order predictions for the charged lepton masses are obtained and photon, gluon and graviton
appear as essentially massless particles. What is new is the possibility to describe the massivation
of gauge bosons by including the contribution from the string tension of weak string like objects:
weak boson masses have indeed been the trouble makers and have forced to conclude that Higgs
expectation might be needed unless some other mechanism contributes to the conformal vacuum
weight of the ground state.

2.2 Family Replication Phenomenon Topologically

One of the basic ideas of TGD approach has been genus-generation correspondence: boundary
components of the 3-surface should be carriers of elementary particle numbers and the observed
particle families should correspond to various boundary topologies.

With the advent of ZEO this picture changed somewhat. It is the wormhole throats identified
as light-like 3-surfaces at with the induced metric of the space-time surface changes its signature
from Minkowskian to Euclidian, which correspond to the light-like orbits of partonic 2-surfaces.
One cannot of course exclude the possibility that also boundary components could allow to satisfy
boundary conditions without assuming vacuum extremal property of nearby space-time surface.
The intersections of the wormhole throats with the light-like boundaries of causal diamonds (CDs)
identified as intersections of future and past directed light cones (CD×CP2 is actually in question
but I will speak about CDs) define special partonic 2-surfaces and it is the moduli of these partonic
2-surfaces which appear in the elementary particle vacuum functionals naturally.

The first modification of the original simple picture comes from the identification of physical
particles as bound states of pairs of wormhole contacts and from the assumption that for generalized
Feynman diagrams stringy trouser vertices are replaced with vertices at which the ends of light-like
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wormhole throats meet. In this picture the interpretation of the analog of trouser vertex is in terms
of propagation of same particle along two different paths. This interpretation is mathematically
natural since vertices correspond to 2-manifolds rather than singular 2-manifolds which are just
splitting to two disjoint components. Second complication comes from the weak form of electric-
magnetic duality forcing to identify physical particles as weak strings with magnetic monopoles at
their ends and one should understand also the possible complications caused by this generalization.

These modifications force to consider several options concerning the identification of light
fermions and bosons and one can end up with a unique identification only by making some
assumptions. Masslessness of all wormhole throats- also those appearing in internal lines- and
dynamical SU(3) symmetry for particle generations are attractive general enough assumptions of
this kind. This means that bosons and their super-partners correspond to wormhole contacts with
fermion and anti-fermion at the throats of the contact. Free fermions and their superpartners
could correspond to CP2 type vacuum extremals with single wormhole throat. It turns however
that dynamical SU(3) symmetry forces to identify massive (and possibly topologically condensed)
fermions as (g, g) type wormhole contacts.

2.2.1 Do free fermions correspond to single wormhole throat or (g, g) wormhole?

The original interpretation of genus-generation correspondence was that free fermions correspond
to wormhole throats characterized by genus. The idea of SU(3) as a dynamical symmetry suggested
that gauge bosons correspond to octet and singlet representations of SU(3). The further idea that
all lines of generalized Feynman diagrams are massless poses a strong additional constraint and it
is not clear whether this proposal as such survives.

1. Twistorial program assumes that fundamental objects are massless wormhole throats carrying
collinearly moving many-fermion states and also bosonic excitations generated by super-
symplectic algebra. In the following consideration only purely bosonic and single fermion
throats are considered since they are the basic building blocks of physical particles. The
reason is that propagators for high excitations behave like p−n, n the number of fermions
associated with the wormhole throat. Therefore single throat allows only spins 0,1/2,1 as
elementary particles in the usual sense of the word.

2. The identification of massive fermions (as opposed to free massless fermions) as wormhole
contacts follows if one requires that fundamental building blocks are massless since at least
two massless throats are required to have a massive state. Therefore the conformal excitations
with CP2 mass scale should be assignable to wormhole contacts also in the case of fermions.
As already noticed this is not the end of the story: weak strings are required by the weak
form of electric-magnetic duality.

3. If free fermions corresponding to single wormhole throat, topological condensation is an
essential element of the formation of stringy states. The topological condensation of fermions
by topological sum (fermionic CP2 type vacuum extremal touches another space-time sheet)
suggest (g, 0) wormhole contact. Note however that the identification of wormhole throat is as
3-surface at which the signature of the induced metric changes so that this conclusion might be
wrong. One can indeed consider also the possibility of (g, g) pairs as an outcome of topological
conensation. This is suggested also by the idea that wormhole throats are analogous to string
like objects and only this option turns out to be consistent with the BFF vertex based on the
requirement of dynamical SU(3) symmetry to be discussed later. The structure of reaction
vertices makes it possible to interpret (g, g) pairs as SU(3) triplet. If bosons are obtained as
fusion of fermionic and anti-fermionic throats (touching of corresponding CP2 type vacuum
extremals) they correspond naturally to (g1, g2) pairs.

4. p-Adic mass calculations distinguish between fermions and bosons and the identification of
fermions and bosons should be consistent with this difference. The maximal p-adic tempera-
ture T = 1 for fermions could relate to the weakness of the interaction of the fermionic worm-
hole throat with the wormhole throat resulting in topological condensation. This wormhole
throat would however carry momentum and 3-momentum would in general be non-parallel
to that of the fermion, most naturally in the opposite direction.
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p-Adic mass calculations suggest strongly that for bosons p-adic temperature T = 1/n,
n > 1, so that thermodynamical contribution to the mass squared is negligible. The low p-
adic temperature could be due to the strong interaction between fermionic and anti-fermionic
wormhole throat leading to the “freezing” of the conformal degrees of freedom related to the
relative motion of wormhole throats.

5. The weak form of electric-magnetic duality forces second wormhole throat with opposite
magnetic charge and the light-like momenta could sum up to massive momentum. In this
case string tension corresponds to electroweak length scale. Therefore p-adic thermodynam-
ics must be assigned to wormhole contacts and these appear as basic units connected by
Kähler magnetic flux tube pairs at the two space-time sheets involved. Weak stringy degrees
of freedom are however expected to give additional contribution to the mass, perhaps by
modifying the ground state conformal weight.

2.2.2 Dynamical SU(3) fixes the identification of fermions and bosons and fundamen-
tal interaction vertices

For 3 light fermion families SU(3) suggests itself as a dynamical symmetry with fermions in funda-
mental N = 3-dimensional representation and N ×N = 9 bosons in the adjoint representation and
singlet representation. The known gauge bosons have same couplings to fermionic families so that
they must correspond to the singlet representation. The first challenge is to understand whether
it is possible to have dynamical SU(3) at the level of fundamental reaction vertices.

This is a highly non-trivial constraint. For instance, the vertices in which n wormhole throats
with same (g1, g2) glued along the ends of lines are not consistent with this symmetry. The splitting
of the fermionic worm-hole contacts before the proper vertices for throats might however allow the
realization of dynamical SU(3). The condition of SU(3) symmetry combined with the requirement
that virtual lines resulting also in the splitting of wormhole contacts are always massless, leads
to the conclusion that massive fermions correspond to (g, g) type wormhole contacts transforming
naturally like SU(3) triplet. This picture conformsl with the identification of free fermions as
throats but not with the näıve expectation that their topological condensation gives rise to (g, 0)
wormhole contact.

The argument leading to these conclusions runs as follows.

1. The question is what basic reaction vertices are allowed by dynamical SU(3) symmetry. FFB
vertices are in principle all that is needed and they should obey the dynamical symmetry. The
meeting of entire wormhole contacts along their ends is certainly not possible. The splitting
of fermionic wormhole contacts before the vertices might be however consistent with SU(3)
symmetry. This would give two a pair of 3-vertices at which three wormhole lines meet along
partonic 2-surfaces (rather than along 3-D wormhole contacts).

2. Note first that crossing gives all possible reaction vertices of this kind from F (g1)F (g2) →
B(g1, g2) annihilation vertex, which is relatively easy to visualize. In this reaction F (g1) and
F (g2) wormhole contacts split first. If one requires that all wormhole throats involved are
massless, the two wormhole throats resulting in splitting and carrying no fermion number
must carry light-like momentum so that they cannot just disappear. The ends of the worm-
hole throats of the boson must glued together with the end of the fermionic wormhole throat
and its companion generated in the splitting of the wormhole. This means that fermionic
wormhole first splits and the resulting throats meet at the partonic 2-surface.

his requires that topologically condensed fermions correspond to (g, g) pairs rather than (g, 0)
pairs. The reaction mechanism allows the interpretation of (g, g) pairs as a triplet of dynam-
ical SU(3). The fundamental vertices would be just the splitting of wormhole contact and
3-vertices for throats since SU(3) symmetry would exclude more complex reaction vertices
such as n-boson vertices corresponding the gluing of n wormhole contact lines along their
3-dimensional ends. The couplings of singlet representation for bosons would have same
coupling to all fermion families so that the basic experimental constraint would be satisfied.

3. Both fermions and bosons cannot correspond to octet and singlet of SU(3). In this case
reaction vertices should correspond algebraically to the multiplication of matrix elements
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eij : eijekl = δjkeil allowing for instance F (g1, g2)+F (g2, g3)→ B(g1, g3). Neither the fusion
of entire wormhole contacts along their ends nor the splitting of wormhole throats before
the fusion of partonic 2-surfaces allows this kind of vertices so that BFF vertex is the only
possible one. Also the construction of QFT limit starting from bosonic emergence led to the
formulation of perturbation theory in terms of Dirac action allowing only BFF vertex as
fundamental vertex [?] .

4. Weak electric-magnetic duality brings in an additional complication. SU(3) symmetry poses
also now strong constraints and it would seem that the reactions must involve copies of basic
BFF vertices for the pairs of ends of weak strings. The string ends with the same Kähler
magnetic charge should meet at the vertex and give rise to BFF vertices. For instance, FFB
annihilation vertex would in this manner give rise to the analog of stringy diagram in which
strings join along ends since two string ends disappear in the process.

If one accepts this picture the remaining question is why the number of genera is just three.
Could this relate to the fact that g ≤ 2 Riemann surfaces are always hyper-elliptic (have global Z2

conformal symmetry) unlike g > 2 surfaces? Why the complete bosonic de-localization of the light
families should be restricted inside the hyper-elliptic sector? Does the Z2 conformal symmetry
make these states light and make possible de-localization and dynamical SU(3) symmetry? Could
it be that for g > 2 elementary particle vacuum functionals vanish for hyper-elliptic surfaces?
If this the case and if the time evolution for partonic 2-surfaces changing g commutes with Z2

symmetry then the vacuum functionals localized to g ≤ 2 surfaces do not disperse to g > 2 sectors.

2.2.3 The notion of elementary particle vacuum functional

Obviously one must know something about the dependence of the elementary particle state func-
tionals on the geometric properties of the boundary component and in the sequel an attempt to
construct what might be called elementary particle vacuum functionals, is made.

The basic assumptions underlying the construction are the following ones:

1. Elementary particle vacuum functionals depend on the geometric properties of the two-surface
X2 representing elementary particle.

2. Vacuum functionals possess extended Diff invariance: all 2-surfaces on the orbit of the 2-
surface X2 correspond to the same value of the vacuum functional. This condition is satisfied
if vacuum functionals have as their argument, not X2 as such, but some 2- surface Y 2

belonging to the unique orbit of X2 (determined by the principle selecting preferred extremal
of the Kähler action as a generalized Bohr orbit [K6] ) and determined in Diff3 invariant
manner.

3. ZEO allows to select uniquely the partonic two surface as the intersection of the wormhole
throat at which the signature of the induced 4-metric changes with either the upper or lower
boundary of CD × CP2. This is essential since otherwise one one could not specify the
vacuum functional uniquely.

4. Vacuum functionals possess conformal invariance and therefore for a given genus depend on
a finite number of variables specifying the conformal equivalence class of Y 2.

5. Vacuum functionals satisfy the cluster decomposition property: when the surface Y 2 degen-
erates to a union of two disjoint surfaces (particle decay in string model inspired picture),
vacuum functional decomposes into a product of the vacuum functionals associated with
disjoint surfaces.

6. Elementary particle vacuum functionals are stable against the decay g → g1 + g2 and one
particle decay g → g− 1. This process corresponds to genuine particle decay only for stringy
diagrams. For generalized Feynman diagrams the interpretation is in terms of propagation
along two different paths simultaneously.
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In [K1] the construction of elementary particle vacuum functionals is described in more detail.
This requires some basic concepts related to the description of the space of the conformal equiv-
alence classes of Riemann surfaces and the concept of hyper-ellipticity. Since theta functions will
play a central role in the construction of the vacuum functionals, also their basic properties are
needed. Also possible explanations for the experimental absence of the higher fermion families are
considered.

2.3 Critizing the view about elementary particles

The concrete model for elementary particles has developed gradually during years and is by no
means final. In the recent model elementary particle corresponds to a pair of wormhole contacts
and monopole flux runs between the throats of of the two contacts at the two space-time sheets
and through the contacts between space-time sheets.

The first criticism relates to twistor lift of TGD [L3]. In the case of Kähler action the wormhole
contacts correspond to deformations for pieces of CP2 type vacuum extremals for which the 1-D M4

projection is light-like random curve. Twistor lift adds to Kähler action a volume term proportional
to cosmological constant and forces the vacuum extremal to be a minimal surface carrying non-
vanishing light-like momentum (this is of course very natural): one could call this surface CP2 type
extremal. This implies that M4 projection is light-like geodesic: this is physically rather natural.

Twistor lift leads to a loss of the proposed space-time correlate of massivation used also to
justify p-adic thermodynamics: the average velocity for a light-like random curve is smaller than
maximal signal velocity - this would be a clear classical signal for massivation. One could however
conjecture that the M4 projection for the light-like boundaries of string world sheets becomes light-
like geodesic of M4 × CP2 instead light-like geodesic of M4 and that this serves as the correlate
for the massivation in 4-D sense.

Second criticism is that I have not considered in detail what the monopole flux hypothesis really
means at the level of detail. Since the monopole flux is due to the CP2 topology, there must be
a closed 2-surface which carries this flux. This implies that the flux tube cannot have boundaries
at larger space-time surface but one has just the flux tube with closed cross section obtained as
a deformation of a cosmic string like object X2 × Y 2, where X2 is minimal surface in M4 and
Y 2 a complex surface of CP2 characterized by genus. Deformation would have 4-D M4 projection
instead of 2-D string world sheet.

Note: One can also consider objects for which the flux is not monopole flux: in this case one
would have deformations of surfaces of type X2 × S2, S2 homologically trivial geodesic sphere:
these are non-vacuum extremals for the twistor lift of Kähler action (volume term). The net
magnetic flux would vanish - as a matter fact, the induced Kähler form would vanish identically
for the simplest situation. These objects might serve as correlates for gravitons since the induced
metric is the only field degree of freedom. One could also have non-vanishing fluxes for flux tubes
with disk-like cross section.

If this is the case, the elementary particles would be much simpler than I have though hitherto.

1. Elementary particles would be simply closed flux tubes which look like very long flattened
squares. Short sides with length of order CP2 radius would be identifiable as pieces of
deformed CP2 type extremals having Euclidian signature of the induced metric. Long sides
would be deformed cosmic strings with Minkowskian signature with apparent ends, which
are light-like 3-surfaces at which the induced 4-metric is degenerate. Both Minkowskian and
Euclidian regions of closed flux tubes would be accompanied by fermionic strings. These
objects would topologically condense at larger space-time sheets with wormhole contacts
that do not carry monopole flux: touching the larger space-time surface but not sticking to
it.

2. One could understand why the genus for all wormhole throats must be the same for the
simplest states as the TGD explanation of family replication phenomenon demands. Of
course, the change of the topology along string like object cannot be excluded but very
probably corresponds to an unstable higher mass excitation.

3. The basic particle reactions would include re-connections of closed string like objects and
their reversals. The replication of 3-surfaces would remain a new element brought by TGD.
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The basic processes at fermionic level would be reconnections of closed fermionic strings.
The new element would be the presence of Euclidian regions allowing to talk about effective
boundaries of strings as boundaries between the Minkowskian or Euclidian regions. This
would simplify enormously the description of particle reactions by bringing in description
topologically highly analogous to that provided by closed strings.

4. The original picture need not of course be wrong: it is only slightly more complex than the
above proposal. One would have two space-time sheets connected by a pair of wormhole
contacts between, which most of the magnetic flux would flow like in flux tube. The flux
from the throat could emerges more or less spherically but eventually end up to the second
wormhole throat. The sheets would be connected along their boundaries so that 3-space
would be connected. The absence of boundary terms in the action implies this. The monopole
fluxes would sum up to a vanishing flux at the boundary, where gluing of the sheets of the
covering takes place.

There is a further question to be answered. Are the fermionic strings closed or not? Fermionic
strings have certainly the Minkowskian portions ending at the light-like partonic orbits at Minkowskian-
Euclidian boundaries. But do the fermionic strings have also Euclidian portions so that the sig-
nature of particle would be 2+2 kinks of a closed fermionic string? If strong for of holography is
true in both Euclidian and Minkowskian regions, this is highly suggestive option.

If only Minkowskian portions are present, particles could be seen as pairs of open fermionic
strings and the counterparts of open string vertices would be possible besides reconnection of closed
strings. For this option one can also consider single fermionic open strings connecting wormhole
contacts: now possible flux tube would not carry monopole flux.

2.4 Basic Facts About Riemann Surfaces

In the following some basic aspects about Riemann surfaces will be summarized. The basic topo-
logical concepts, in particular the concept of the mapping class group, are introduced, and the
Teichmueller parameters are defined as conformal invariants of the Riemann surface, which in fact
specify the conformal equivalence class of the Riemann surface completely.

2.4.1 Mapping class group

The first homology group H1(X2) of a Riemann surface of genus g contains 2g generators [A2,
A5, A4] : this is easy to understand geometrically since each handle contributes two homology
generators. The so called canonical homology basis can be identified (see Fig. 1).

One can define the so called intersection J(a, b) for two elements a and b of the homology group
as the number of intersection points for the curves a and b counting the orientation. Since J(a, b)
depends on the homology classes of a and b only, it defines an antisymmetric quadratic form in
H1(X2). In the canonical homology basis the non-vanishing elements of the intersection matrix
are:

J(ai, bj) = −J(bj , ai) = δi,j . (2.1)

J clearly defines symplectic structure in the homology group.
The dual to the canonical homology basis consists of the harmonic one-forms αi, βi, i = 1, .., g

on X2. These 1-forms satisfy the defining conditions

∫
ai
αj = δi,j

∫
bi
αj = 0 ,∫

ai
βj = 0

∫
bi
βj = δi,j .

(2.2)

The following identity helps to understand the basic properties of the Teichmueller parameters

∫
X2

θ ∧ η =
∑

i=1,..,g

[

∫
ai

θ

∫
bi

η −
∫
bi

θ

∫
ai

η] . (2.3)
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Figure 1: Definition of the canonical homology basis

The existence of topologically nontrivial diffeomorphisms, when X2 has genus g > 0, plays
an important role in the sequel. Denoting by Diff the group of the diffeomorphisms of X2 and
by Diff0 the normal subgroup of the diffeomorphisms homotopic to identity, one can define the
mapping class group M as the coset group

M = Diff/Diff0 . (2.4)

The generators of M are so called Dehn twists along closed curves a of X2. Dehn twist is defined
by excising a small tubular neighborhood of a, twisting one boundary of the resulting tube by 2π
and gluing the tube back into the surface: see Fig. 2.

Figure 2: Definition of the Dehn twist

It can be shown that a minimal set of generators is defined by the following curves
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a1, b1, a
−1
1 a−1

2 , a2, b2, a
−1
2 a−11

3 , ..., ag, bg . (2.5)

The action of these transformations in the homology group can be regarded as a symplectic
linear transformation preserving the symplectic form defined by the intersection matrix. Therefore
the matrix representing the action of Diff on H1(X2) is 2g × 2g matrix M with integer entries
leaving J invariant: MJMT = J . Mapping class group is often referred also and denoted by
Sp(2g, Z). The matrix representing the action of M in the canonical homology basis decomposes
into four g × g blocks A,B,C and D

M =

(
A B
C D

)
, (2.6)

where A and D operate in the subspaces spanned by the homology generators ai and bi respectively
and C and D map these spaces to each other. The notation D = [A,B;C,D] will be used in the
sequel: in this notation the representation of the symplectic form J is J = [0, 1;−1, 0].

2.4.2 Teichmueller parameters

The induced metric on the two-surface X2 defines a unique complex structure. Locally the metric
can always be written in the form

ds2 = e2φdzdz̄ . (2.7)

where z is local complex coordinate. When one covers X2 by coordinate patches, where the line
element has the above described form, the transition functions between coordinate patches are
holomorphic and therefore define a complex structure.

The conformal transformations ξ of X2 are defined as the transformations leaving invariant
the angles between the vectors of X2 tangent space invariant: the angle between the vectors X
and Y at point x is same as the angle between the images of the vectors under Jacobian map at
the image point ξ(x). These transformations need not be globally defined and in each coordinate
patch they correspond to holomorphic (anti-holomorphic) mappings as is clear from the diagonal
form of the metric in the local complex coordinates. A distinction should be made between local
conformal transformations and globally defined conformal transformations, which will be referred
to as conformal symmetries: for instance, for hyper-elliptic surfaces the group of the conformal
symmetries contains two-element group Z2.

Using the complex structure one can decompose one-forms to linear combinations of one-forms
of type (1, 0) (f(z, z̄)dz) and (0, 1) (f(z, z̄)dz̄). (1, 0) form ω is holomorphic if the function f is
holomorphic: ω = f(z)dz on each coordinate patch.

There are g independent holomorphic one forms ωi known also as Abelian differentials Al-
varez,Farkas,Mumford and one can fix their normalization by the condition

∫
ai

ωj = δij . (2.8)

This condition completely specifies ωi.
Teichmueller parameters Ωij are defined as the values of the forms ωi for the homology gener-

ators bj

Ωij =

∫
bj

ωi . (2.9)

The basic properties of Teichmueller parameters are the following:

1. The g × g matrix Ω is symmetric: this is seen by applying the formula (2.3) for θ = ωi and
η = ωj .
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2. The imaginary part of Ω is positive: Im(Ω) > 0. This is seen by the application of the same
formula for θ = η. The space of the matrices satisfying these conditions is known as Siegel
upper half plane.

3. The space of Teichmueller parameters can be regarded as a coset space Sp(2g,R)/U(g) [A4]
: the action of Sp(2g,R) is of the same form as the action of Sp(2g, Z) and U(g) ⊂ Sp(2g,R)
is the isotropy group of a given point of Teichmueller space.

4. Teichmueller parameters are conformal invariants as is clear from the holomorphy of the
defining one-forms.

5. Teichmueller parameters specify completely the conformal structure of Riemann surface [A5]
.

Although Teichmueller parameters fix the conformal structure of the 2-surface completely, they
are not in one-to-one correspondence with the conformal equivalence classes of the two-surfaces:
i) The dimension for the space of the conformal equivalence classes is D = 3(g − 1), when g > 1
and smaller than the dimension of Teichmueller space given by d = (g × g + g)/2 for g > 3: all
Teichmueller matrices do not correspond to a Riemann surface. Note that for g = 2 the two di-
mensions are same so that the 3 lowest genera are special. In TGD approach this does not produce
any problems as will be found later.
ii) The action of the topologically nontrivial diffeomorphisms on Teichmueller parameters is non-
trivial and can be deduced from the action of the diffeomorphisms on the homology (Sp(2g, Z)
transformation) and from the defining condition

∫
ai
ωj = δi,j : diffeomorphisms correspond to

elements [A,B;C,D] of Sp(2g, Z) and act as generalized Möbius transformations

Ω→ (AΩ +B)(CΩ +D)−1 . (2.10)

All Teichmueller parameters related by Sp(2g, Z) transformations correspond to the same Riemann
surface.
iii) The definition of the Teichmueller parameters is not unique since the definition of the canonical
homology basis involves an arbitrary numbering of the homology basis. The permutation S of the
handles is represented by same g×g orthogonal matrix both in the basis {ai} and {bi} and induces
a similarity transformation in the space of the Teichmueller parameters

Ω→ SΩS−1 . (2.11)

Clearly, the Teichmueller matrices related by a similarity transformations correspond to the same
conformal equivalence class. It is easy to show that handle permutations in fact correspond to
Sp(2g, Z) transformations.

2.4.3 Hyper-ellipticity

The motivation for considering hyper-elliptic surfaces comes from the fact, that g > 2 elementary
particle vacuum functionals turn out to be vanishing for hyper-elliptic surfaces and this in turn
will be later used to provide a possible explanation the non-observability of g > 2 particles.

Hyper-elliptic surface X can be defined abstractly as two-fold branched cover of the sphere
having the group Z2 as the group of conformal symmetries (see [A6, A5, A4] . Thus there exists
a map π : X → S2 so that the inverse image π−1(z) for a given point z of S2 contains two points
except at a finite number (say p) of points zi (branch points) for which the inverse image contains
only one point. Z2 acts as conformal symmetries permuting the two points in π−1(z) and branch
points are fixed points of the involution.

The concept can be generalized [A6] : g-hyper-elliptic surface can be defined as a 2-fold covering
of genus g surface with a finite number of branch points. One can consider also p-fold coverings
instead of 2-fold coverings: a common feature of these Riemann surfaces is the existence of a
discrete group of conformal symmetries.

A concrete representation for the hyper-elliptic surfaces [A4] is obtained by studying the surface
of C2 determined by the algebraic equation
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w2 − Pn(z) = 0 , (2.12)

where w and z are complex variables and Pn(z) is a complex polynomial. One can solve w from
the above equation

w± = ±
√
Pn(z) , (2.13)

where the square root is determined so that it has a cut along the positive real axis. What happens
that w has in general two roots (two-fold covering property), which coincide at the roots zi of Pn(z)
and if n is odd, also at z =∞: these points correspond to branch points of the hyper-elliptic surface
and their number r is always even: r = 2k. w is discontinuous at the cuts associated with the
square root in general joining two roots of Pn(z) or if n is odd, also some root of Pn and the point
z =∞. The representation of the hyper-elliptic surface is obtained by identifying the two branches
of w along the cuts. From the construction it is clear that the surface obtained in this manner
has genus k− 1. Also it is clear that Z2 permutes the different roots w± with each other and that
r = 2k branch points correspond to fixed points of the involution.

The following facts about the hyper-elliptic surfaces [A5, A4] turn out to be important in the
sequel:
i) All g < 3 surfaces are hyper-elliptic.
ii) g ≥ 3 hyper-elliptic surfaces are not in general hyper-elliptic and form a set of codimension 2
in the space of the conformal equivalence classes [A4] .

2.4.4 Theta functions

An extensive and detailed account of the theta functions and their applications can be found in
the book of Mumford [A4] . Theta functions appear also in the loop calculations of string [J1] [A2]
. In the following the so called Riemann theta function and theta functions with half integer
characteristics will be defined as sections (not strictly speaking functions) of the so called Jacobian
variety.

For a given Teichmueller matrix Ω, Jacobian variety is defined as the 2g-dimensional torus
obtained by identifying the points z of Cg ( vectors with g complex components) under the equiv-
alence

z ∼ z + Ωm+ n , (2.14)

where m and n are points of Zg (vectors with g integer valued components) and Ω acts in Zg by
matrix multiplication.

The definition of Riemann theta function reads as

Θ(z|Ω) =
∑
n

exp(iπn · Ω · n+ i2πn · z) . (2.15)

Here · denotes standard inner product in Cg. Theta functions with half integer characteristics are
defined in the following manner. Let a and b denote vectors of Cg with half integer components
(component either vanishes or equals to 1/2). Theta function with characteristics [a, b] is defined
through the following formula

Θ[a, b](z|Ω) =
∑
n

exp [iπ(n+ a) · Ω · (n+ a) + i2π(n+ a) · (z + b)] .

(2.16)

A brief calculation shows that the following identity is satisfied
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Θ[a, b](z|Ω) = exp(iπa · Ω · a+ i2πa · b)×Θ(z + Ωa+ b|Ω)

(2.17)

Theta functions are not strictly speaking functions in the Jacobian variety but rather sections in
an appropriate bundle as can be seen from the identities

Θ[a, b](z +m|Ω) = exp(i2πa ·m)Θ[a, b](zΩ) ,

Θ[a, b](z + Ωm|Ω) = exp(α)Θ[a, b](z|Ω) ,

exp(α) = exp(−i2πb ·m)exp(−iπm · Ω ·m− 2πm · z) .

(2.18)

The number of theta functions is 22g and same as the number of nonequivalent spinor structures
defined on two-surfaces. This is not an accident [A2] : theta functions with given characteristics
turn out to be in a close relation to the functional determinants associated with the Dirac operators
defined on the two-surface. It is useful to divide the theta functions to even and odd theta functions
according to whether the inner product 4a · b is even or odd integer. The numbers of even and odd
theta functions are 2g−1(2g + 1) and 2g−1(2g − 1) respectively.

The values of the theta functions at the origin of the Jacobian variety understood as functions
of Teichmueller parameters turn out to be of special interest in the following and the following
notation will be used:

Θ[a, b](Ω) ≡ Θ[a, b](0|Ω) , (2.19)

Θ[a, b](Ω) will be referred to as theta functions in the sequel. From the defining properties of odd
theta functions it can be found that they are odd functions of z and therefore vanish at the origin
of the Jacobian variety so that only even theta functions will be of interest in the sequel.

An important result is that also some even theta functions vanish for g > 2 hyper-elliptic
surfaces : in fact one can characterize g > 2 hyper-elliptic surfaces by the vanishing properties of
the theta functions [A5, A4] . The vanishing property derives from conformal symmetry (Z2 in
the case of hyper-elliptic surfaces) and the vanishing phenomenon is rather general [A6] : theta
functions tend to vanish for Riemann surfaces possessing discrete conformal symmetries. It is
not clear (to the author) whether the presence of a conformal symmetry is in fact equivalent
with the vanishing of some theta functions. As already noticed, spinor structures and the theta
functions with half integer characteristics are in one-to-one correspondence and the vanishing of
theta function with given half integer characteristics is equivalent with the vanishing of the Dirac
determinant associated with the corresponding spinor structure or equivalently: with the existence
of a zero mode for the Dirac operator Alvarez . For odd characteristics zero mode exists always: for
even characteristics zero modes exist, when the surface is hyper-elliptic or possesses more general
conformal symmetries.

2.5 Elementary Particle Vacuum Functionals

The basic assumption is that elementary particle families correspond to various elementary parti-
cle vacuum functionals associated with the 2-dimensional boundary components of the 3-surface.
These functionals need not be localized to a single boundary topology. Neither need their depen-
dence on the boundary component be local. An important role in the following considerations is
played by the fact that the minimization requirement of the Kähler action associates a unique 3-
surface to each boundary component, the “Bohr orbit” of the boundary and this surface provides a
considerable (and necessarily needed) flexibility in the definition of the elementary particle vacuum
functionals. There are several natural constraints to be satisfied by elementary particle vacuum
functionals.
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2.5.1 Extended Diff invariance and Lorentz invariance

Extended Diff invariance is completely analogous to the extension of 3-dimensional Diff invariance
to four-dimensional Diff invariance in the interior of the 3-surface. Vacuum functional must be
invariant not only under diffeomorphisms of the boundary component but also under the diffeo-
morphisms of the 3- dimensional “orbit” Y 3 of the boundary component. In other words: the value
of the vacuum functional must be same for any time slice on the orbit the boundary component.
This is guaranteed if vacuum functional is functional of some two-surface Y 2 belonging to the orbit
and defined in Diff3 invariant manner.

An additional natural requirement is Poincare invariance. In the original formulation of the
theory only Lorentz transformations of the light cone were exact symmetries of the theory. In this
framework the definition of Y 2 as the intersection of the orbit with the hyperboloid

√
mklmkml = a

is Diff3 and Lorentz invariant.

1. Interaction vertices as generalization of stringy vertices

For stringy diagrams Poincare invariance of conformal equivalence class and general coordinate
invariance are far from being a trivial issues. Vertices are now not completely unique since there is
an infinite number of singular 3-manifolds which can be identified as vertices even if one assumes
space-likeness. One should be able to select a unique singular 3-manifold to fix the conformal
equivalence class.

One might hope that Lorentz invariant invariant and general coordinate invariant definition
of Y 2 results by introducing light cone proper time a as a height function specifying uniquely
the point at which 3-surface is singular (stringy diagrams help to visualize what is involved), and
by restricting the singular 3-surface to be the intersection of a = constant hyperboloid of M4

containing the singular point with the space-time surface. There would be non-uniqueness of the
conformal equivalence class due to the choice of the origin of the light cone but the decomposition
of the configuration space of 3-surfaces to a union of WCWs characterized by unions of future and
past light cones could resolve this difficulty.

2. Interaction vertices as generalization of ordinary ones

If the interaction vertices are identified as intersections for the ends of space-time sheets rep-
resenting particles, the conformal equivalence class is naturally identified as the one associated
with the intersection of the boundary component or light like causal determinant with the ver-
tex. Poincare invariance of the conformal equivalence class and generalized general coordinate
invariance follow trivially in this case.

2.5.2 Conformal invariance

Conformal invariance implies that vacuum functionals depend on the conformal equivalence class of
the surface Y 2 only. What makes this idea so attractive is that for a given genus g WCW becomes
effectively finite-dimensional. A second nice feature is that instead of trying to find coordinates for
the space of the conformal equivalence classes one can construct vacuum functionals as functions
of the Teichmueller parameters.

That one can construct this kind of functions as suitable functions of the Teichmueller pa-
rameters is not trivial. The essential point is that the boundary components can be regarded as
sub-manifolds of M4

+ ×CP2: as a consequence vacuum functional can be regarded as a composite
function:

2-surface → Teichmueller matrix Ω determined by the induced metric → Ωvac(Ω)

Therefore the fact that there are Teichmueller parameters which do not correspond to any Riemann
surface, doesn’t produce any trouble. It should be noticed that the situation differs from that in the
Polyakov formulation of string models, where one doesn’t assume that the metric of the two-surface
is induced metric (although classical equations of motion imply this).



2.5 Elementary Particle Vacuum Functionals 24

2.5.3 Diff invariance

Since several values of the Teichmueller parameters correspond to the same conformal equivalence
class, one must pose additional conditions on the functions of the Teichmueller parameters in order
to obtain single valued functions of the conformal equivalence class.

The first requirement of this kind is the invariance under topologically nontrivial Diff transfor-
mations inducing Sp(2g, Z) transformation (A,B;C,D) in the homology basis. The action of these
transformations on Teichmueller parameters is deduced by requiring that holomorphic one-forms
satisfy the defining conditions in the transformed homology basis. It turns out that the action
of the topologically nontrivial diffeomorphism on Teichmueller parameters can be regarded as a
generalized Möbius transformation:

Ω→ (AΩ +B)(CΩ +D)−1 . (2.20)

Vacuum functional must be invariant under these transformations. It should be noticed that the
situation differs from that encountered in the string models. In TGD the integration measure over
WCW is Diff invariant: in string models the integration measure is the integration measure of the
Teichmueller space and this is not invariant under Sp(2g, Z) but transforms like a density: as a
consequence the counterpart of the vacuum functional must be also modular covariant since it is
the product of vacuum functional and integration measure, which must be modular invariant.

It is possible to show that the quantities

(Θ[a, b]/Θ[c, d])4 . (2.21)

and their complex conjugates are Sp(2g, Z) invariants [A4] and therefore can be regarded as basic
building blocks of the vacuum functionals.

Teichmueller parameters are not uniquely determined since one can always perform a permu-
tation of the g handles of the Riemann surface inducing a redefinition of the canonical homology
basis (permutation of g generators). These transformations act as similarities of the Teichmueller
matrix:

Ω→ SΩS−1 , (2.22)

where S is the g × g matrix representing the permutation of the homology generators understood
as orthonormal vectors in the g- dimensional vector space. Therefore the Teichmueller parameters
related by these similarity transformations correspond to the same conformal equivalence class of
the Riemann surfaces and vacuum functionals must be invariant under these similarities.

It is easy to find out that these similarities permute the components of the theta characteristics:
[a, b]→ [S(a), S(b)]. Therefore the invariance requirement states that the handles of the Riemann
surface behave like bosons: the vacuum functional constructed from the theta functions is invariant
under the permutations of the theta characteristics. In fact, this requirement brings in nothing
new. Handle permutations can be regarded as Sp(2g, Z) transformations so that the modular
invariance alone guarantees invariance under handle permutations.

2.5.4 Cluster decomposition property

Consider next the behavior of the vacuum functional in the limit, when boundary component with
genus g splits to two separate boundary components of genera g1 and g2 respectively. The splitting
into two separate boundary components corresponds to the reduction of the Teichmueller matrix
Ωg to a direct sum of g1 × g1 and g2 × g2 matrices (g1 + g2 = g):

Ωg = Ωg1 ⊕ Ωg2 , (2.23)

when a suitable definition of the Teichmueller parameters is adopted. The splitting can also take
place without a reduction to a direct sum: the Teichmueller parameters obtained via Sp(2g, Z)
transformation from Ωg = Ωg1 ⊕ Ωg2 do not possess direct sum property in general.
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The physical interpretation is obvious: the non-diagonal elements of the Teichmueller matrix
describe the geometric interaction between handles and at this limit the interaction between the
handles belonging to the separate surfaces vanishes. On the physical grounds it is natural to require
that vacuum functionals satisfy cluster decomposition property at this limit: that is they reduce
to the product of appropriate vacuum functionals associated with the composite surfaces.

Theta functions satisfy cluster decomposition property [A2, A4] . Theta characteristics reduce
to the direct sums of the theta characteristics associated with g1 and g2 (a = a1 ⊕ a2, b = b1 ⊕ b2)
and the dependence on the Teichmueller parameters is essentially exponential so that the cluster
decomposition property indeed results:

Θ[a, b](Ωg) = Θ[a1, b1](Ωg1)Θ[a2, b2](Ωg2) . (2.24)

Cluster decomposition property holds also true for the products of theta functions. This property
is also satisfied by suitable homogenous polynomials of thetas. In particular, the following quantity
playing central role in the construction of the vacuum functional obeys this property

Q0 =
∑
[a,b]

Θ[a, b]4Θ̄[a, b]4 , (2.25)

where the summation is over all even theta characteristics (recall that odd theta functions vanish
at the origin of Cg).

Together with the Sp(2g, Z) invariance the requirement of cluster decomposition property im-
plies that the vacuum functional must be representable in the form

Ωvac = PM,N (Θ4, Θ̄4)/QMN (Θ4, Θ̄4) (2.26)

where the homogenous polynomials PM,N and QM,N have same degrees (M and N as polynomials
of Θ[a, b]4 and Θ̄[a, b]4.

2.5.5 Finiteness requirement

Vacuum functional should be finite. Finiteness requirement is satisfied provided the numerator
QM,N of the vacuum functional is real and positive definite. The simplest quantity of this type
is the quantity Q0 defined previously and its various powers. Sp(2g, Z) invariance and finiteness
requirement are satisfied provided vacuum functionals are of the following general form

Ωvac =
PN,N (Θ4, Θ̄4)

QN0
, (2.27)

where PN,N is homogenous polynomial of degree N with respect to Θ[a, b]4 and Θ̄[a, b]4. In
addition PN,N is invariant under the permutations of the theta characteristics and satisfies cluster
decomposition property.

2.5.6 Stability against the decay g → g1 + g2

Elementary particle vacuum functionals must be stable against the genus conserving decays g →
g1 + g2. This decay corresponds to the limit at which Teichmueller matrix reduces to a direct sum
of the matrices associated with g1 and g2 (note however the presence of Sp(2g, Z) degeneracy). In
accordance with the topological description of the particle reactions one expects that this decay
doesn’t occur if the vacuum functional in question vanishes at this limit.

In general the theta functions are non-vanishing at this limit and vanish provided the theta
characteristics reduce to a direct sum of the odd theta characteristics. For g < 2 surfaces this
condition is trivial and gives no constraints on the form of the vacuum functional. For g = 2 surfaces
the theta function Θ(a, b), with a = b = (1/2, 1/2) satisfies the stability criterion identically (odd
theta functions vanish identically), when Teichmueller parameters separate into a direct sum. One
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can however perform Sp(2g, Z) transformations giving new points of Teichmueller space describing
the decay. Since these transformations transform theta characteristics in a nontrivial manner to
each other and since all even theta characteristics belong to same Sp(2g, Z) orbit [A2, A4] , the
conclusion is that stability condition is satisfied provided g = 2 vacuum functional is proportional
to the product of fourth powers of all even theta functions multiplied by its complex conjugate.

If g > 2 there always exists some theta functions, which vanish at this limit and the minimal
vacuum functional satisfying this stability condition is of the same form as in g = 2 case, that
is proportional to the product of the fourth powers of all even Theta functions multiplied by its
complex conjugate:

Ωvac =
∏
[a,b]

Θ[a, b]4Θ̄[a, b]4/QN0 , (2.28)

where N is the number of even theta functions. The results obtained imply that genus-generation
correspondence is one to one for g > 1 for the minimal vacuum functionals. Of course, the multi-
plication of the minimal vacuum functionals with functionals satisfying all criteria except stability
criterion gives new elementary particle vacuum functionals: a possible physical identification of
these vacuum functionals is most naturally as some kind of excited states.

One of the questions posed in the beginning was related to the experimental absence of g > 0,
possibly massless, elementary bosons. The proposed stability criterion suggests a nice explanation.
The point is that elementary particles are stable against decays g → g1 + g2 but not with respect
to the decay g → g + sphere. As a consequence the direct emission of g > 0 gauge bosons is
impossible unlike the emission of g = 0 bosons: for instance the decay muon → electron +(g = 1)
photon is forbidden.

2.5.7 Stability against the decay g → g − 1

This stability criterion states that the vacuum functional is stable against single particle decay
g → g− 1 and, if satisfied, implies that vacuum functional vanishes, when the genus of the surface
is smaller than g. In stringy framework this criterion is equivalent to a separate conservation
of various lepton numbers: for instance, the spontaneous transformation of muon to electron is
forbidden. Notice that this condition doesn’t imply that that the vacuum functional is localized to
a single genus: rather the vacuum functional of genus g vanishes for all surfaces with genus smaller
than g. This hierarchical structure should have a close relationship to Cabibbo-Kobayashi-Maskawa
mixing of the quarks.

The stability criterion implies that the vacuum functional must vanish at the limit, when one of
the handles of the Riemann surface suffers a pinch. To deduce the behavior of the theta functions
at this limit, one must find the behavior of Teichmueller parameters, when i:th handle suffers a
pinch. Pinch implies that a suitable representative of the homology generator ai or bi contracts to
a point.

Consider first the case, when ai contracts to a point. The normalization of the holomorphic
one-form ωi must be preserved so that that ωi must behaves as 1/z, where z is the complex
coordinate vanishing at pinch. Since the homology generator bi goes through the pinch it seems
obvious that the imaginary part of the Teichmueller parameter Ωii =

∫
bi
ωi diverges at this limit

(this conclusion is made also in [A4] ): Im(Ωii)→∞.
Of course, this criterion doesn’t cover all possible ways the pinch can occur: pinch might take

place also, when the components of the Teichmueller matrix remain finite. In the case of torus
topology one finds that Sp(2g, Z) element (A,B;C,D) takes Im(Ω) = ∞ to the point C/D of
real axis. This suggests that pinch occurs always at the boundary of the Teichmueller space: the
imaginary part of Ωij either vanishes or some matrix element of Im(Ω) diverges.

Consider next the situation, when bi contracts to a point. From the definition of the Teich-
mueller parameters it is clear that the matrix elements Ωkl, with k, l 6= i suffer no change. The
matrix element Ωki obviously vanishes at this limit. The conclusion is that i:th row of Teichmueller
matrix vanishes at this limit. This result is obtained also by deriving the Sp(2g, Z) transformation
permuting ai and bi with each other: in case of torus this transformation reads Ω→ −1/Ω.

Consider now the behavior of the theta functions, when pinch occurs. Consider first the limit,
when Im(Ωii) diverges. Using the general definition of Θ[a, b] it is easy to find out that all theta
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functions for which the i:th component ai of the theta characteristic is non-vanishing (that is ai =
1/2) are proportional to the exponent exp(−πΩii/4) and therefore vanish at the limit. The theta
functions with ai = 0 reduce to g−1 dimensional theta functions with theta characteristic obtained
by dropping i:th components of ai and bi and replacing Teichmueller matrix with Teichmueller
matrix obtained by dropping i:th row and column. The conclusion is that all theta functions of
type Θ(a, b) with a = (1/2, 1/2, ...., 1/2) satisfy the stability criterion in this case.

What happens for the Sp(2g, Z) transformed points on the real axis? The transformation
formula for theta function is given by [A2, A4]

Θ[a, b]((AΩ +B)(CΩ +D)−1) = exp(iφ)det(CΩ +D)1/2Θ[c, d](Ω) ,

(2.29)

where

(
c
d

)
=

(
A B
C D

)((
a
b

)
−
(

(CDT )d/2
(ABT )d/2

))
.

(2.30)

Here φ is a phase factor irrelevant for the recent purposes and the index d refers to the diagonal
part of the matrix in question.

The first thing to notice is the appearance of the diverging square root factor, which however
disappears from the vacuum functionals (P and Q have same degree with respect to thetas). The
essential point is that theta characteristics transform to each other: as already noticed all even
theta characteristics belong to the same Sp(2g, Z) orbit. Therefore the theta functions vanishing
at Im(Ωii) = ∞ do not vanish at the transformed points. It is however clear that for a given
Teichmueller parameterization of pinch some theta functions vanish always.

Similar considerations in the case Ωik = 0, i fixed, show that all theta functions with b =
(1/2, ...., 1/2) vanish identically at the pinch. Also it is clear that for Sp(2g, Z) transformed points
one can always find some vanishing theta functions. The overall conclusion is that the elementary
particle vacuum functionals obtained by using g → g1 + g2 stability criterion satisfy also g → g− 1
stability criterion since they are proportional to the product of all even theta functions. Therefore
the only nontrivial consequence of g → g− 1 criterion is that also g = 1 vacuum functionals are of
the same general form as g > 1 vacuum functionals.

A second manner to deduce the same result is by restricting the consideration to the hyper-
elliptic surfaces and using the representation of the theta functions in terms of the roots of the
polynomial appearing in the definition of the hyper-elliptic surface [A4] . When the genus of the
surface is smaller than three (the interesting case), this representation is all what is needed since
all surfaces of genus g < 3 are hyper-elliptic.

Since hyper-elliptic surfaces can be regarded as surfaces obtained by gluing two compactified
complex planes along the cuts connecting various roots of the defining polynomial it is obvious
that the process g → g − 1 corresponds to the limit, when two roots of the defining polynomial
coincide. This limit corresponds either to disappearance of a cut or the fusion of two cuts to a
single cut. Theta functions are expressible as the products of differences of various roots (Thomae’s
formula [A4] )

Θ[a, b]4 ∝
∏

i<j∈T
(zi − zj)

∏
k<l∈CT

(zk − zl) , (2.31)

where T denotes some subset of {1, 2, ..., 2g} containing g + 1 elements and CT its complement.
Hence the product of all even theta functions vanishes, when two roots coincide. Furthermore,
stability criterion is satisfied only by the product of the theta functions.

Lowest dimensional vacuum functionals are worth of more detailed consideration.
i) g = 0 particle family corresponds to a constant vacuum functional: by continuity this vacuum
functional is constant for all topologies.
ii) For g = 1 the degree of P and Q as polynomials of the theta functions is 24: the critical number
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of transversal degrees of freedom in bosonic string model! Probably this result is not an accident.
ii) For g = 2 the corresponding degree is 80 since there are 10 even genus 2 theta functions.

There are large numbers of vacuum functionals satisfying the relevant criteria, which do not
satisfy the proposed stability criteria. These vacuum functionals correspond either to many particle
states or to unstable single particle states.

2.5.8 Continuation of the vacuum functionals to higher genus topologies

From continuity it follows that vacuum functionals cannot be localized to single boundary topology.
Besides continuity and the requirements listed above, a natural requirement is that the continuation
of the vacuum functional from the sector g to the sector g+k reduces to the product of the original
vacuum functional associated with genus g and g = 0 vacuum functional at the limit when the
surface with genus g+ k decays to surfaces with genus g and k: this requirement should guarantee
the conservation of separate lepton numbers although different boundary topologies suffer mixing
in the vacuum functional. These requirements are satisfied provided the continuation is constructed
using the following rule:

Perform the replacement

Θ[a, b]4 →
∑
c,d

Θ[a⊕ c, b⊕ d]4 (2.32)

for each fourth power of the theta function. Here c and d are Theta characteristics associated with
a surface with genus k. The same replacement is performed for the complex conjugates of the
theta function. It is straightforward to check that the continuations of elementary particle vacuum
functionals indeed satisfy the cluster decomposition property and are continuous.

To summarize, the construction has provided hoped for answers to some questions stated in
the beginning: stability requirements explain the separate conservation of lepton numbers and
the experimental absence of g > 0 elementary bosons. What has not not been explained is the
experimental absence of g > 2 fermion families. The vanishing of the g > 2 elementary particle
vacuum functionals for the hyper-elliptic surfaces however suggest a possible explanation: under
some conditions on the surface X2 the surfaces Y 2 are hyper-elliptic or possess some conformal
symmetry so that elementary particle vacuum functionals vanish for them. This conjecture indeed
might make sense since the surfaces Y 2 are determined by the asymptotic dynamics and one might
hope that the surfaces Y 2 are analogous to the final states of a dissipative system.

2.6 Explanations For The Absence Of The g > 2 ElementaryParticles
From Spectrum

The decay properties of the intermediate gauge bosons [C12] are consistent with the assumption
that the number of the light neutrinos is N = 3. Also cosmological considerations pose upper
bounds on the number of the light neutrino families and N = 3 seems to be favored [C12]. It must
be however emphasized that p-adic considerations [K8] encourage the consideration the existence
of higher genera with neutrino masses such that they are not produced in the laboratory at present
energies. In any case, for TGD approach the finite number of light fermion families is a potential
difficulty since genus-generation correspondence suggests that the number of the fermion (and
possibly also boson) families is infinite. Therefore one had better to find a good argument showing
that the number of the observed neutrino families, or more generally, of the observed elementary
particle families, is small also in the world described by TGD.

It will be later found that also TGD inspired cosmology requires that the number of the ef-
fectively massless fermion families must be small after Planck time. This suggests that boundary
topologies with handle number g > 2 are unstable and/or very massive so that they, if present in
the spectrum, disappear from it after Planck time, which correspond to the value of the light cone
proper time a ' 10−11 seconds.

In accordance with the spirit of TGD approach it is natural to wonder whether some geometric
property differentiating between g > 2 and g < 3 boundary topologies might explain why only
g < 3 boundary components are observable. One can indeed find a good candidate for this kind
of property: namely hyper-ellipticity, which states that Riemann surface is a two-fold branched
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covering of sphere possessing two-element group Z2 as conformal automorphisms. All g < 3 Rie-
mann surfaces are hyper-elliptic unlike g > 2 Riemann surfaces, which in general do not posses this
property. Thus it is natural to consider the possibility that hyper-ellipticity or more general con-
formal symmetries might explain why only g < 2 topologies correspond to the observed elementary
particles.

As regards to the present problem the crucial observation is that some even theta functions
vanish for the hyper-elliptic surfaces with genus g > 2 [A4] . What is essential is that these surfaces
have the group Z2 as conformal symmetries. Indeed, the vanishing phenomenon is more general.
Theta functions tend to vanish for g > 2 two-surfaces possessing discrete group of conformal
symmetries [A6] : for instance, instead of sphere one can consider branched coverings of higher
genus surfaces.

From the general expression of the elementary particle vacuum functional it is clear that ele-
mentary particle vacuum functionals vanish, when Y 2 is hyper-elliptic surface with genus g > 2
and one might hope that this is enough to explain why the number of elementary particle families
is three.

2.6.1 Hyper-ellipticity implies the separation of g ≤ 2 and g > 2 sectors to separate
worlds

If the vertices are defined as intersections of space-time sheets of elementary particles and if elemen-
tary particle vacuum functionals are required to have Z2 symmetry, the localization of elementary
particle vacuum functionals to g ≤ 2 topologies occurs automatically. Even if one allows as limiting
case vertices for which 2-manifolds are pinched to topologies intermediate between g > 2 and g ≤ 2
topologies, Z2 symmetry present for both topological interpretations implies the vanishing of this
kind of vertices. This applies also in the case of stringy vertices so that also particle propagation
would respect the effective number of particle families. g > 2 and g ≤ 2 topologies would behave
much like their own worlds in this approach. This is enough to explain the experimental findings
if one can understand why the g > 2 particle families are absent as incoming and outgoing states
or are very heavy.

2.6.2 What about g > 2 vacuum functionals which do not vanish for hyper-elliptic
surfaces?

The vanishing of all g ≥ 2 vacuum functionals for hyper-elliptic surfaces cannot hold true generally.
There must exist vacuum functionals which do satisfy this condition. This suggest that elementary
particle vacuum functionals for g > 2 states have interpretation as bound states of g handles and
that the more general states which do not vanish for hyper-elliptic surfaces correspond to many-
particle states composed of bound states g ≤ 2 handles and cannot thus appear as incoming and
outgoing states. Thus g > 2 elementary particles would decouple from g ≤ 2 states.

2.6.3 Should higher elementary particle families be heavy?

TGD predicts an entire hierarchy of scaled up variants of standard model physics for which particles
do not appear in the vertices containing the known elementary particles and thus behave like dark
matter [K21] . Also g > 2 elementary particles would behave like dark matter and in principle
there is no absolute need for them to be heavy.

The safest option would be that g > 2 elementary particles are heavy and the breaking of Z2

symmetry for g ≥ 2 states could guarantee this. p-Adic considerations lead to a general mass
formula for elementary particles such that the mass of the particle is proportional to 1√

p [K11]

. Also the dependence of the mass on particle genus is completely fixed by this formula. What
remains however open is what determines the p-adic prime associated with a particle with given
quantum numbers. Of course, it could quite well occur that p is much smaller for g > 2 genera
than for g ≤ 2 genera.
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3 Non-Topological Contributions To Particle masses From
P-Adic Thermodynamics

In TGD framework p-adic thermodynamics provides a microscopic theory of particle massivation
in the case of fermions. The idea is very simple. The mass of the particle results from a thermal
mixing of the massless states with CP2 mass excitations of super-conformal algebra. In p-adic
thermodynamics the Boltzmann weight exp(−E/T ) does not exist in general and must be replaced
with pL0/Tp which exists for Virasoro generator L0 if the inverse of the p-adic temperature is integer
valued Tp = 1/n. The expansion in powers of p converges extremely rapidly for physical values
of p, which are rather large. Therefore the three lowest terms in expansion give practically exact
results. Thermal massivation does not not necessarily lead to light states and this drops a large
number of exotic states from the spectrum of light particles. The partition functions of N-S and
Ramond type representations are not changed in TGD framework despite the fact that fermionic
super generators carry fermion numbers and are not Hermitian. Thus the practical calculations
are relatively straightforward albeit tedious.

In free fermion picture the p-adic thermodynamics in the boson sector is for fermion-anti-
fermion states associated with the two throats of the bosonic wormhole. The question is whether
the thermodynamical mass squared is just the sum of the two independent fermionic contributions
for Ramond representations or should one use N-S type representation resulting as a tensor product
of Ramond representations.

The overall conclusion about p-adic mass calculations is that fermionic mass spectrum is pre-
dicted in an excellent accuracy but that the thermal masses of the intermediate gauge bosons come
20-30 per cent to large for Tp = 1 and are completely negligible for Tp = 1/2. The bound state char-
acter of the boson states could be responsible for Tp < 1 and for extremely small thermodynamical
contribution to the masses (present also for photon).

This forces to consider seriously the possibility that thermal contribution to the bosonic mass is
negligible and that TGD can, contrary to the original expectations, provide dynamical Higgs field
as a fundamental field and that even Higgs mechanism could contribute to the particle masses.

Higgs mechanism is probably the only viable description of Higgs mechanism in QFT approach,
where particles are point-like but not in TGD, where particles are replaced by string like objects
consisting of two wormhole contacts with monopole Kähler magnetic flux flowing between “upper”
throats and returning back along “lower” space-time sheets. In this framework the assumption that
fermion masses would result from p-adic thermodynamics but boson masses from Higgs couplings
looks like an ugly idea. A more plausible vision is that the dominating contribution to gauge boson
masses comes from the two flux tubes connecting the two wormhole contacts defining boson. This
contribution would be present also for fermions but would be small. The correct W/Z mass ratio is
obtained if the string tension is proportional to weak gauge coupling squared. The nice feature of
this scenario is that naturalness is not lost: the dimensional gradient coupling of fermion to Higgs
is same for all fermions.

The stringy contribution to mass squared could be expressed in terms of the deviation of the
ground state conformal weight from negative half integer.

The problem is to understand how the negative value of the ground state conformal weight
emerges. This negative conformal weight compensated by the action of Super Virasoro generators
is necessary for the success of p-adic mass calculations. The intuitive expectation is that the
solution of this problem must relate to the Euclidian signature of the regions representing lines of
generalized Feynman diagrams.

3.1 Partition Functions Are Not Changed

One must write Super Virasoro conditions for Ln and both Gn and G†n rather than for Ln and Gn
as in the case of the ordinary Super Virasoro algebra, and it is a priori not at all clear whether the
partition functions for the Super Virasoro representations remain unchanged. This requirement is
however crucial for the construction to work at all in the fermionic sector, since even the slightest
changes for the degeneracies of the excited states can change light state to a state with mass of
order m0 in the p-adic thermodynamics.
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3.1.1 Super conformal algebra

Super Virasoro algebra is generated by the bosonic the generators Ln (n is an integer valued index)
and by the fermionic generators Gr, where r can be either integer (Ramond) or half odd integer
(NS). Gr creates quark/lepton for r > 0 and antiquark/antilepton for r < 0. For r = 0, G0 creates
lepton and its Hermitian conjugate anti-lepton. The defining commutation and anti-commutation
relations are the following:

[Lm, Ln] = (m− n)Lm+n +
c

2
m(m2 − 1)δm,−n ,

[Lm, Gr] = (
m

2
− r)Gm+r ,[

Lm, G
†
r

]
= (

m

2
− r)G†m+r ,

{Gr, G†s} = 2Lr+s +
c

3
(r2 − 1

4
)δm,−n ,

{Gr, Gs} = 0 ,

{G†r, G†s} = 0 . (3.1)

By the inspection of these relations one finds some results of a great practical importance.

1. For the Ramond algebra G0, G1 and their Hermitian conjugates generate the r ≥ 0, n ≥ 0
part of the algebra via anti-commutations and commutations. Therefore all what is needed
is to assume that Super Virasoro conditions are satisfied for these generators in case that
G0 and G†0 annihilate the ground state. Situation changes if the states are not annihilated

by G0 and G†0 since then one must assume the gauge conditions for both L1, G1 and G†1
besides the mass shell conditions associated with G0 and G†0, which however do not affect
the number of the Super Virasoro excitations but give mass shell condition and constraints
on the state in the cm spin degrees of freedom. This will be assumed in the following. Note
that for the ordinary Super Virasoro only the gauge conditions for L1 and G1 are needed.

2. NS algebra is generated by G1/2 and G3/2 and their Hermitian conjugates (note that G3/2

cannot be expressed as the commutator of L1 and G1/2) so that only the gauge conditions
associated with these generators are needed. For the ordinary Super Virasoro only the
conditions for G1/2 and G3/2 are needed.

3.1.2 Conditions guaranteeing that partition functions are not changed

The conditions guaranteeing the invariance of the partition functions in the transition to the
modified algebra must be such that they reduce the number of the excitations and gauge conditions
for a given conformal weight to the same number as in the case of the ordinary Super Virasoro.

1. The requirement that physical states are invariant under G↔ G† corresponds to the charge
conjugation symmetry and is very natural. As a consequence, the gauge conditions for G
and G† are not independent and their number reduces by a factor of one half and is the same
as in the case of the ordinary Super Virasoro.

2. As far as the number of the thermal excitations for a given conformal weight is considered,
the only remaining problem are the operators GnG

†
n, which for the ordinary Super Virasoro

reduce to GnGn = L2n and do not therefore correspond to independent degrees of freedom.
In present case this situation is achieved only if one requires

(GnG
†
n −G†nGn)|phys〉 = 0 . (3.2)

It is not clear whether this condition must be posed separately or whether it actually follows
from the representation of the Super Virasoro algebra automatically.
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3.1.3 Partition function for Ramond algebra

Under the assumptions just stated, the partition function for the Ramond states not satisfying any
gauge conditions

Z(t) = 1 + 2t+ 4t2 + 8t3 + 14t4 + .... , (3.3)

which is identical to that associated with the ordinary Ramond type Super Virasoro.
For a Super Virasoro representation with N = 5 sectors, of main interest in TGD, one has

ZN (t) = ZN=5(t) =
∑

D(n)tn

= 1 + 10t+ 60t2 + 280t3 + ... . (3.4)

The degeneracies for the states satisfying gauge conditions are given by

d(n) = D(n)− 2D(n− 1) . (3.5)

corresponding to the gauge conditions for L1 and G1. Applying this formula one obtains for N = 5
sectors

d(0) = 1 , d(1) = 8 , d(2) = 40 , d(3) = 160 . (3.6)

The lowest order contribution to the p-adic mass squared is determined by the ratio

r(n) =
D(n+ 1)

D(n)
,

where the value of n depends on the effective vacuum weight of the ground state fermion. Light
state is obtained only provided the ratio is integer. The remarkable result is that for lowest lying
states the ratio is integer and given by

r(1) = 8 , r(2) = 5 , r(3) = 4 . (3.7)

It turns out that r(2) = 5 gives the best possible lowest order prediction for the charged lepton
masses and in this manner one ends up with the condition hvac = −3 for the tachyonic vacuum
weight of Super Virasoro.

3.1.4 Partition function for NS algebra

For NS representations the calculation of the degeneracies of the physical states reduces to the
calculation of the partition function for a single particle Super Virasoro

ZNS(t) =
∑
n

z(n/2)tn/2 . (3.8)

Here z(n/2) gives the number of Super Virasoro generators having conformal weight n/2. For a
state with N active sectors (the sectors with a non-vanishing weight for a given ground state) the
degeneracies can be read from the N-particle partition function expressible as

ZN (t) = ZN (t) . (3.9)

Single particle partition function is given by the expression

Z(t) = 1 + t1/2 + t+ 2t3/2 + 3t2 + 4t5/2 + 5t3 + ... . (3.10)
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Using this representation it is an easy task to calculate the degeneracies for the operators of
conformal weight ∆ acting on a state having N active sectors.

One can also derive explicit formulas for the degeneracies and calculation gives

D(0, N) = 1 , D(1/2, N) = N ,

D(1, N) = N(N+1)
2 , D(3/2, N) = N

6 (N2 + 3N + 8) ,
D(2, N) = N

2 (N2 + 2N + 3) , D(5/2, N) = 9N(N − 1) ,
D(3, N) = 12N(N − 1) + 2N(N − 1) .

(3.11)

as a function of the conformal weight ∆ = 0, 1/2, ..., 3.
The number of states satisfying Super Virasoro gauge conditions created by the operators of a

conformal weight ∆, when the number of the active sectors is N , is given by

d(∆, N) = D(∆, N)−D(∆− 1/2, N)−D(∆− 3/2, N) . (3.12)

The expression derives from the observation that the physical states satisfying gauge conditions
for G1/2, G3/2 satisfy the conditions for all Super Virasoro generators. For Tp = 1 light bosons
correspond to the integer values of d(∆ + 1, N)/d(∆, N) in case that massless states correspond
to thermal excitations of conformal weight ∆: they are obtained for ∆ = 0 only (massless ground
state). This is what is required since the thermal degeneracy of the light boson ground state
would imply a corresponding factor in the energy density of the black body radiation at very high
temperatures. For the physically most interesting nontrivial case with N = 2 two active sectors
the degeneracies are

d(0, 2) = 1 , d(1, 2) = 1 , d(2, 2) = 3 , d(3, 2) = 4 . (3.13)

N,∆ 0 1/2 1 3/2 2 5/2 3
2 1 1 1 3 3 4 4
3 1 2 3 9 11
4 1 3 5 19 26
5 1 4 10 24 150

Table 1: Degeneracies d(∆, N) of the operators satisfying NS type gauge conditions as a function
of the number N of the active sectors and of the conformal weight ∆ of the operator. Only those
degeneracies, which are needed in the mass calculation for bosons assuming that they correspond
to N-S representations are listed.

3.2 Fundamental Length And Mass Scales

The basic difference between quantum TGD and super-string models is that the size of CP2 is not
of order Planck length but much larger: of order 103.5 Planck lengths. This conclusion is forced by
several consistency arguments, the mass scale of electron, and by the cosmological data allowing to
fix the string tension of the cosmic strings which are basic structures in TGD inspired cosmology.

3.2.1 The relationship between CP2 radius and fundamental p-adic length scale

One can relate CP2 “cosmological constant” to the p-adic mass scale: for kL = 1 one has

m2
0 =

m2
1

kL
= m2

1 = 2Λ . (3.14)

kL = 1 results also by requiring that p-adic thermodynamics leaves charged leptons light and leads
to optimal lowest order prediction for the charged lepton masses. Λ denotes the “cosmological
constant” of CP2 (CP2 satisfies Einstein equations Gαβ = Λgαβ with cosmological term).
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The real counterpart of the p-adic thermal expectation for the mass squared is sensitive to the
choice of the unit of p-adic mass squared which is by definition mapped as such to the real unit
in canonical identification. Thus an important factor in the p-adic mass calculations is the correct
identification of the p-adic mass squared scale, which corresponds to the mass squared unit and
hence to the unit of the p-adic numbers. This choice does not affect the spectrum of massless
states but can affect the spectrum of light states in case of intermediate gauge bosons.

1. For the choice

M2 = m2
0 ↔ 1 (3.15)

the spectrum of L0 is integer valued.

2. The requirement that all sufficiently small mass squared values for the color partial waves
are mapped to real integers, would fix the value of p-adic mass squared unit to

M2 =
m2

0

3
↔ 1 . (3.16)

For this choice the spectrum of L0 comes in multiples of 3 and it is possible to have a first
order contribution to the mass which cannot be of thermal origin (say m2 = p). This indeed
seems to happen for electro-weak gauge bosons.

p-Adic mass calculations allow to relate m0 to electron mass and to Planck mass by the formula

m0

mPl
=

1√
5 + Ye

× 2127/2 × me

mPl
,

mPl =
1√
~G

. (3.17)

For Ye = 0 this gives m0 = .2437× 10−3mPl.
This means that CP2 radius R defined by the length L = 2πR of CP2 geodesic is roughly 103.5

times the Planck length. More precisely, using the relationship

Λ =
3

2R2
= M2 = m2

0 ,

one obtains for

L = 2πR = 2π

√
3

2

1

m0
' 3.1167× 104

√
~G for Ye = 0 . (3.18)

The result came as a surprise: the first belief was that CP2 radius is of order Planck length. It
has however turned out that the new identification solved elegantly some long standing problems
of TGD. Table 2 gives the value of the scale parameter KR.

The value of top quark mass favors Ye = 0 and Ye = .5 is largest value of Ye marginally
consistent with the limits on the value of top quark mass.

3.2.2 CP2 radius as the fundamental p-adic length scale

The identification of CP2 radius as the fundamental p-adic length scale is forced by the Super
Virasoro invariance. The pleasant surprise was that the identification of the CP2 size as the
fundamental p-adic length scale rather than Planck length solved many long standing problems of
older TGD.
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Ye 0 .5 .7798
(m0/mPl)103 .2437 .2323 .2266
KR × 10−7 2.5262 2.7788 2.9202

(LR/
√
~G)× 10−4 3.1580 3.3122 3.3954

K × 10−7 2.4606 2.4606 2.4606

(L/
√
~G)× 10−4 3.1167 3.1167 3.1167

KR/K 1.0267 1.1293 1.1868

Table 2: Table gives the values of the ratio KR = R2/G and CP2 geodesic length L = 2πR for Ye ∈
{0, 0.5, 0.7798}. Also the ratio of KR/K, where K = 2×3×5×7×11×13×17×19×23×2−3∗(15/17)
is rational number producing R2/G approximately is given.

1. The earliest formulation predicted cosmic strings with a string tension larger than the crit-
ical value giving the angle deficit 2π in Einstein’s equations and thus excluded by General
Relativity. The corrected value of CP2 radius predicts the value k/G for the cosmic string
tension with k in the range 10−7 − 10−6 as required by the TGD inspired model for the
galaxy formation solving the galactic dark matter problem.

2. In the earlier formulation there was no idea as how to derive the p-adic length scale L ∼
103.5

√
~G from the basic theory. Now this problem becomes trivial and one has to pre-

dict gravitational constant in terms of the p-adic length scale. This follows in principle as
a prediction of quantum TGD. In fact, one can deduce G in terms of the p-adic length
scale and the action exponential associated with the CP2 type extremal and gets a correct
value if αK approaches fine structure constant at electron length scale (due to the fact that
electromagnetic field equals to the Kähler field if Z0 field vanishes).

Besides this, one obtains a precise prediction for the dependence of the Kähler coupling
strength on the p-adic length scale by requiring that the gravitational coupling does not
depend on the p-adic length scale. p-Adic prime p in turn has a nice physical interpreta-
tion: the critical value of αK is same for the zero modes with given p. As already found,
the construction of graviton state allows to understand the small value of the gravitational
constant in terms of a de-coherence caused by multi-p fractality reducing the value of the
gravitational constant from L2

p to G.

3. p-Adic length scale is also the length scale at which super-symmetry should be restored
in standard super-symmetric theories. In TGD this scale corresponds to the transition to
Euclidian field theory for CP2 type extremals. There are strong reasons to believe that
sparticles are however absent and that super-symmetry is present only in the sense that
super-generators have complex conformal weights with Re(h) = ±1/2 rather than h = 0.
The action of this super-symmetry changes the mass of the state by an amount of order CP2

mass.

4 Color Degrees Of Freedom

The ground states for the Super Virasoro representations correspond to spinor harmonics in M4×
CP2 characterized by momentum and color quantum numbers. The correlation between color and
electro-weak quantum numbers is wrong for the spinor harmonics and these states would be also
hyper-massive. The super-symplectic generators allow to build color triplet states having negative
vacuum conformal weights, and their values are such that p-adic massivation is consistent with
the predictions of the earlier model differing from the recent one in the quark sector. In the
following the construction and the properties of the color partial waves for fermions and bosons
are considered. The discussion follows closely to the discussion of [A3] .
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4.1 SKM Algebra And Counterpart Of Super Virasoro Conditions

There have been a considerable progress also in the understanding of super-conformal symmetries
[K22, K3].

1. Super-symplectic algebra corresponds to the isometries of WCW constructed in terms covari-
antly constant right handed neutrino mode and second quantized induced spinor field Ψ and
the corresponding Super-Kac-Moody algebra restricted to symplectic isometries and realized
in terms of all spinor modes and Ψ is the most plausible identification of the superconformal
algebras when the constraints from p-adic mass calculations are taken into account. These
algebras act as dynamical rather than gauge algebras and related to the isometries of WCW.

2. One expects also gauge symmetries due to the non-determinism of Kähler action. They
transform to each other preferred extremals having fixed 3-surfaces as ends at the boundaries
of the causal diamond. They preserve the value of Kähler action and those of conserved
charges. The assumption is that there are n gauge equivalence classes of these surfaces and
that n defines the value of the effective Planck constant heff = n × h in the effective GRT
type description replacing many-sheeted space-time with single sheeted one. Note that the
geometric part of SKM algebra must respect the light-likeness of the partonic 3-surface.

3. An interesting question is whether the symplectic isometries of δM4
± × CP2 should be ex-

tended to include all isometries of δM4
± = S2×R+ in one-one correspondence with conformal

transformations of S2.The S2 local scaling of the light-like radial coordinate rM of R+ com-
pensates the conformal scaling of the metric coming from the conformal transformation of
S2. Also light-like 3-surfaces allow the analogs of these isometries.

The requirement that symplectic generators have well defined radial conformal weight with
respect to the light-like coordinate r of X3 restricts M4 conformal transformations to the group
SO(3) × E3. This involves choice of preferred time coordinate. If the preferred M4 coordinate
is chosen to correspond to a preferred light-like direction in δM4

± characterizing the theory, a
reduction to SO(2) × E2 more familiar from string models occurs. SKM algebra contains also
U(2)ew Kac-Moody algebra acting as holonomies of CP2 and having no bosonic counterpart.

p-Adic mass calculations require N = 5 sectors of super-conformal algebra. These sectors
correspond to the 5 tensor factors for the SO(3)×E3×SU(3)×U(2)ew (or SO(2)×E2×SU(3)×
U(2)ew ) decomposition of the SKM algebra to gauge symmetries of gravitation, color and electro-
weak interactions.

For symplectic isometries (Super-Kac-Moody algebra) fermionic algebra is realized in terms
second quantized induced spinor field Ψ and spinor modes with well-defined em charge restricted
to 2-D surfaces: string world sheets and possibly also partonic 2-surfaces. The full symplectic
algebra is realized in terms of Ψ and covariantly constant right handed neutrino mode. One can
consider also the possiblity of extended the symplectic isometries of δM4

± = S2 × R+ to include
all isometries which act as conformal transformations of S2 and for which conformal scaling of the
metric is compensated by S2 local scaling of the light-like radial coordinate rM of R+.

The algebra differs from the standard one in that super generators G(z) carry lepton and quark
numbers are not Hermitian as in super-string models (Majorana conditions are not satisfied). The
counterparts of Ramond representations correspond to zero modes of a second quantized spinor
field with vanishing radial conformal weight.

The Ramond or N-S type Virasoro conditions satisfied by the physical states in string model
approach are replaced by the formulas expressing mass squared as a conformal weight. The con-
dition is not equivalent with super Virasoro conditions since four-momentum does not appear in
super Virasoro generators. It seems possible to assume that the commutator algebra [SKM,SC]
and the commutator of [SKMV,SSV ] of corresponding Super Virasoro algebras annihilate physi-
cal states. This would give rise to the analog of Super Virasoro conditions which could be seen as
a Dirac equation in the world of classical worlds.

4.1.1 CP2 CM degrees of freedom

Important element in the discussion are center of mass degrees of freedom parameterized by embed-
ding space coordinates. By the effective 2-dimensionality it is indeed possible to assign to partons
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momenta and color partial waves and they behave effectively as free particles. In fact, the technical
problem of the earlier scenario was that it was not possible to assign symmetry transformations
acting only on the light-like 3-surfaces at which the signature of the induced metric transforms
from Minkowskian to Euclidian.

The original assumption was that 3-surface has boundary components to which elementary
particle quantum numbers were assigned. It however became clear that boundary conditions at
boundaries probably fail to be satisfied. Hence the above described light-like 3-surfaces took the
role the boundary components. Space-time sheets were replaced with surfaces looking like double-
sheeted (at least) structures from M4 perspective with sheets meeting along 3-D surfaces. Sphere
in Euclidian 3-space is the simplest analog for this kind of structure.

One can assign to each eigen state of color quantum numbers a color partial wave in CP2

degrees of freedom. Thus color quantum numbers are not spin like quantum numbers in TGD
framework except effectively in the length scales much longer than CP2 length scale. The corre-
lation between color partial waves and electro-weak quantum numbers is not physical in general:
only the covariantly constant right handed neutrino has vanishing color.

4.1.2 Mass formula, and condition determining the effective string tension

Mass squared eigenvalues are given by

M2 = m2
CP2

+ kL0 . (4.1)

The contribution of CP2 spinor Laplacian to the mass squared operator is in general not integer
valued.

The requirement that mass squared spectrum is integer valued for color partial waves possibly
representing light states fixes the possible values of k determining the effective string tension
modulo integer. The value k = 1 is the only possible choice. The earlier choice kL = 1 and
kq = 2/3, kB = 1 gave integer conformal weights for the lowest possible color partial waves. The
assumption that the total vacuum weight hvac is conserved in particle vertices implied kB = 1.

4.2 General Construction Of Solutions Of Dirac Operator Of H

The construction of the solutions of massless spinor and other d’Alembertians in M4
+ × CP2 is

based on the following observations.

1. d’Alembertian corresponds to a massless wave equation M4 × CP2 and thus Kaluza-Klein
picture applies, that is M4

+ mass is generated from the momentum in CP2 degrees of freedom.
This implies mass quantization:

M2 = M2
n ,

where M2
n are eigenvalues of CP2 Laplacian. Here of course, ordinary field theory is consid-

ered. In TGD the vacuum weight changes mass squared spectrum.

2. In order to get a respectable spinor structure in CP2 one must couple CP2 spinors to an odd
integer multiple of the Kähler potential. Leptons and quarks correspond to n = 3 and n = 1
couplings respectively. The spectrum of the electromagnetic charge comes out correctly for
leptons and quarks.

3. Right handed neutrino is covariantly constant solution of CP2 Laplacian for n = 3 coupling
to Kähler potential whereas right handed “electron” corresponds to the covariantly constant
solution for n = −3. From the covariant constancy it follows that all solutions of the spinor
Laplacian are obtained from these two basic solutions by multiplying with an appropriate
solution of the scalar Laplacian coupled to Kähler potential with such a coupling that a
correct total Kähler charge results. Left handed solutions of spinor Laplacian are obtained
simply by multiplying right handed solutions with CP2 Dirac operator: in this operation the
eigenvalues of the mass squared operator are obviously preserved.
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4. The remaining task is to solve scalar Laplacian coupled to an arbitrary integer multiple of
Kähler potential. This can be achieved by noticing that the solutions of the massive CP2

Laplacian can be regarded as solutions of S5 scalar Laplacian. S5 can indeed be regarded as
a circle bundle over CP2 and massive solutions of CP2 Laplacian correspond to the solutions
of S5 Laplacian with exp(isτ) dependence on S1 coordinate such that s corresponds to the
coupling to the Kähler potential:

s = n/2 .

Thus one obtains

D2
5 = (Dµ − iAµ∂τ )(Dµ − iAµ∂τ ) + ∂2

τ (4.2)

so that the eigen values of CP2 scalar Laplacian are

m2(s) = m2
5 + s2 (4.3)

for the assumed dependence on τ .

5. What remains to do, is to find the spectrum of S5 Laplacian and this is an easy task.
All solutions of S5 Laplacian can be written as homogenous polynomial functions of C3

complex coordinates Zk and their complex conjugates and have a decomposition into the
representations of SU(3) acting in natural manner in C3.

6. The solutions of the scalar Laplacian belong to the representations (p, p+ s) for s ≥ 0 and to
the representations (p + |s|, p) of SU(3) for s ≤ 0. The eigenvalues m2(s) and degeneracies
d are

m2(s) =
2Λ

3
[p2 + (|s|+ 2)p+ |s|] , p > 0 ,

d =
1

2
(p+ 1)(p+ |s|+ 1)(2p+ |s|+ 2) . (4.4)

Λ denotes the “cosmological constant” of CP2 (Rij = Λsij).

4.3 Solutions Of The Leptonic Spinor Laplacian

Right handed solutions of the leptonic spinor Laplacian are obtained from the asatz of form

νR = Φs=0ν
0
R ,

where uR is covariantly constant right handed neutrino and Φ scalar with vanishing Kähler charge.
Right handed “electron” is obtained from the ansats

eR = Φs=3e
0
R ,

where e0
R is covariantly constant for n = −3 coupling to Kähler potential so that scalar function

must have Kähler coupling s = n/2 = 3 a in order to get a correct Kähler charge. The d’Alembert
equation reduces to

(DµD
µ − (1− ε)Λ)Φ = −m2Φ ,

ε(ν) = 1 , ε(e) = −1 . (4.5)

The two additional terms correspond to the curvature scalar term and JklΣ
kl terms in spinor

Laplacian. The latter term is proportional to Kähler coupling and of different sign for ν and e,
which explains the presence of the sign factor ε in the formula.
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Right handed neutrinos correspond to (p, p) states with p ≥ 0 with mass spectrum

m2(ν) =
m2

1

3

[
p2 + 2p

]
, p ≥ 0 ,

m2
1 ≡ 2Λ . (4.6)

Right handed “electrons” correspond to (p, p+ 3) states with mass spectrum

m2(e) =
m2

1

3

[
p2 + 5p+ 6

]
, p ≥ 0 . (4.7)

Left handed solutions are obtained by operating with CP2 Dirac operator on right handed solutions
with one exception: the action of the Dirac operator on the covariantly constant right handed
neutrino ((p = 0, p = 0) state) annihilates it.

4.4 Quark Spectrum

Quarks correspond to the second conserved H-chirality of H-spinors. The construction of the
color partial waves for quarks proceeds along similar lines as for leptons. The Kähler coupling
corresponds to n = 1 (and s = 1/2) and right handed U type quark corresponds to a right handed
neutrino. U quark type solutions are constructed as solutions of form

UR = uRΦs==1 ,

where uR possesses the quantum numbers of covariantly constant right handed neutrino with
Kähler charge n = 3 (s = 3/2). Hence Φs has s = −1. For DR one has

DR = drΦs=2 .

dR has s = −3/2 so that one must have s = 2. For UR the representations (p+ 1, p) with triality
one are obtained and p = 0 corresponds to color triplet. For DR the representations (p, p+ 2) are
obtained and color triplet is missing from the spectrum (p = 0 corresponds to 6̄).

The CP2 contributions to masses are given by the formula

m2(U, p) =
m2

1

3

[
p2 + 3p+ 2

]
, p ≥ 0 ,

m2(D, p) =
m2

1

3

[
p2 + 4p+ 4

]
, p ≥ 0 . (4.8)

Left handed quarks are obtained by applying Dirac operator to right handed quark states and
mass formulas and color partial wave spectrum are the same as for right handed quarks.

The color contributions to p-adic mass squared are integer valued if m2
0/3 is taken as a fun-

damental p-adic unit of mass squared. This choice has an obvious relevance for p-adic mass
calculations since canonical identification does not commute with a division by integer. More
precisely, the images of number xp in canonical identification has a value of order 1 when x is
a non-trivial rational whereas for x = np the value is n/p and extremely is small for physically
interesting primes. This choice does not however affect the spectrum of massless states but can
affect the spectrum of light states in case of electro-weak gauge bosons.

4.5 Spectrum Of Elementary Particles

The assumption that k = 1 holds true for all particles forces to modify the earlier construction of
quark states. This turns out to be possible without affecting the p-adic mass calculations whose
outcome depend in an essential manner on the ground state conformal weights hgr of the fermions
(which can be negative).
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4.5.1 Leptonic spectrum

For k = 1 the leptonic mass squared is integer valued in units of m2
0 only for the states satisfying

p mod 3 6= 2 .

Only these representations can give rise to massless states. Neutrinos correspond to (p, p) rep-
resentations with p ≥ 1 whereas charged leptons correspond to (p, p + 3) representations. The
earlier mass calculations demonstrate that leptonic masses can be understood if the ground state
conformal weight is hgr = −1 for charged leptons and hgr = −2 for neutrinos.

The contribution of color partial wave to conformal weight is hc = (p2 + 2p)/3, p ≥ 1, for
neutrinos and p = 1 gives hc = 1 (octet). For charged leptons hc = (p2 + 5p + 6)/3 gives hc = 2
for p = 0 (decouplet). In both cases super-symplectic operator O must have a net conformal
weight hsc = −3 to produce a correct conformal weight for the ground state. p-adic considerations
suggests the use of operators O with super-symplectic conformal weight z = −1/2 − i

∑
nkyk,

where sk = 1/2 + iyk corresponds to zero of Riemann ζ. If the operators in question are color
Hamiltonians in octet representation net super-symplectic conformal weight hsc = −3 results. The
tensor product of two octets with conjugate super-symplectic conformal weights contains both octet
and decouplet so that singlets are obtained. What strengthens the hopes that the construction is
not ad hoc is that the same operator appears in the construction of quark states too.

Right handed neutrino remains essentially massless. p = 0 right handed neutrino does not
however generate N = 1 space-time (or rather, embedding space) super symmetry so that no
sparticles are predicted. The breaking of the electro-weak symmetry at the level of the masses
comes out basically from the anomalous color electro-weak correlation for the Kaluza-Klein partial
waves implying that the weights for the ground states of the fermions depend on the electromagnetic
charge of the fermion. Interestingly, TGD predicts lepto-hadron physics based on color excitations
of leptons and color bound states of these excitations could correspond topologically condensed on
string like objects but not fundamental string like objects.

4.5.2 Spectrum of quarks

Earlier arguments [K12] related to a model of CKM matrix as a rational unitary matrix suggested
that the string tension parameter k is different for quarks, leptons, and bosons. The basic mass
formula read as

M2 = m2
CP2

+ kL0 .

The values of k were kq = 2/3 and kL = kB = 1. The general theory however predicts that k = 1
for all particles.

1. By earlier mass calculations and construction of CKM matrix the ground state conformal
weights of U and D type quarks must be hgr(U) = −1 and hgr(D) = 0. The formulas for
the eigenvalues of CP2 spinor Laplacian imply that if m2

0 is used as unit, color conformal
weight hc ≡ m2

CP2
is integer for p mod = ±1 for U type quark belonging to (p + 1, p) type

representation and obeying hc(U) = (p2 + 3p + 2)/3 and for p mod 3 = 1 for D type quark
belonging (p, p + 2) type representation and obeying hc(D) = (p2 + 4p + 4)/3. Only these
states can be massless since color Hamiltonians have integer valued conformal weights.

2. In the recent case p = 1 states correspond to hc(U) = 2 and hc(D) = 3. hgr(U) = −1 and
hgr(D) = 0 reproduce the previous results for quark masses required by the construction
of CKM matrix. This forces the super-symplectic operator O to compensate the anomalous
color to have a net conformal weight hsc = −3 just as in the leptonic case. The facts that the
values of p are minimal for spinor harmonics and the super-symplectic operator is same for
both quarks and leptons suggest that the construction is not had hoc. The real justification
would come from the demonstration that hsc = −3 defines null state for SSV: this would also
explain why hsc would be same for all fermions.

3. It would seem that the tensor product of the spinor harmonic of quarks (as also leptons)
with Hamiltonians gives rise to a large number of exotic colored states which have same
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thermodynamical mass as ordinary quarks (and leptons). Why these states have smaller
values of p-adic prime that ordinary quarks and leptons, remains a challenge for the theory.
Note that the decay widths of intermediate gauge bosons pose strong restrictions on the
possible color excitations of quarks. On the other hand, the large number of fermionic color
exotics can spoil the asymptotic freedom, and it is possible to have and entire p-adic length
scale hierarchy of QCDs existing only in a finite length scale range without affecting the
decay widths of gauge bosons.

Table 3 summarizes the color conformal weights and super-symplectic vacuum conformal
weights for the elementary particles.

.
L νL U D W γ,G, g

hvac -3 -3 -3 -3 -2 0
hc 2 1 2 3 2 0

Table 3: The values of the parameters hvac and hc assuming that k = 1. The value of hvac ≤ −hc
is determined from the requirement that p-adic mass calculations give best possible fit to the mass
spectrum.

4.5.3 Photon, graviton and gluon

For photon, gluon and graviton the conformal weight of the p = 0 ground state is hgr = hvac = 0.
The crucial condition is that h = 0 ground state is non-degenerate: otherwise one would obtain
several physically more or less identical photons and this would be seen in the spectrum of black-
body radiation. This occurs if one can construct several ground states not expressible in terms of
the action of the Super Virasoro generators.

Masslessness or approximate masslessness requires low enough temperature Tp = 1/n, n > 1 at
least and small enough value of the possible contribution coming from the ground state conformal
weight.

In NS thermodynamics the only possibility to get exactly massless states in thermal sense
is to have ∆ = 0 state with one active sector so that NS thermodynamics becomes trivial due
to the absence of the thermodynamical excitations satisfying the gauge conditions. For neutral
gauge bosons this is indeed achieved. For Tp = 1/2, which is required by the mass spectrum of
intermediate gauge bosons, the thermal contribution to the mass squared is however extremely
small even for W boson.

5 Modular Contribution To The Mass Squared

The success of the p-adic mass calculations gives convincing support for the generation-genus
correspondence. The basic physical picture is following.

1. Fermionic mass squared is dominated by partonic contribution, which is sum of cm and mod-
ular contributions: M2 = M2(cm)+M2(mod). Here “cm” refers to the thermal contribution.
Modular contribution can be assumed to depend on the genus of the boundary component
only.

2. If Higgs contribution for diagonal (g, g) bosons (singlets with respect to “topological” SU(3))
dominates, the genus dependent contribution can be assumed to be negligible. This should
be due to the bound state character of the wormhole contacts reducing thermal motion and
thus the p-adic temperature.

3. Modular contribution to the mass squared can be estimated apart from an overall propor-
tionality constant. The mass scale of the contribution is fixed by the p-adic length scale
hypothesis. Elementary particle vacuum functionals are proportional to a product of all even
theta functions and their conjugates, the number of even theta functions and their conjugates
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being 2N(g) = 2g(2g + 1). Also the thermal partition function must also be proportional to
2N(g):th power of some elementary partition function. This implies that thermal/ quantum
expectation M2(mod) must be proportional to 2N(g). Since single handle behaves effec-
tively as particle, the contribution must be proportional to genus g also. The success of the
resulting mass formula encourages the belief that the argument is essentially correct.

The challenge is to construct theoretical framework reproducing the modular contribution to
mass squared. There are two alternative ways to understand the origin modular contribution.

1. The realization that super-symplectic algebra is relevant for elementary particle physics leads
to the idea that two thermodynamics are involved with the calculation of the vacuum con-
formal weight as a thermal expectation. The first thermodynamics corresponds to Super
Kac-Moody algebra and second thermodynamics to super-symplectic algebra. This approach
allows a first principle understanding of the origin and general form of the modular contri-
bution without any need to introduce additional structures in modular degrees of freedom.
The very fact that super-symplectic algebra does not commute with the modular degrees of
freedom explains the dependence of the super-symplectic contribution on moduli.

2. The earlier approach was based on the idea that he modular contribution could be regarded
as a quantum mechanical expectation value of the Virasoro generator L0 for the elementary
particle vacuum functional. Quantum treatment would require generalization the concepts
of the moduli space and theta function to the p-adic context and finding an acceptable
definition of the Virasoro generator L0 in modular degrees of freedom. The problem with
this interpretation is that it forces to introduce, not only Virasoro generator L0, but the
entire super Virasoro algebra in modular degrees of freedom. One could also consider of
interpreting the contribution of modular degrees of freedom to vacuum conformal weight
as being analogous to that of CP2 Laplacian but also this would raise the challenge of
constructing corresponding Dirac operator. Obviously this approach has become obsolete.

The thermodynamical treatment taking into account the constraints from that p-adicization is
possible might go along following lines.

1. In the real case the basic quantity is the thermal expectation value h(M) of the conformal
weight as a function of moduli. The average value of the deviation ∆h(M) = h(M)− h(M0)
over moduli space M must be calculated using elementary particle vacuum functional as
a modular invariant partition function. Modular invariance is achieved if this function is
proportional to the logarithm of elementary particle vacuum functional: this reproduces
the qualitative features basic formula for the modular contribution to the conformal weight.
p-Adicization leads to a slight modification of this formula.

2. The challenge of algebraically continuing this calculation to the p-adic context involves several
sub-tasks. The notions of moduli space Mp and theta function must be defined in the p-
adic context. An appropriately defined logarithm of the p-adic elementary particle vacuum
functional should determine ∆h(M). The average of ∆h(M) requires an integration over
Mp. The problems related to the definition of this integral could be circumvented if the
integral in the real case could be reduced to an algebraic expression, or if the moduli space
is discrete in which case integral could be replaced by a sum.

3. The number theoretic existence of the p-adic Θ function leads to the quantization of the
moduli so that the p-adic moduli space is discretized. Accepting the sharpened form of
Riemann hypothesis [K15] , the quantization means that the imaginary resp. real parts of
the moduli are proportional to integers resp. combinations of imaginary parts of zeros of
Riemann Zeta. This quantization could occur also for the real moduli for the maxima of
Kähler function. This reduces the problematic p-adic integration to a sum and the resulting
sum defining 〈∆h〉 converges extremely rapidly for physically interesting primes so that only
the few lowest terms are needed.
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5.1 Conformal Symmetries And Modular Invariance

The full SKM invariance means that the super-conformal fields depend only on the conformal
moduli of 2-surface characterizing the conformal equivalence class of the 2-surface. This means
that all induced metrics differing by a mere Weyl scaling have same moduli. This symmetry is
extremely powerful since the space of moduli is finite-dimensional and means that the entire infinite-
dimensional space of deformations of parton 2-surface X2 degenerates to a finite-dimensional mod-
uli spaces under conformal equivalence. Obviously, the configurations of given parton correspond
to a fiber space having moduli space as a base space. Super-symplectic degrees of freedom could
break conformal invariance in some appropriate sense.

5.1.1 Conformal and SKM symmetries leave moduli invariant

Conformal transformations and super Kac Moody symmetries must leave the moduli invariant.
This means that they induce a mere Weyl scaling of the induced metric of X2 and thus preserve
its non-diagonal character ds2 = gzzdzdz. This is indeed true if

1. the Super Kac Moody symmetries are holomorphic isometries of X7 = δM4
± × CP2 made

local with respect to the complex coordinate z of X2, and

2. the complex coordinates of X7 are holomorphic functions of z.

Using complex coordinates for X7 the infinitesimal generators can be written in the form

JAn = znjAkDk + znjAkDk . (5.1)

The intuitive picture is that it should be possible to choose X2 freely. It is however not always
possible to choose the coordinate z of X2 in such a way that X7 coordinates are holomorphic
functions of z since a consistency of inherent complex structure of X2 with that induced from X7

is required. Geometrically this is like meeting of two points in the space of moduli.
Lorentz boosts produce new inequivalent choices of S2 with their own complex coordinate: this

set of complex structures is parameterized by the hyperboloid of future light cone (Lobatchevski
space or mass shell), but even this is not enough. The most plausible manner to circumvent the
problem is that only the maxima of Kähler function correspond to the holomorphic situation so
that super-symplectic algebra representing quantum fluctuations would induce conformal anomaly.

5.1.2 The isometries of δM4
+ are in one-one correspondence with conformal transfor-

mations

For CP2 factor the isometries reduce to SU(3) group acting also as symplectic transformations.
For δM4

+ = S2×R+ one might expect that isometries reduce to Lorentz group containing rotation
group of SO(3) as conformal isometries. If rM corresponds to a macroscopic length scale, then X2

has a finite sized S2 projection which spans a rather small solid angle so that group SO(3) reduces
in a good approximation to the group E2 × SO(2) of translations and rotations of plane.

This expectation is however wrong! The light-likeness of δM4
+ allows a dramatic generalization

of the notion of isometry. The point is that the conformal transformations of S2 induce a conformal
factor |df/dw|2 to the metric of δM4

+ and the local radial scaling rM → rM/|df/dw| compensates
it. Hence the group of conformal isometries consists of conformal transformations of S2 with
compensating radial scalings. This compensation of two kinds of conformal transformations is the
deep geometric phenomenon which translates to the condition LSC − LSKM = 0 in the sub-space
of physical states. Note that an analogous phenomenon occurs also for the light-like CDs X3

l with
respect to the metrically 2-dimensional induced metric.

The X2-local radial scalings rM → rM (z, z) respect the conditions gzz = gzz = 0 so that a mere
Weyl scaling leaving moduli invariant results. By multiplying the conformal isometries of δM4

+ by
zn (z is used as a complex coordinate for X2 and w as a complex coordinate for S2) a conformal
localization of conformal isometries would result. Kind of double conformal transformations would
be in question. Note however that this requires that X7 coordinates are holomorphic functions
of X2 coordinate. These transformations deform X2 unlike the conformal transformations of X2.
For X3

l similar local scalings of the light like coordinate leave the moduli invariant but lead out of
X7.
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5.1.3 Symplectic transformations break the conformal invariance

In general, infinitesimal symplectic transformations induce non-vanishing components gzz, gzz of
the induced metric and can thus change the moduli of X2. Thus the quantum fluctuations rep-
resented by super-symplectic algebra and contributing to the WCW metric are in general moduli
changing. It would be interesting to know explicitly the conditions (the number of which is the
dimension of moduli space for a given genus), which guarantee that the infinitesimal symplectic
transformation is moduli preserving.

5.2 The Physical Origin Of The Genus Dependent Contribution To The
Mass Squared

Different p-adic length scales are not enough to explain the charged lepton mass ratios and an
additional genus dependent contribution in the fermionic mass formula is required. The general
form of this contribution can be guessed by regarding elementary particle vacuum functionals in
the modular degrees of freedom as an analog of partition function and the modular contribution to
the conformal weight as an analog of thermal energy obtained by averaging over moduli. p-Adic
length scale hypothesis determines the overall scale of the contribution.

The exact physical origin of this contribution has remained mysterious but super-symplectic
degrees of freedom represent a good candidate for the physical origin of this contribution. This
would mean a sigh of relief since there would be no need to assign conformal weights, super-algebra,
Dirac operators, Laplacians, etc.. with these degrees of freedom.

5.2.1 Thermodynamics in super-symplectic degrees of freedom as the origin of the
modular contribution to the mass squared

The following general picture is the simplest found hitherto.

1. Elementary particle vacuum functionals are defined in the space of moduli of surfaces X2

corresponding to the maxima of Kähler function. There some restrictions on X2. In partic-
ular, p-adic length scale poses restrictions on the size of X2. There is an infinite hierarchy of
elementary particle vacuum functionals satisfying the general constraints but only the lowest
elementary particle vacuum functionals are assumed to contribute significantly to the vacuum
expectation value of conformal weight determining the mass squared value.

2. The contribution of Super-Kac Moody thermodynamics to the vacuum conformal weight h
coming from Virasoro excitations of the h = 0 massless state is estimated in the previous
calculations and does not depend on moduli. The new element is that for a partonic 2-surface
X2 with given moduli, Virasoro thermodynamics is present also in super-symplectic degrees
of freedom.

Super-symplectic thermodynamics means that, besides the ground state with hgr = −hSC
with minimal value of super-symplectic conformal weight hSC , also thermal excitations of
this state by super-symplectic Virasoro algebra having hgr = −hSC − n are possible. For
these ground states the SKM Virasoro generators creating states with net conformal weight
h = hSKM − hSC − n ≥ 0 have larger conformal weight so that the SKM thermal average
h depends on n. It depends also on the moduli M of X2 since the Beltrami differentials
representing a tangent space basis for the moduli space M do not commute with the super-
symplectic algebra. Hence the thermally averaged SKM conformal weight hSKM for given
values of moduli satisfies

hSKM = h(n,M) . (5.2)

3. The average conformal weight induced by this double thermodynamics can be expressed as
a super-symplectic thermal average 〈·〉SC of the SKM thermal average h(n,M):

h(M) = 〈h(n,M)〉SC =
∑

pn(M)h(n) , (5.3)
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where the moduli dependent probability pn(M) of the super-symplectic Virasoro excitation
with conformal weight n should be consistent with the p-adic thermodynamics. It is conve-
nient to write h(M) as

h(M) = h0 + ∆h(M) , (5.4)

where h0 is the minimum value of h(M) in the space of moduli. The form of the elementary
particle vacuum functionals suggest that h0 corresponds to moduli with Im(Ωij) = 0 and thus
to singular configurations for which handles degenerate to one-dimensional lines attached to
a sphere.

4. There is a further averaging of ∆h(M) over the moduli space M by using the modulus
squared of elementary particle vacuum functional so that one has

h = h0 + 〈∆h(M)〉M . (5.5)

Modular invariance allows to pose very strong conditions on the functional form of ∆h(M).
The simplest assumption guaranteeing this and thermodynamical interpretation is that ∆h(M)
is proportional to the logarithm of the vacuum functional Ω:

∆h(M) ∝ −log(
Ω(M)

Ωmax
) . (5.6)

Here Ωmax corresponds to the maximum of Ω for which ∆h(M) vanishes.

5.2.2 Justification for the general form of the mass formula

The proposed general ansatz for ∆h(M) provides a justification for the general form of the mass
formula deduced by intuitive arguments.

1. The factorization of the elementary particle vacuum functional Ω into a product of 2N(g) =
2g(2g+1) terms and the logarithmic expression for ∆h(M) imply that the thermal expectation
values is a sum over thermal expectation values over 2N(g) terms associated with various
even characteristics (a, b), where a and b are g-dimensional vectors with components equal
to 1/2 or 0 and the inner product 4a · b is an even integer. If each term gives the same result
in the averaging using Ωvac as a partition function, the proportionality to 2Ng follows.

2. For genus g ≥ 2 the partition function defines an average in 3g − 3 complex-dimensional
space of moduli. The analogy of 〈∆h〉 and thermal energy suggests that the contribution is
proportional to the complex dimension 3g − 3 of this space. For g ≤ 1 the contribution the
complex dimension of moduli space is g and the contribution would be proportional to g.

〈∆h〉 ∝ g ×X(g) for g ≤ 1 ,

〈∆h〉 ∝ (3g − 3)×X(g) for g ≥ 2 ,

X(g) = 2g(2g + 1) . (5.7)

If X2 is hyper-elliptic for the maxima of Kähler function, this expression makes sense only
for g ≤ 2 since vacuum functionals vanish for hyper-elliptic surfaces.

3. The earlier argument, inspired by the interpretation of elementary particle vacuum functional
as a partition function, was that each factor of the elementary particle vacuum functional
gives the same contribution to 〈∆h〉, and that this contribution is proportional to g since
each handle behaves like a particle:
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〈∆h〉 ∝ g ×X(g) . (5.8)

The prediction following from the previous differs by a factor (3g − 3)/g for g ≥ 2. This
would scale up the dominant modular contribution to the masses of the third g = 2 fermionic
generation by a factor

√
3/2 ' 1.22. One must of course remember, that these rough

arguments allow g− dependent numerical factors of order one so that it is not possible to
exclude either argument.

5.3 Generalization Of Θ Functions And Quantization Of P-Adic Moduli

The task is to find p-adic counterparts for theta functions and elementary particle vacuum func-
tionals. The constraints come from the p-adic existence of the exponentials appearing as the
summands of the theta functions and from the convergence of the sum. The exponentials must be
proportional to powers of p just as the Boltzmann weights defining the p-adic partition function.
The outcome is a quantization of moduli so that integration can be replaced with a summation
and the average of ∆h(M) over moduli is well defined.

It is instructive to study the problem for torus in parallel with the general case. The ordinary
moduli space of torus is parameterized by single complex number τ . The points related by SL(2, Z)
are equivalent, which means that the transformation τ → (Aτ + B)/(Cτ + D) produces a point
equivalent with τ . These transformations are generated by the shift τ → τ + 1 and τ → −1/τ .
One can choose the fundamental domain of moduli space to be the intersection of the slice Re(τ) ∈
[−1/2, 1/2] with the exterior of unit circle |τ | = 1. The idea is to start directly from physics and
to look whether one might some define p-adic version of elementary particle vacuum functionals
in the p-adic counterpart of this set or in some modular invariant subset of this set.

Elementary particle vacuum functionals are expressible in terms of theta functions using the

functions Θ4[a, b]Θ
4
[a, b] as a building block. The general expression for the theta function reads

as

Θ[a, b](Ω) =
∑
n

exp(iπ(n+ a) · Ω · (n+ a))exp(2iπ(n+ a) · b) . (5.9)

The latter exponential phase gives only a factor ±i or ±1 since 4a · b is integer. For p mod 4 = 3
imaginary unit exists in an algebraic extension of p-adic numbers. In the case of torus (a, b) has
the values (0, 0), (1/2, 0) and (0, 1/2) for torus since only even characteristics are allowed.

Concerning the p-adicization of the first exponential appearing in the summands in Eq. 5.9,
the obvious problem is that π does not exists p-adically unless one allows infinite-dimensional
extension.

1. Consider first the real part of Ω. In this case the proper manner to treat the situation is
to introduce and algebraic extension involving roots of unity so that Re(Ω) rational. This
approach is proposed as a general approach to the p-adicization of quantum TGD in terms
of harmonic analysis in symmetric spaces allowing to define integration also in p-adic context
in a physically acceptable manner by reducing it to Fourier analysis. The simplest situation
corresponds to integer values for Re(Ω) and in this case the phase are equal to ±i or ±1
since a is half-integer valued. One can consider a hierarchy of variants of moduli space
characterized by the allowed roots of unity. The physical interpretation for this hierarchy
would be in terms of a hierarchy of measurement resolutions. Note that the real parts of Ω
can be assumed to be rationals of form m/n where n is constructed as a product of finite
number of primes and therefore the allowed rationals are linear combinations of inverses 1/pi
for a subset {pi} of primes.

2. For the imaginary part of Ω different approach is required. One wants a rapid convergence of
the sum formula and this requires that the exponents reduces in this case to positive powers
of p. This is achieved if one has
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Im(Ω) = −nlog(p)

π)
, (5.10)

Unfortunately this condition is not consistent with the condition Im(Ω) > 0. a way to cir-
cumvent the difficulty is to replace Ω with its complex conjugate. Second approach is to
define the real discretized variant of theta function first and then map it by canonical iden-
tification to its p-adic counterpart: this would map phase to phases and powers of p to their
inverses. Note that a similar change of sign must be performed in p-adic thermodynamics for

powers of p to map p-adic probabilities to real ones. By rescaling Im(Ω)→ log(p)
π) Im(Ω) one

has non-negative integer valued spectrum for Im(Ω) making possible to reduce integration
in moduli space to a summation over finite number of rationals associated with the real part
of Ω and powers of p associated with the imaginary part of Ω.

3. Since the exponents appearing in

p(n+a)·Im(Ωij,p)·(n+a) = pa·Im(Ω)·a × p2a·Im(Ω·n × p+n·Im(Ωij,p)·n

are positive integers valued, Θ[a,b] exist in Rp and converges. The problematic factor is
the first exponent since the components of the vector a can have values 1/2 and 0 and its
existence implies a quantization of Im(Ωij) as

Im(Ω) = −Knlog(p)

p
, n ∈ Z , n ≥ 1 , (5.11)

In p-adic context this condition must be formulated for the exponent of Ω defining the
natural coordinate. K = 4 guarantees the existence of Θ functions and K = 1 the existence

of the building blocks Θ4[a, b]Θ
4
[a, b] of elementary particle vacuum functionals in Rp. The

extension to higher genera means only replacement of Ω with the elements of a matrix.

4. One can criticize this approach for the loss of the full modular covariance in the definition
of theta functions. The modular transformations Ω→ Ω + n are consistent with the number
theoretic constraints but the transformations Ω→ −1/Ω do not respect them. It seem that
one can circumvent the difficulty by restricting the consideration to a fundamental domain
satisfying the number theoretic constraints.

This variant of moduli space is discrete and p-adicity is reflected only in the sense that the
moduli space makes sense also p-adically. One can consider also a continuum variant of the p-adic
moduli space using the same prescription as in the construction of p-adic symmetric spaces [K18] .

1. One can introduce exp(iπRe(Ω)) as the counterpart of Re(Ω) as a coordinate of the Te-
ichmueller space. This coordinate makes sense only as a local coordinate since it does not
differentiate between Re(Ω) and Re(Ω + 2n). On the other hand, modular invariance states
that Ω abd Ω +n correspond to the same moduli so that nothing is lost. In the similar man-
ner one can introduce exp(πIm(Ω)) ∈ {pn, n > 0} as the counterpart of discretized version
of Im(Ω).

2. The extension to continuum would mean in the case of Re(Ω) the extension of the phase
exp(iπRe(Ω)) to a product exp(iπRe(Ω))exp(ipx) = exp(iπRe(Ω) + exp(ipx), where x is
p-adic integer which can be also infinite as a real integer. This would mean that each root
of unity representing allowed value Re(Ω) would have a p-adic neighborhood consisting of
p-adic integers. This neighborhood would be the p-adic counterpart for the angular integral
∆φ for a given root of unity and would not make itself visible in p-adic integration.

3. For the imaginary part one can also consider the extension of exp(πIm(Ω)) to pn× exp(npx)
where x is a p-adic integer. This would assign to each point pn a p-adic neighborhood defined
by p-adic integers. This neighborhood is same all integers n with same p-adic norm. When
n is proportional to pk one has exp(npx)− 1 ∝ pk.
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The quantization of moduli characterizes precisely the conformal properties of the partonic
2-surfaces corresponding to different p-adic primes. In the real context -that is in the intersection
of real and p-adic worlds- the quantization of moduli of torus would correspond to

τ = K

[∑
q + i× nlog(p)

π

]
, (5.12)

where q is a rational number expressible as linear combination of inverses of a finite fixed set of
primes defining the allowed roots of unity. K = 1 guarantees the existence of elementary particle
vacuum functionals and K = 4 the existence of Theta functions. The ratio for the complex vectors
defining the sides of the plane parallelogram defining torus via the identification of the parallel
sides is quantized. In other words, the angles Φ between the sides and the ratios of the sides given
by |τ | have quantized values.

The quantization rules for the moduli of the higher genera is of exactly same form

Ωij = K

[∑
qij + i× nij ×

log(p)

π

]
,

(5.13)

If the quantization rules hold true also for the maxima of Kähler function in the real context or
more precisely- in the intersection of real and p-adic variants of the “world of classical worlds”
identified as partonic 2-surfaces at the boundaries of causal diamond plus the data about their 4-D
tangent space, there are good hopes that the p-adicized expression for ∆h is obtained by a simple
algebraic continuation of the real formula. Thus p-adic length scale would characterize partonic
surface X2 rather than the light like causal determinant X3

l containing X2. Therefore the idea
that various p-adic primes label various X3

l connecting fixed partonic surfaces X2
i would not be

correct.
Quite generally, the quantization of moduli means that the allowed 2-dimensional shapes form

a lattice and are thus additive. It also means that the maxima of Kähler function would obey a
linear superposition in an extreme abstract sense. The proposed number theoretical quantization
is expected to apply for any complex space allowing some preferred complex coordinates. In
particular, WCW of 2-surfaces could allow this kind of quantization in the complex coordinates
naturally associated with isometries and this could allow to define WCW integration, at least the
counterpart of integration in zero mode degrees of freedom, as a summation.

Number theoretic vision leads to the notion of multi-p-p-adicity in the sense that the same
partonic 2-surface can correspond to several p-adic primes and that infinite primes code for these
primes [K22, K17] . At the level of the moduli space this corresponds to the replacement of p with
an integer in the formulas so that one can interpret the formulas both in real sense and p-adic sense
for the primes p dividing the integer. Also the exponent of given prime in the integer matters.

5.4 The Calculation Of The Modular Contribution 〈∆H〉 To The Con-
formal Weight

The quantization of the moduli implies that the integral over moduli can be defined as a sum
over moduli. The theta function Θ[a, b](Ω)p(τp) is proportional to pa·aIm(Ωij,p) = pKnijm(a)/4 for
a · a = m(a)/4, where K = 1 resp. K = 4 corresponds to the existence existence of elementary
particle vacuum functionals resp. theta functions in Rp. These powers of p can be extracted
from the thetas defining the vacuum functional. The numerator of the vacuum functional gives
(pn)2K

∑
a,bm(a). The numerator gives (pn)2K

∑
a,bm(a0), where a0 corresponds to the minimum

value of m(a). a0 = (0, 0, .., 0) is allowed and gives m(a0) = 0 so that the p-adic norm of the
denominator equals to one. Hence one has

|Ωvac(Ωp)|p = p−2nK
∑

a,bm(a) (5.14)

The sum converges extremely rapidly for large values of p as function of n so that in practice only
few moduli contribute.
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The definition of log(Ωvac) poses however problems since in log(p) does not exist as a p-adic
number in any p-adic number field. The argument of the logarithm should have a unit p-adic
norm. The simplest manner to circumvent the difficulty is to use the fact that the p-adic norm
|Ωp|p is also a modular invariant, and assume that the contribution to conformal weight depends
on moduli as

∆hp(Ωp) ∝ log(
Ωvac
|Ωvac|p

) . (5.15)

The sum defining 〈∆hp〉 converges extremely rapidly and gives a result of order O(p) p-adically as
required.

The p-adic expression for 〈∆hp〉 should result from the corresponding real expression by an
algebraic continuation. This encourages the conjecture that the allowed moduli are quantized for
the maxima of Kähler function, so that the integral over the moduli space is replaced with a sum
also in the real case, and that ∆h given by the double thermodynamics as a function of moduli
can be defined as in the p-adic case. The positive power of p multiplying the numerator could be
interpreted as a degeneracy factor. In fact, the moduli are not primary dynamical variables in the
case of the induced metric, and there must be a modular invariant weight factor telling how many
2-surfaces correspond to given values of moduli. The power of p could correspond to this factor.

6 The Contributions Of P-Adic Thermodynamics To Parti-
cle Masses

In the sequel various contributions to the mass squared are discussed.

6.1 General Mass Squared Formula

The thermal independence of Super Virasoro and modular degrees of freedom implies that mass
squared for elementary particle is the sum of Super Virasoro, modular and Higgsy contributions:

M2 = M2(color) +M2(SV ) +M2(mod) +M2(Higgsy) . (6.1)

Also small renormalization correction contributions might be possible.

6.2 Color Contribution To The Mass Squared

The mass squared contains a non-thermal color contribution to the ground state conformal weight
coming from the mass squared of CP2 spinor harmonic. The color contribution is an integer
multiple of m2

0/3, where m2
0 = 2Λ denotes the “cosmological constant” of CP2 (CP2 satisfies

Einstein equations Gαβ = Λgαβ).
The color contribution to the p-adic mass squared is integer valued only if m2

0/3 is taken as
a fundamental p-adic unit of mass squared. This choice has an obvious relevance for p-adic mass
calculations since the simplest form of the canonical identification does not commute with a division
by integer. More precisely, the image of number xp in canonical identification has a value of order
1 when x is a non-trivial rational number whereas for x = np the value is n/p and extremely is
small for physically interesting primes.

The choice of the p-adic mass squared unit are no effects on zeroth order contribution which
must vanish for light states: this requirement eliminates quark and lepton states for which the
CP2 contribution to the mass squared is not integer valued using m2

0 as a unit. There can be a
dramatic effect on the first order contribution. The mass squared m2 = p/3 using m2

0/3 means
that the particle is light. The mass squared becomes m2 = p/3 when m2

0 is used as a unit and the
particle has mass of order 10−4 Planck masses. In the case of W and Z0 bosons this problem is
actually encountered. For light states using m2

0/3 as a unit only the second order contribution to
the mass squared is affected by this choice.
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6.3 Modular Contribution To The Mass Of Elementary Particle

The general form of the modular contribution is derivable from p-adic partition function for con-
formally invariant degrees of freedom associated with the boundary components. The general form
of the vacuum functionals as modular invariant functions of Teichmueller parameters was derived
in [K1] and the square of the elementary particle vacuum functional can be identified as a partition
function. Even theta functions serve as basic building blocks and the functionals are proportional
to the product of all even theta functions and their complex conjugates. The number of theta
functions for genus g > 0 is given by

N(g) = 2g−1(2g + 1) . (6.2)

One has N(1) = 3 for muon and N(2) = 10 for τ .

1. Single theta function is analogous to a partition function. This implies that the modular
contribution to the mass squared must be proportional to 2N(g). The factor two follows
from the presence of both theta functions and their conjugates in the partition function.

2. The factorization properties of the vacuum functionals imply that handles behave effectively
as particles. For example, at the limit, when the surface splits into two pieces with g1 and
g−g1 handles, the partition function reduces to a product of g1 and g−g1 partition functions.
This implies that the contribution to the mass squared is proportional to the genus of the
surface. Altogether one has

M2(mod, g) = 2k(mod)N(g)g
m2

0

p
,

k(mod) = 1 . (6.3)

Here k(mod) is some integer valued constant (in order to avoid ultra heavy mass) to be
determined. k(mod) = 1 turns out to be the correct choice for this parameter.

Summarizing, the real counterpart of the modular contribution to the mass of a particle be-
longing to g + 1:th generation reads as

M2(mod) = 0 for e, νe, u, d ,

M2(mod) = 9
m2

0

p(X))
for X = µ, νµ, c, s ,

M2(mod) = 60
m2

0

p(X)
for X = τ, ντ , t, b . (6.4)

The requirement that hadronic mass spectrum and CKM matrix are sensible however forces the
modular contribution to be the same for quarks, leptons and bosons. The higher order modular
contributions to the mass squared are completely negligible if the degeneracy of massless state is
D(0,mod, g) = 1 in the modular degrees of freedom as is in fact required by k(mod) = 1.

6.4 Thermal Contribution To The Mass Squared

One can deduce the value of the thermal mass squared in order O(p2) (an excellent approxima-
tion) using the general mass formula given by p-adic thermodynamics. Assuming maximal p-adic
temperature Tp = 1 one has

M2 = k(sp+Xp2 +O(p3)) ,

s∆ =
D(∆ + 1)

D(∆)
,

X∆ = 2
D(∆ + 2)

D(∆)
− D2(∆ + 1)

D2(∆)
,

k = 1 . (6.5)
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∆ is the conformal weight of the operator creating massless state from the ground state.
The ratios rn = D(n + 1)/D(n) allowing to deduce the values of s and X have been deduced

from p-adic thermodynamics in [K7] . Light state is obtained only provided r(∆) is an integer.
The remarkable result is that for lowest lying states this is the case. For instance, for Ramond
representations the values of rn are given by

(r0, r1, r2, r3) = (8, 5, 4,
55

16
) . (6.6)

The values of s and X are

(s0, s1, s2) = (8, 5, 4) ,

(X0, X1, X2) = (16, 15, 11 + 1/2)) . (6.7)

The result means that second order contribution is extremely small for quarks and charged leptons
having ∆ < 2. For neutrinos having ∆ = 2 the second order contribution is non-vanishing.

6.5 The Contribution From The Deviation Of Ground StateConformal
Weight From Negative Integer

The interpretation inspired by p-adic mass calculations is that the squares λ2
i of the eigenvalues of

the Kähler-Dirac operator correspond to the conformal weights of ground states. Another natural
physical interpretation of λ is as an analog of the Higgs vacuum expectation. The instability
of the Higgs=0 phase would corresponds to the fact that λ = 0 mode is not localized to any
region in which ew magnetic field or induced Kähler field is non-vanishing. A good guess is that
induced Kähler magnetic field BK dictates the magnitude of the eigenvalues which is thus of order
h0 =

√
BKR, R CP2 radius. The first guess is that eigenvalues in the first approximation come as

(n+1/2)h0. Each region where induced Kähler field is non-vanishing would correspond to different
scale mass scale h0.

1. The vacuum expectation value of Higgs is only proportional to an eigenvalue λ, not equal to
it. Indeed, Higgs and gauge bosons as elementary particles correspond to wormhole contacts
carrying fermion and anti-fermion at the two wormhole throats and must be distinguished
from the space-time correlate of its vacuum expectation as something proportional to λ. In
the fermionic case the vacuum expectation value of Higgs does not seem to be even possible
since fermions do not correspond to wormhole contacts between two space-time sheets but
possess only single wormhole throat (p-adic mass calculations are consistent with this).

2. Physical considerations suggest that the vacuum expectation of Higgs field corresponds to
a particular eigenvalue λi of Kähler-Dirac operator so that the eigenvalues λi would define
TGD counterparts for the minima of Higgs potential. Since the vacuum expectation of
Higgs corresponds to a condensate of wormhole contacts giving rise to a coherent state,
the vacuum expectation cannot be present for topologically condensed CP2 type vacuum
extremals representing fermions since only single wormhole throat is involved. This raises a
hen-egg question about whether Higgs contributes to the mass or whether Higgs is only a
correlate for massivation having description using more profound concepts. From TGD point
of view the most elegant option is that Higgs does not give rise to mass but Higgs vacuum
expectation value accompanies bosonic states and is naturally proportional to λi. With this
interpretation λi could give a contribution to both fermionic and bosonic masses.

3. p-Adic mass calculations require negative ground state conformal weight compensated by
Super Virasoro generators in order to obtain massless states. The tachyonicity of the ground
states would mean a close analogy with both string models and Higgs mechanism. λ2

i is very
natural candidate for the ground state conformal weights identified but would have wrong
sign if the effective metric of X3

l defined by the inner products T kαK T lβK hkl of the Kähler
energy momentum tensor T kα = hkl∂LK/∂h

l
α and appearing in the Kähler-Dirac operator

DK has Minkowskian signature.
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The situation changes if the effective metric has Euclidian signature. This seems to be the
case for the light-like surfaces assignable to the known extremals such as MEs and cosmic
strings. In this kind of situation light-like coordinate possesses Euclidian signature and
real eigenvalue spectrum is replaced with a purely imaginary one. Since Dirac operator
is in question both signs for eigenvalues are possible and one obtains both exponentially
increasing and decreasing solutions. This is essential for having solutions extending from the
past end of X3

l to its future end. Non-unitary time evolution is possible because X3
l does not

strictly speaking represent the time evolution of 2-D dynamical object but actual dynamical
objects (by light-likeness both interpretation as dynamical evolution and dynamical object
are present). The Euclidian signature of the effective metric would be a direct analog for
the tachyonicity of the Higgs in unstable minimum and the generation of Higgs vacuum
expectation would correspond to the compensation of ground state conformal weight by
conformal weights of Super Virasoro generators.

4. In accordance with this λ2
i would give constant contribution to the ground state conformal

weight. What contributes to the thermal mass squared is the deviation of the ground state
conformal weight from half-odd integer since the negative integer part of the total conformal
weight can be compensated by applying Virasoro generators to the ground state. The first
guess motivated by cyclotron energy analogy is that the lowest conformal weights are of form
hc = λ2

i = −1/2−n+∆hc so that lowest ground state conformal weight would be hc = −1/2
in the first approximation. The negative integer part of the net conformal weight can be
canceled using Super Virasoro generators but ∆hc would give to mass squared a contribution
analogous to Higgs contribution. The mapping of the real ground state conformal weight to
a p-adic number by canonical identification involves some delicacies.

5. p-Adic mass calculations are consistent with the assumption that Higgs type contribution is
vanishing (that is small) for fermions and dominates for gauge bosons. This requires that the
deviation of λ2

i with smallest magnitude from half-odd integer value in the case of fermions is
considerably smaller than in the case of gauge bosons in the scale defined by p-adic mass scale
1/L(k) in question. Somehow this difference could relate to the fact that bosons correspond
to pairs of wormhole throats.

6.6 General Mass Formula For Ramond Representations

By taking the modular contribution from the boundaries into account the general p-adic mass for-
mulas for the Ramond type states read for states for which the color contribution to the conformal
weight is integer valued as

m2(∆ = 0)

m2
0

= (8 + n(g))p+ Y p2 ,

m2(∆ = 1)

m2
0

= (5 + n(g)p+ Y p2 ,

m2(∆ = 2)

m2
0

= (4 + n(g))p+ (Y +
23

2
)p2 ,

n(g) = 3g · 2g−1(2g + 1) . (6.8)

Here ∆ denotes the conformal weight of the operators creating massless states from the ground
state and g denotes the genus of the boundary component. The values of n(g) for the three lowest
generations are n(0) = 0, n(1) = 9 and n(2) = 60. The value of second order thermal contribution
is nontrivial for neutrinos only. The value of the rational number Y can, which corresponds to the
renormalization correction to the mass, can be determined using experimental inputs.

Using m2
0 as a unit, the expression for the mass of a Ramond type state reads in terms of the

electron mass as
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M(∆, g, p)R = K(∆, g, p)

√
M127

p
me

K(0, g, p) =

√
n(g) + 8 + YR

X

K(1, g, p) =

√
n(g) + 5 + YR

X

K(2, g, p) =

√
n(g) + 4 + YR

X
,

X =
√

5 + Y (e)R . (6.9)

Y can be assumed to depend on the electromagnetic charge and color representation of the state
and is therefore same for all fermion families. Mathematica provides modules for calculating the
real counterpart of the second order contribution and for finding realistic values of Y .

6.7 General Mass Formulas For NS Representations

Using m2
0/3 as a unit, the expression for the mass of a light NS type state for Tp = 1 ad kB = 1

reads in terms of the electron mass as

M(∆, g, p,N)R = K(∆, g, p,N)

√
M127

p
me

K(0, g, p, 1) =

√
n(g) + YR

X
,

K(0, g, p, 2) =

√
n(g) + 1 + YR

X
,

K(1, g, p, 3) =

√
n(g) + 3 + YR

X
,

K(2, g, p, 4) =

√
n(g) + 5 + YR

X
,

K(2, g, p, 5) =

√
n(g) + 10 + YR

X
,

X =
√

5 + Y (e)R . (6.10)

Here N is the number of the “active” NS sectors (sectors for which the conformal weight of the
massless state is non-vanishing). Y denotes the renormalization correction to the boson mass and
in general depends on the electro-weak and color quantum numbers of the boson.

The thermal contribution to the mass of W boson is too large by roughly a factor
√

3 for
Tp = 1. Hence Tp = 1/2 must hold true for gauge bosons and their masses must have a non-
thermal origin perhaps analogous to Higgs mechanism. Alternatively, the non-covariant constancy
of charge matrices could induce the boson mass [K7] .

It is interesting to notice that the minimum mass squared for gauge boson corresponds to the
p-adic mass unit M2 = m2

0p/3 and this just what is needed in the case of W boson. This forces to
ask whether m2

0/3 is the correct choice for the mass squared unit so that non-thermally induced W
mass would be the minimal m2

W = p in the lowest order. This choice would mean the replacement

YR →
(3Y )R

3

in the preceding formulas and would affect only neutrino mass in the fermionic sector. m2
0/3 option

is excluded by charged lepton mass calculation. This point will be discussed later.
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6.8 Primary Condensation Levels From P-Adic Length ScaleHypothesis

p-Adic length scale hypothesis states that the primary condensation levels correspond to primes
near prime powers of two p ' 2k, k integer with prime values preferred. Black hole-elementary
particle analogy [K13] suggests a generalization of this hypothesis by allowing k to be a power of
prime. The general number theoretical vision discussed in [K18] provides a first principle justifi-
cation for p-adic length scale hypothesis in its most general form. The best fit for the neutrino
mass squared differences is obtained for k = 132 = 169 so that the generalization of the hypothesis
might be necessary.

A particle primarily condensed on the level k can suffer secondary condensation on a level with
the same value of k: for instance, electron (k = 127) suffers secondary condensation on k = 127
level. u, d, s quarks (k = 107) suffer secondary condensation on nuclear space-time sheet having
k = 113). All quarks feed their color gauge fluxes at k = 107 space-time sheet. There is no deep
reason forbidding the condensation of p on p. Primary and secondary condensation levels could
also correspond to different but nearly identical values of p with the same value of k.

7 Fermion Masses

In the earlier model the coefficient of M2 = kL0 had to be assumed to be different for various
particle states. k = 1 was assumed for bosons and leptons and k = 2/3 for quarks. The fact that
k = 1 holds true for all particles in the model including also super-symplectic invariance forces to
modify the earlier construction of quark states. This turns out to be possible without affecting the
earlier p-adic mass calculations whose outcome depend in an essential manner on the ground state
conformal weights hgr of the fermions (hgr can be negative). The structure of lepton and quark
states in color degrees of freedom was discussed in [K7] .

7.1 Charged Lepton Mass Ratios

The overall mass scale for lepton and quark masses is determined by the condensation level given
by prime p ' 2k, k prime by length scale hypothesis. For charged leptons k must correspond to
k = 127 for electron, k = 113 for muon and k = 107 for τ . For muon p = 2113−1−4∗378 is assumed
(smallest prime below 2113 allowing

√
2 but not

√
3). So called Gaussian primes are to complex

integers what primes are for the ordinary integers and the Gaussian counterparts of the Mersenne
primes are Gaussian primes of form (1 ± i)k − 1. Rather interestingly, k = 113 corresponds to a
Gaussian Mersenne so that all charged leptons correspond to generalized Mersenne primes.

For k = 1 the leptonic mass squared is integer valued in units of m2
0 only for the states satisfying

p mod 3 6= 2 .

Only these representations can give rise to massless states. Neutrinos correspond to (p, p) rep-
resentations with p ≥ 1 whereas charged leptons correspond to (p, p + 3) representations. The
earlier mass calculations demonstrate that leptonic masses can be understood if the ground state
conformal weight is hgr = −1 for charged leptons and hgr = −2 for neutrinos.

The contribution of color partial wave to conformal weight is hc = (p2 + 2p)/3, p ≥ 1, for
neutrinos and p = 1 gives hc = 1 (octet). For charged leptons hc = (p2 + 5p + 6)/3 gives hc = 2
for p = 0 (decouplet). In both cases super-symplectic operator O must have a net conformal
weight hsc = −3 to produce a correct conformal weight for the ground state. p-adic considerations
suggests the use of operators O with super-symplectic conformal weight z = −1/2 − i

∑
nkyk,

where sk = 1/2 + iyk corresponds to zero of Riemann ζ. If the operators in question are color
Hamiltonians in octet representation net super-symplectic conformal weight hsc = −3 results. The
tensor product of two octets with conjugate super-symplectic conformal weights contains both octet
and decouplet so that singlets are obtained. What strengthens the hopes that the construction is
not ad hoc is that the same operator appears in the construction of quark states too.

Using CP2 mass scale m2
0 [K7] as a p-adic unit, the mass formulas for the charged leptons read

as
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M2(L) = A(ν)
m2

0

p(L)
,

A(e) = 5 +X(p(e)) ,

A(µ) = 14 +X(p(µ)) ,

A(τ) = 65 +X(p(τ)) . (7.1)

X(·) corresponds to the yet unknown second order corrections to the mass squared.
Table 4 gives the basic parameters as determined from the mass of electron for some values of

Ye. The mass of top quark favors as maximal value of CP2 mass which corresponds to Ye = 0.

Ye 0 .5 .7798
(m0/mPl)× 103 .2437 .2323 .2266
K × 10−7 2.5262 2.7788 2.9202

(LR/
√
G)× 10−4 3.1580 3.3122 3.3954

Table 4: Table gives the values of CP2 mass m0 using Planck mass mPl = 1/
√
G as unit, the

ratio K = R2/G and CP2 geodesic length L = 2πR for Ye ∈ {0, 0.5, 0.7798}.

Table 5 lists the lower and upper bounds for the charged lepton mass ratios obtained by taking
second order contribution to zero or allowing it to have maximum possible value. The values of
lepton masses are me = .510999 MeV, mµ = 105.76583 MeV, mτ = 1775 MeV.

m(µ)+

m(µ)
=

√
15

5
27me

(µ)
' 1.0722 ,

m(µ)−
m(µ)

=

√
14

6
27 me

m(µ)
' 0.9456 ,

m(τ)+

m(τ)
=

√
66

5
210 me

m(τ)
' 1.0710 ,

m(τ)−
m(τ)

=

√
65

6
210 me

m(τ)
' .9703 .

(7.2)

Table 5: Lower and upper bounds for the charged lepton mass ratios obtained by taking second
order contribution to zero or allowing it to have maximum possible value.

For the maximal value of CP2 mass the predictions for the mass ratio are systematically too large
by a few per cent. From the formulas above it is clear that the second order corrections to mass
squared can be such that correct masses result.

τ mass is least sensitive to X(p(e)) ≡ Ye and the maximum value of Ye ≡ Ye,max consistent
with τ mass corresponds to Ye,max = .7357 and Yτ = 1. This means that the CP2 mass is at least
a fraction .9337 of its maximal value. If YL is same for all charged leptons and has the maximal
value Ye,max = .7357, the predictions for the mass ratios are

m(µ)pr
m(µ)

=

√
14 + Ye,max
5 + Ye,max

× 27 me

m(µ)
' .9922 ,

m(τ)pr
m(τ)

=

√
65 + Ye,max
5 + Ye,max

× 210 me

m(τ)
' .9980 .

(7.3)
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The error is .8 per cent resp. .2 per cent for muon resp. τ .
The argument leading to estimate for the modular contribution to the mass squared [K7] leaves

two options for the coefficient of the modular contribution for g = 2 fermions: the value of coefficient
is either X = g for g ≤ 1, X = 3g − 3 for g ≥ 2 or X = g always. For g = 2 the predictions are
X = 2 and X = 3 in the two cases. The option X = 3 allows slightly larger maximal value of Ye
equal to Y

1)
e,max = Ye,max + (5 + Ye,max)/66.

7.2 Neutrino Masses

The estimation of neutrino masses is difficult at this stage since the prediction of the primary
condensation level is not yet possible and neutrino mixing cannot yet be predicted from the basic
principles. The cosmological bounds for neutrino masses however help to put upper bounds on the
masses. If one takes seriously the LSND data on neutrino mass measurement of [C22, C7] and the
explanation of the atmospheric ν-deficit in terms of νµ−ντ mixing [C13, C11] one can deduce that
the most plausible condensation level of µ and τ neutrinos is k = 167 or k = 132 = 169 allowed by
the more general form of the p-adic length scale hypothesis suggested by the blackhole-elementary
particle analogy. One can also deduce information about the mixing matrix associated with the
neutrinos so that mass predictions become rather precise. In particular, the mass splitting of µ
and τ neutrinos is predicted correctly if one assumes that the mixing matrix is a rational unitary
matrix.

7.2.1 Super Virasoro contribution

Using m2
0/3 as a p-adic unit, the expression for the Super Virasoro contribution to the mass squared

of neutrinos is given by the formula

M2(SV ) = (s+ (3Y p)R/3)
m2

0

p
,

s = 4 or 5 ,

Y =
23

2
+ Y1 , (7.4)

where m2
0 is universal mass scale. One can consider two possible identifications of neutrinos cor-

responding to s(ν) = 4 with ∆ = 2 and s(ν) = 5 with ∆ = 1. The requirement that CKM matrix
is sensible forces the asymmetric scenario in which quarks and, by symmetry, also leptons corre-
spond to lowest possible excitation so that one must have s(ν) = 4. Y1 represents second order
contribution to the neutrino mass coming from renormalization effects coming from self energy
diagrams involving intermediate gauge bosons. Physical intuition suggest that this contribution is
very small so that the precise measurement of the neutrino masses should give an excellent test
for the theory.

With the above described assumptions and for s = 4, one has the following mass formula for
neutrinos

M2(ν) = A(ν)
m2

0

p(ν))
,

A(νe) = 4 +
(3Y (p(νe)))R

3
,

A(νµ) = 13 +
(3Y (p(νµ)))R

3
,

A(ντ ) = 64 +
(3Y (p(ντ )))R

3
,

3Y ' 1

2
. (7.5)

The predictions must be consistent with the recent upper bounds [C8]
of order 10 eV , 270 keV and 0.3 MeV for νe, νµ and ντ respectively. The recently reported
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results of LSND measurement [C7] for νe− > νµ mixing gives string limits for ∆m2(νe, νµ) and the
parameter sin2(2θ) characterizing the mixing: the limits are given in the figure 30 of [C7]. The
results suggests that the masses of both electron and muon neutrinos are below 5 eV and that
mass squared difference ∆m2 = m2(νµ)−m2(νe) is between .25−25 eV 2. The simplest possibility
is that νµ and νe have common condensation level (in analogy with d and s quarks). There are
three candidates for the primary condensation level: namely k = 163, 167 and k = 169. The p-adic
prime associated with the primary condensation level is assumed to be the nearest prime below
2k allowing p-adic

√
2 but not

√
3 and satisfying p mod 4 = 3. The Table 6 gives the values of

various parameters and unmixed neutrino masses in various cases of interest.

k p (3Y )R/3 m(νe)/eV m(νµ)/eV m(ντ )/eV
163 2163 − 4 ∗ 144− 1 1.36 1.78 3.16 6.98
167 2167 − 4 ∗ 144− 1 .34 .45 .79 1.75

169 2169 − 4 ∗ 210− 1 .17 .22 .40 .87

Table 6: The values of various parameters and unmixed neutrino masses in various cases of
interest.

7.2.2 Could neutrino topologically condense also in other p-adic length scales than
k = 169?

One must keep mind open for the possibility that there are several p-adic length scales at which
neutrinos can condense topologically. Biological length scales are especially interesting in this
respect. In fact, all intermediate p-adic length scales k = 151, 157, 163, 167 could correspond to
metastable neutrino states. The point is that these p-adic lengths scales are number theoretically
completely exceptional in the sense that there exist Gaussian Mersenne 2k± i (prime in the ring of
complex integers) for all these values of k. Since charged leptons, atomic nuclei (k = 113) , hadrons
and intermediate gauge bosons correspond to ordinary or Gaussian Mersennes, it would not be
surprising if the biologically important Gaussian Mersennes would correspond to length scales
giving rise to metastable neutrino states. Of course, one can keep mind open for the possibility
that k = 167 rather than k = 132 = 169 is the length scale defining the stable neutrino physics.

7.2.3 Neutrino mixing

Consider next the neutrino mixing. A quite general form of the neutrino mixing matrix D given
by Table 7 will be considered.

νe νµ ντ
νe c1 s1c3 s1s3

νµ −s1c2 c1c2c3 − s2s3exp(iδ) c1c2s3 + s2c3exp(iδ)
ντ −s1s2 c1s2c3 + c2s3exp(iδ) c1s2s3 − c2c3exp(iδ)

Table 7: General form of neutrino mixing matrix.

Physical intuition suggests that the angle δ related to CP breaking is small and will be assumed
to be vanishing. Topological mixing is active only in modular degrees of freedom and one obtains
for the first order terms of mixed masses the expressions

s(νe) = 4 + 9|U12|2 + 60|U13|2 = 4 + n1 ,

s(νµ) = 4 + 9|U22|2 + 60|U23|2 = 4 + n2 ,

s(ντ ) = 4 + 9|U32|2 + 60|U33|2 = 4 + n3 .

(7.6)
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The requirement that resulting masses are not ultra heavy implies that s(ν) must be small integers.
The condition n1 +n2 +n3 = 69 follows from unitarity. The simplest possibility is that the mixing
matrix is a rational unitary matrix. The same ansatz was used successfully to deduce information
about the mixing matrices of quarks. If neutrinos are condensed on the same condensation level,
rationality implies that νµ−ντ mass squared difference must come from the first order contribution
to the mass squared and is therefore quantized and bounded from below.

The first piece of information is the atmospheric νµ/νe ratio, which is roughly by a factor
2 smaller than predicted by standard model [C13]. A possible explanation is the CKM mixing
of muon neutrino with τ -neutrino, whereas the mixing with electron neutrino is excluded as an
explanation. The latest results from Kamiokande [C13] are in accordance with the mixing m2(ντ )−
m2(νµ) ' 1.6 · 10−2 eV 2 and mixing angle sin2(2θ) = 1.0: also the zenith angle dependence of the
ratio is in accordance with the mixing interpretation. If mixing matrix is assumed to be rational
then only k = 169 condensation level is allowed for νµ and ντ . For this level νµ − ντ mass squared
difference turns out to be ∆m2 ' 10−2 eV 2 for ∆s ≡ s(ντ )−s(νµ) = 1, which is the only acceptable
possibility and predicts νµ−ντ mass squared difference correctly within experimental uncertainties!
The fact that the predictions for mass squared differences are practically exact, provides a precision
test for the rationality assumption.

What is measured in LSND experiment is the probability P (t, E) that νµ transforms to νe in
time t after its production in muon decay as a function of energy E of νµ. In the limit that ντ and
νµ masses are identical, the expression of P (t, E) is given by

P (t, E) = sin2(2θ)sin2(
∆Et

2
) ,

sin2(2θ) = 4c21s
2
1c

2
2 , (7.7)

where ∆E is energy difference of νµ and νe neutrinos and t denotes time. LSND experiment gives
stringent conditions on the value of sin2(2θ) as the figure 30 of [C7] shows. In particular, it seems
that sin2(2θ) must be considerably below 10−1 and this implies that s2

1 must be small enough.
The study of the mass formulas shows that the only possibility to satisfy the constraints for the

mass squared and sin2(2θ) given by LSND experiment is to assume that the mixing of the electron
neutrino with the tau neutrino is much larger than its mixing with the muon neutrino. This means
that s3 is quite near to unity. At the limit s3 = 1 one obtains the following (nonrational) solution
of the mass squared conditions for n3 = n2 + 1 (forced by the atmospheric neutrino data)

s2
1 =

69− 2n2 − 1

60
,

c22 =
n2 − 9

2n2 − 17
,

sin2(2θ) =
4(n2 − 9)

51

(34− n2)(n2 − 4)

302
,

s(νµ)− s(νe) = 3n2 − 68 . (7.8)

The study of the LSND data shows that there is only one acceptable solution to the conditions
obtained by assuming maximal mass squared difference for νe and νµ

n1 = 2 n2 = 33 n3 = 34 ,

s2
1 =

1

30
c22 =

24

49
,

sin2(2θ) =
24

49

2

15

29

30
' .0631 ,

s(νµ)− s(νe)) = 31↔ .32 eV 2 . (7.9)

That c22 is near 1/2 is not surprise taking into account the almost mass degeneracy of νmu and ντ .
From the figure 30 of [C7] it is clear that this solution belongs to 90 per cent likelihood region of
LSND experiment but sin2(2θ) is about two times larger than the value allowed by Bugey reactor
experiment. The study of various constraints given in [C7] shows that the solution is consistent
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with bounds from all other experiments. If one assumes that k > 169 for νe νµ−νe mass difference
increases, implying slightly poorer consistency with LSND data.

There are reasons to hope that the actual rational solution can be regarded as a small defor-
mation of this solution obtained by assuming that c3 is non-vanishing. s2

1 = 69−2n2−1
60−51c23

increases

in the deformation by O(c23) term but if c3 is positive the value of c22 '
24−102c01c

0
2s

0
2c3

49 ∼ 24−61c3
49

decreases by O(c3) term so that it should be possible to reduce the value of sin2(2θ). Consistency
with Bugey reactor experiment requires .030 ≤ sin2(2θ) < .033. sin2(2θ) = .032 is achieved for
s2

1 ' .035,s2
2 ' .51 and c23 ' .068. The construction of U and D matrices for quarks shows that very

stringent number theoretic conditions are obtained and as in case of quarks it might be necessary
to allow complex CP breaking phase in the mixing matrix. One might even hope that the solution
to the conditions is unique.

For the minimal rational mixing one has s(νe) = 5, s(νµ) = 36 and s(ντ ) = 37 if unmixed νe
corresponds to s = 4. For s = 5 first order contributions are shifted by one unit. The masses
(s = 4 case) and mass squared differences are given by Table 8.

k m(νe) m(νµ) m(ντ ) ∆m2(νµ − νe) ∆m2(ντ − νµ)
169 .27 eV .66 eV .67 eV .32 eV 2 .01 eV 2

Table 8: Mass squared differences for neutrinos.

Predictions for neutrino masses and mass squared splittings for k = 169 case.

7.2.4 Evidence for the dynamical mass scale of neutrinos

In recent years (I am writing this towards the end of year 2004 and much later than previous lines)
a great progress has been made in the understanding of neutrino masses and neutrino mixing.
The pleasant news from TGD perspective is that there is a strong evidence that neutrino masses
depend on environment [C16]. In TGD framework this translates to the statement that neutrinos
can suffer topological condensation in several p-adic length scales. Not only in the p-adic length
scales suggested by the number theoretical considerations but also in longer length scales, as will
be found.

The experiments giving information about mass squared differences can be divided into three
categories [C16].

1. There along baseline experiments, which include solar neutrino experiments [C10, C14, C15]
and [C18] as well as earlier studies of solar neutrinos. These experiments see evidence for
the neutrino mixing and involve significant propagation through dense matter. For the solar
neutrinos and KamLAND the mass splittings are estimated to be of order O(8× 10−5) eV2

or more cautiously 8×10−5 eV2 < δm2 < 2×10−3 eV2. For K2K and atmospheric neutrinos
the mass splittings are of order O(2 × 10−3)eV 2 or more cautiously δm2 > 10−3eV2. Thus
the scale of mass splitting seems to be smaller for neutrinos in matter than in air, which
would suggest that neutrinos able to propagate through a dense matter travel at space-time
sheets corresponding to a larger p-adic length scale than in air.

2. There are null short baseline experiments including CHOOZ, Bugey, and Palo Verde reactor
experiments, and the higher energy CDHS, JARME, CHORUS, and NOMAD experiments,
which involve muonic neutrinos (for references see [C16]. No evidence for neutrino oscillations
have been seen in these experiments.

3. The results of LSND experiment [C7] are consistent with oscillations with a mass splitting
greater than 3 × 10−2eV 2. LSND has been generally been interpreted as necessitating a
mixing with sterile neutrino. If neutrino mass scale is dynamical, situation however changes.

If one assumes that the p-adic length scale for the space-time sheets at which neutrinos can
propagate is different for matter and air, the situation changes. According to [C16] a mass 3×10−2

eV in air could explain the atmospheric results whereas mass of of order .1 eV and .07eV 2 < δm2 <
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.26eV 2 would explain the LSND result. These limits are of the same order as the order of magnitude
predicted by k = 169 topological condensation.

Assuming that the scale of the mass splitting is proportional to the p-adic mass scale squared,
one can consider candidates for the topological condensation levels involved.

1. Suppose that k = 169 = 132 is indeed the condensation level for LSND neutrinos. k = 173
would predict mνe ∼ 7 × 10−2 eV and δm2 ∼ .02 eV2. This could correspond to the
masses of neutrinos propagating through air. For k = 179 one has mνe ∼ .8 × 10−2 eV
and δm2 ∼ 3 × 10−4 eV2 which could be associated with solar neutrinos and KamLAND
neutrinos.

2. The primes k = 157, 163, 167 associated with Gaussian Mersennes would give δm2(157) =
26δm2(163) = 210δm2(167) = 212δm2(169) and mass scales m(157) ∼ 22.8 eV, m(163) ∼ 3.6
eV, m(167) ∼ .54 eV. These mass scales are unrealistic or propagating neutrinos. The
interpretation consistent with TGD inspired model of condensed matter in which neutrinos
screen the classical Z0 force generated by nucleons would be that condensed matter neutrinos
are confined inside these space-time sheets whereas the neutrinos able to propagate through
condensed matter travel along k > 167 space-time sheets.

7.2.5 The results of MiniBooNE group as a support for the energy dependence of
p-adic mass scale of neutrino

The basic prediction of TGD is that neutrino mass scale can depend on neutrino energy and the
experimental determinations of neutrino mixing parameters support this prediction. The newest
results (11 April 2007) about neutrino oscillations come from MiniBooNE group which has pub-
lished its first findings [C6] concerning neutrino oscillations in the mass range studied in LSND
experiments [C5].

1. The motivation for MiniBooNE

Neutrino oscillations are not well-understood. Three experiments LSND, atmospheric neutri-
nos, and solar neutrinos show oscillations but in widely different mass regions (1 eV2 , 3 × 10−3

eV2, and 8× 10−5 eV2).
In TGD framework the explanation would be that neutrinos can appear in several p-adically

scaled up variants with different mass scales and therefore different scales for the differences ∆m2

for neutrino masses so that one should not try to try to explain the results of these experiments
using single neutrino mass scale. In single-sheeted space-time it is very difficult to imagine that
neutrino mass scale would depend on neutrino energy since neutrinos interact so extremely weakly
with matter. The best known attempt to assign single mass to all neutrinos has been based on the
use of so called sterile neutrinos which do not have electro-weak couplings. This approach is an ad
hoc trick and rather ugly mathematically and excluded by the results of MiniBooNE experiments.

2. The result of MiniBooNE experiment

The purpose of the MiniBooNE experiment was to check whether LSND result ∆m2 = 1eV 2 is
genuine. The group used muon neutrino beam and looked whether the transformations of muonic
neutrinos to electron neutrinos occur in the mass squared region ∆m2 ' 1 eV2. No such transitions
were found but there was evidence for transformations at low neutrino energies.

What looks first as an over-diplomatic formulation of the result was MiniBooNE researchers
showed conclusively that the LSND results could not be due to simple neutrino oscillation, a phe-
nomenon in which one type of neutrino transforms into another type and back again. rather than
direct refutation of LSND results.

3. LSND and MiniBooNE are consistent in TGD Universe

The habitant of the many-sheeted space-time would not regard the previous statement as a
mere diplomatic use of language. It is quite possible that neutrinos studied in MiniBooNE have
suffered topological condensation at different space-time sheet than those in LSND if they are in
different energy range (the preferred rest system fixed by the space-time sheet of the laboratory or
Earth). To see whether this is the case let us look more carefully the experimental arrangements.
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1. In LSND experiment 800 MeV proton beam entering in water target and the muon neutrinos
resulted in the decay of produced pions. Muonic neutrinos had energies in 60-200 MeV
range [C5].

2. In MiniBooNE experiment [C6] 8 GeV muon beam entered Beryllium target and muon neu-
trinos resulted in the decay of resulting pions and kaons. The resulting muonic neutrinos
had energies the range 300-1500 GeV to be compared with 60-200 MeV.

Let us try to make this more explicit.

1. Neutrino energy ranges are quite different so that the experiments need not be directly
comparable. The mixing obeys the analog of Schrödinger equation for free particle with
energy replaced with ∆m2/E, where E is neutrino energy. The mixing probability as a
function of distance L from the source of muon neutrinos is in 2-component model given by

P = sin2(θ)sin2(1.27∆m2L/E) .

The characteristic length scale for mixing is L = E/∆m2. If L is sufficiently small, the mixing
is fifty-fifty already before the muon neutrinos enter the system, where the measurement is
carried out and no mixing is detected. If L is considerably longer than the size of the
measuring system, no mixing is observed either. Therefore the result can be understood if
∆m2 is much larger or much smaller than E/L, where L is the size of the measuring system
and E is the typical neutrino energy.

2. MiniBooNE experiment found evidence for the appearance of electron neutrinos at low neu-
trino energies (below 500 MeV) which means direct support for the LSND findings and for
the dependence of neutron mass scale on its energy relative to the rest system defined by the
space-time sheet of laboratory.

3. Uncertainty Principle inspires the guess Lp ∝ 1/E implying mp ∝ E. Here E is the energy of
the neutrino with respect to the rest system defined by the space-time sheet of the laboratory.
Solar neutrinos indeed have the lowest energy (below 20 MeV) and the lowest value of ∆m2.
However, atmospheric neutrinos have energies starting from few hundreds of MeV and ∆;m2

is by a factor of order 10 higher. This suggests that the growth of ∆m2 with E2 is slower
than linear. It is perhaps not the energy alone which matters but the space-time sheet at
which neutrinos topologically condense. For instance, MiniBooNE neutrinos above 500 MeV
would topologically condense at space-time sheets for which the p-adic mass scale is higher
than in LSND experiments and one would have ∆m2 >> 1 eV2 implying maximal mixing in
length scale much shorter than the size of experimental apparatus.

4. One could also argue that topological condensation occurs in condensed matter and that no
topological condensation occurs for high enough neutrino energies so that neutrinos remain
massless. One can even consider the possibility that the p-adic length scale Lp is propor-
tional to E/m2

0, where m0 is proportional to the mass scale associated with non-relativistic
neutrinos. The p-adic mass scale would obey mp ∝ m2

0/E so that the characteristic mixing
length would be by a factor of order 100 longer in MiniBooNE experiment than in LSND.

7.2.6 Comments

Some comments on the proposed scenario are in order: some of the are written much later than
the previous text.

1. Mass predictions are consistent with the bound ∆m(νµ, νe) < 2 eV 2 coming from the require-
ment that neutrino mixing does not spoil the so called r-process producing heavy elements
in Super Novae [C17].

2. TGD neutrinos cannot solve the dark matter problem: the total neutrino mass required by
the cold+hot dark matter models would be about 5 eV . In [K4] a model of galaxies based
on string like objects of galaxy size and providing a more exotic source of dark matter, is
discussed.
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3. One could also consider the explanation of LSND data in terms of the interaction of νµ and
nucleon via the exchange of g = 1 W boson. The fraction of the reactions ν̄µ + p → e+ + n

is at low neutrino energies P ∼ m4
W (g=0)

m4
W (g=1)

sin2(θc), where θc denotes Cabibbo angle. Even if

the condensation level of W (g = 1) is k = 89, the ratio is by a factor of order .05 too small
to explain the average νµ → νe transformation probability P ' .003 extracted from LSND
data.

4. The predicted masses exclude MSW and vacuum oscillation solutions to the solar neutrino
problem unless one assumes that several condensation levels and thus mass scales are possible
for neutrinos. This is indeed suggested by the previous considerations.

7.3 Quark Masses

The prediction or quark masses is more difficult due the facts that the deduction of even the
p-adic length scale determining the masses of these quarks is a non-trivial task, and the original
identification was indeed wrong. Second difficulty is related to the topological mixing of quarks.
The new scenario leads to a unique identification of masses with top quark mass as an empirical
input and the thermodynamical model of topological mixing as a new theoretical input. Also CKM
matrix is predicted highly uniquely.

7.3.1 Basic mass formulas

By the earlier mass calculations and construction of CKM matrix the ground state conformal
weights of U and D type quarks must be hgr(U) = −1 and hgr(D) = 0. The formulas for the
eigenvalues of CP2 spinor Laplacian imply that if m2

0 is used as a unit, color conformal weight
hc ≡ m2

CP2
is integer for p mod = ±1 for U type quark belonging to (p+ 1, p) type representation

and obeying hc(U) = (p2 + 3p + 2)/3 and for p mod 3 = 1 for D type quark belonging (p, p + 2)
type representation and obeying hc(D) = (p2 + 4p+ 4)/3. Only these states can be massless since
color Hamiltonians have integer valued conformal weights.

In the recent case the minimal p = 1 states correspond to hc(U) = 2 and hc(D) = 3. hgr(U) =
−1 and hgr(D) = 0 reproduce the previous results for quark masses required by the construction
of CKM matrix. This requires super-symplectic operators O with a net conformal weight hsc = −3
just as in the leptonic case. The facts that the values of p are minimal for spinor harmonics and
the super-symplectic operator is same for both quarks and leptons suggest that the construction
is not had hoc. The real justification would come from the demonstration that hsc = −3 defines
null state for SCV: this would also explain why hsc would be same for all fermions.

Consider now the mass squared values for quarks. For h(D) = 0 and h(U) = −1 and using
m2

0/3 as a unit the expression for the thermal contribution to the mass squared of quark is given
by the formula

M2 = (s+X)
m2

0

p
,

s(U) = 5 , s(D) = 8 ,

X ≡ (3Y p)R
3

, (7.10)

where the second order contribution Y corresponds to renormalization effects coming and depend-
ing on the isospin of the quark. When m2

0 is used as a unit X is replaced by X = (Yp)R.
With the above described assumptions one has the following mass formula for quarks

M2(q) = A(q)
m2

0

p(q) ,

A(u) = 5 +XU (p(u) , A(c) = 14 +XU (p(c)) , A(t) = 65 +XU (p(t)) ,
A(d) = 8 +XD(p(d)) , A(s) = 17 +XD(p(s)) , A(b) = 68 +XD(p(b)) .

(7.11)
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p-Adic length scale hypothesis allows to identify the p-adic primes labelling quarks whereas
topological mixing of U and D quarks allows to deduce topological mixing matrices U and D and
CKM matrix V and precise values of the masses apart from effects like color magnetic spin orbit
splitting, color Coulomb energy, etc..

Integers nqi satisfying
∑
i n(Ui) =

∑
i n(Di) = 69 characterize the masses of the quarks and

also the topological mixing to high degree. The reason that modular contributions remain integers
is that in the p-adic context non-trivial rationals would give CP2 mass scale for the real counterpart
of the mass squared. In the absence of mixing the values of integers are nd = nu = 0, ns = nc = 9,
nb = nt = 60.

The fact that CKM matrix V expressible as a product V = U†D of topological mixing matrices
is near to a direct sum of 2 × 2 unit matrix and 1 × 1 unit matrix motivates the approximation
nb ' nt. The large masses of top quark and of tt meson encourage to consider a scenario in which
nt = nb = n ≤ 60 holds true.

The model for topological mixing matrices and CKM matrix predicts U and D matrices highly
uniquely and allows to understand quark and hadron masses in surprisingly detailed level.

1. nd = nu = 60 is not allowed by number theoretical conditions for U and D matrices and by
the basic facts about CKM matrix but nt = nb = 59 allows almost maximal masses for b and
t. This is not yet a complete hit. The unitarity of the mixing matrices and the construction
of CKM matrix to be discussed in the next section forces the assignments

(nd, ns, nb) = (5, 5, 59) , (nu, nc, nt) = (5, 6, 58) . (7.12)

fixing completely the quark masses apart possible Higgs contribution [K12] . Note that top
quark mass is still rather near to its maximal value.

2. The constraint that valence quark contribution to pion mass does not exceed pion mass
implies the constraint n(d) ≤ 6 and n(u) ≤ 6 in accordance with the predictions of the
model of topological mixing. u − d mass difference does not affect π+ − π0 mass difference
and the quark contribution to m(π) is predicted to be

√
(nd + nu + 13)/24× 136.9 MeV for

the maximal value of CP2 mass (second order p-adic contribution to electron mass squared
vanishes).

7.3.2 The p-adic length scales associated with quarks and quark masses

The identification of p-adic length scales associated with the quarks has turned to be a highly non-
trivial problem. The reasons are that for light quarks it is difficult to deduce information about
quark masses for hadron masses and that the unknown details of the topological mixing (unknown
until the advent of the thermodynamical model [K12] ) made possible several p-adic length scales
for quarks. It has also become clear that the p-adic length scale can be different form free quark
and bound quark and that bound quark p-adic scale can depend on hadron.

Two natural constraints have however emerged from the recent work.

1. Quark contribution to the hadron mass cannot be larger than color contribution and for
quarks having kq 6= 107 quark contribution to mass is added to color contribution to the
mass. For quarks with same value of k conformal weight rather than mass is additive whereas
for quarks with different value of k masses are additive. An important implication is that for
diagonal mesons M = qq having k(q) 6= 107 the condition m(M) ≥

√
2mq must hold true.

This gives strong constraints on quark masses.

2. The realization that scaled up variants of quarks explain elegantly the masses of light hadrons
allows to understand large mass splittings of light hadrons without the introduction of strong
isospin-isospin interaction.

The new model for quark masses is based on the following identifications of the p-adic length
scales.
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1. The nuclear p-adic length scale Le(k), k = 113, corresponds to the p-adic length scale
determining the masses of u, d, and s quarks. Note that k = 113 corresponds to a so called
Gaussian Mersenne. The interpretation is that quark massivation occurs at nuclear space-
time sheet at which quarks feed their em fluxes. At k = 107 space-time sheet, where quarks
feed their color gauge fluxes, the quark masses are vanishing in the first p-adic order. This
could be due to the fact that the p-adic temperature is Tp = 1/2 at this space-time sheet so
that the thermal contribution to the mass squared is negligible. This would reflect the fact
that color interactions do not involve any counterpart of Higgs mechanism.

p-Adic mass calculations turn out to work remarkably well for massive quarks. The reason
could be that M107 hadron physics means that allb quarks feed their color gauge fluxes to
k = 107 space-time sheets so that color contribution to the masses becomes negligible for
heavy quarks as compared to Super-Kac Moody and modular contributions corresponding to
em gauge flux fed to k > 107 space-time sheets in case of heavy quarks. Note that Z0 gauge
flux is fed to space-time sheets at which neutrinos reside and screen the flux and their size
corresponds to the neutrino mass scale. This picture might throw some light to the question
of whether and how it might be possible to demonstrate the existence of M89 hadron physics.

One might argue that k = 107 is not allowed as a condensation level in accordance with
the idea that color and electro-weak gauge fluxes cannot be fed at the space-time space
time sheet since the classical color and electro-weak fields are functionally independent. The
identification of η′ meson as a bound state of scaled up k = 107 quarks is not however
consistent with this idea unless one assumes that k = 107 space-time sheets in question are
separate.

2. The requirement that the masses of diagonal pseudo-scalar mesons of type M = qq are larger
but as near as possible to the quark contribution

√
2mq to the valence quark mass, fixes the

p-adic primes p ' 2k associated with c, b quarks but not t since toponium does not exist.
These values of k are “nominal” since k seems to be dynamical. c quark corresponds to the
p-adic length scale k(c) = 104 = 23 × 13. b quark corresponds to k(b) = 103 for n(b) = 5.
Direct determination of p-adic scale from top quark mass gives k(t) = 94 = 2 × 47 so that
secondary p-adic length scale is in question.

Top quark mass tends to be slightly too low as compared to the most recent experimental
value of m(t) = 169.1 GeV with the allowed range being [164.7, 175.5] GeV [C19] . The
optimal situation corresponds to Ye = 0 and Yt = 1 and happens to give top mass exactly
equal to the most probable experimental value. It must be emphasized that top quark is
experimentally in a unique position since toponium does not exist and top quark mass is
that of free top.

In the case of light quarks there are good reasons to believe that the p-adic mass scale of
quark is different for free quark and bound state quark and that in case of bound quark it can
also depend on hadron. This would explain the notions of valence (constituent) quark and current
quark mass as masses of bound state quark and free quark and leads also to a TGD counterpart
of Gell-Mann-Okubo mass formula [K12] .

1. Constituent quark masses

Constituent quark masses correspond to masses derived assuming that they are bound to
hadrons. If the value of k is assumed to depend on hadron one obtains nice mass formula for
light hadrons as will be found later. Table 10 summarizes constituent quark masses as predicted
by this model.

2. Current quark masses

Current quark masses would correspond to masses of free quarks which tend to be lower than
valence quark masses. Hence k could be larger in the case of light quarks. The table of quark
masses in Wikipedia [?]ives the value ranges for current quark masses depicted in Table 9 together
with TGD predictions for the spectrum of current quark masses.

Some comments are in order.
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q d u s
m(q)exp/MeV 4-8 1.5-4 80-130

k(q) (122,121,120) (125,124,123,122) (114,113,112)
m(q)/MeV (4.5,6.6,9.3) (1.4,2.0,2.9,4.1) (74,105,149)

q c b t
m(q)exp/MeV 1150-1350 4100-4400 1691

k(q) (106,105) (105,104) 92
m(q)/MeV (1045,1477) (3823,5407) 167.8× 103

Table 9: The experimental value ranges for current quark masses [?]nd TGD predictions for their
values assuming (nd, ns, nb) = (5, 5, 59), (nu, nc, nt) = (5, 6, 58), and Ye = 0. For top quark Yt = 0
is assumed. Yt = 1 would give 169.2 GeV.

1. The long p-adic length associated with light quarks seem to be in conflict with the idea that
quarks have sizes smaller than hadron size. The paradox disappears when one realized that
k(q) characterizes the electromagnetic “field body” of quark having much larger size than
hadron.

2. u and d current quarks correspond to a mass scale not much higher than that of elec-
tron and the ranges for mass estimates suggest that u could correspond to scales k(u) ∈
(125, 124, 123, 122) = (53, 4 × 31, 3 × 41, 2 × 61), whereas d would correspond to k(d) ∈
(122, 121, 120) = (2× 61, 112, 3× 5× 8).

3. The TGD based model for nuclei based on the notion of nuclear string leads to the conclusion
that exotic copies of k = 113 quarks having k = 127 are present in nuclei and are responsible
for the color binding of nuclei [K16, L1] , [L1] .

4. The predicted values for c and b masses are slightly too low for (k(c), k(b)) = (106, 105) =
(2× 53, 3× 5× 7). Second order Higgs contribution could increase the c mass into the range
given in [C1] but not that of b.

5. The mass of top quark has been slightly below the experimental estimate for long time.
The experimental value has been coming down slowly and the most recent value obtained
by CDF [C20] is mt = 165.1 ± 3.3 ± 3.1 GeV and consistent with the TGD prediction for
Ye = Yt = 0.

One can talk about constituent and current quark masses simultaneously only if they corre-
spond to dual descriptions. M8 − H duality [K7] has been indeed suggested to relate the old
fashioned low energy description of hadrons in terms of SO(4) symmetry (Skyrme model) and
higher energy description of hadrons based on QCD. In QCD description the mass of say baryon
would be dominated by the mass associated with super-symplectic quanta carrying color. In SO(4)
description constituent quarks would carry most of the hadron mass.

7.3.3 Can Higgs field develop a vacuum expectation in fermionic sector at all?

An important conclusion following from the calculation of lepton and quark masses is that if Higgs
contribution is present, it can be of second order p-adically and even negligible, perhaps even
vanishing. There is indeed an argument forcing to consider this possibility seriously. The recent
view about elementary particles is following.

1. Fermions correspond to CP2 type vacuum extremals topologically condensed at positive/negative
energy space-time sheets carrying quantum numbers at light-like wormhole throat. Higgs and
gauge bosons correspond to wormhole contacts connecting positive and negative energy space-
time sheets and carrying fermion and anti-fermion quantum numbers at the two light-like
wormhole throats.
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2. If the values of p-adic temperature are Tp = 1 and Tp = 1/n, n > 1f or fermions and bosons
the thermodynamical contribution to the gauge boson mass is negligible.

3. Different p-adic temperatures and Kähler coupling strengths for fermions and bosons make
sense if bosonic and fermionic partonic 3-surfaces meet only along their ends at the vertices
of generalized Feynman diagrams but have no other common points [K2] . This forces
to consider the possibility that fermions cannot develop Higgs vacuum expectation value
although they can couple to Higgs. This is not in contradiction with the modification of
sigma model of hadrons based on the assumption that vacuum expectation of σ field gives
a small contribution to hadron mass [K8] since this field can be assigned to some bosonic
space-time sheet pair associated with hadron.

4. Perhaps the most elegant interpretation is that ground state conformal is equal to the square
of the eigenvalue of the modified Dirac operator. The ground state conformal weight is
negative and its deviation from half odd integer value gives contribution to both fermion and
boson masses. The Higgs expectation associated with coherent state of Higgs like wormhole
contacts is naturally proportional to this parameter since no other parameter with dimensions
of mass is present. Higgs vacuum expectation determines gauge boson masses only apparently
if this interpretation is correct. The contribution of the ground state conformal weight to
fermion mass square is near to zero. This means that λ is very near to negative half odd
integer and therefore no significant difference between fermions and gauge bosons is implied.

q d u s c b t
nq 4 5 6 6 59 58
sq 12 10 14 11 67 63
k(q) 113 113 113 104 103 94

m(q)/GeV .105 .092 .105 2.191 7.647 167.8

Table 10: Constituent quark masses predicted for diagonal mesons assuming (nd, ns, nb) =
(5, 5, 59) and (nu, nc, nt) = (5, 6, 58), maximal CP2 mass scale(Ye = 0), and vanishing of second
order contributions.

8 About The Microscopic Description Of Gauge Boson Mas-
sivation

The conjectured QFT limit allows to estimate the quantitative predictions of the theory. This is
not however enough. One should identify the microscopic TGD counterparts for various aspects
of gauge boson massivation. There is also the question about the consistency of the gauge theory
limit with the ZEO inspired view about massivation. The basic challenge are obvious: one should
translate notions like Higgs vacuum expectation, massivation of gauge bosons, and finite range of
weak interactions to the language of wormhole throats, Kähler magnetic flux tubes, and string
world sheets. The proposal is that generalization of super-conformal symmetries to their Yangian
counterparts is needed to meet this challenge in mathematically satisfactory manner.

8.1 Can P-Adic Thermodynamics Explain The Masses Of Intermediate
Gauge Bosons?

The requirement that the electron-intermediate gauge boson mass ratios are sensible, serves as
a stringent test for the hypothesis that intermediate gauge boson masses result from the p-adic
thermodynamics. It seems that the only possible option is that the parameter k has same value
for both bosons, leptons, and quarks:

kB = kL = kq = 1 .
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In this case all gauge bosons have D(0) = 1 and there are good changes to obtain boson masses
correctly. k = 1 together with Tp = 1 implies that the thermal masses of very many boson states
are extremely heavy so that the spectrum of the boson exotics is reduced drastically. For Tp = 1/2
the thermal contribution to the mass squared is completely negligible.

Contrary to the original optimistic beliefs based on calculational error, it turned out impossible
to predict W/e and Z/e mass ratios correctly in the original p-adic thermodynamics scenario.
Although the errors are of order 20-30 percent, they seemed to exclude the explanation for the
massivation of gauge bosons using p-adic thermodynamics.

1. The thermal mass squared for a boson state with N active sectors (non-vanishing vacuum
weight) is determined by the partition function for the tensor product of N NS type Super
Virasoro algebras. The degeneracies of the excited states as a function of N and the weight
∆ of the operator creating the massless state are given in the table below.

2. Both W and Z must correspond to N = 2 active Super Virasoro sectors for which D(1) = 1
and D(2) = 3 so that (using the formulas of p-adic thermodynamics the thermal mass squared
is m2 = kB(p+ 5p2) for Tp = 1. The second order contribution to the thermal mass squared
is extremely small so that Weinberg angle vanishes in the thermal approximation. kB = 1
gives Z/e mass-ratio which is about 22 per cent too high. For Tp = 1/2 thermal masses are
completely negligible.

3. The thermal prediction for W-boson mass is the same as for Z0 mass and thus even worse
since the two masses are related M2

W = M2
Zcos

2(θW ).

The conclusion is that p-adic thermodynamics does not produce a natural description for the
massivation of weak bosons. For p = M89 the mass scale is somewhat too small even if the second
order contribution is maximal. If it is characterized by small integer, the contribution is extremely
small. An explanation for the value of Weinberg angle is also missing. Hence some additional
contribution to mass must be present. Higgsy contribution is not natural in TGD framework but
stringy contribution looks very natural.

8.2 The Counterpart Of Higgs Vacuum Expectation In TGD

The development of the TGD view about Higgs involves several wrong tracks involving a lot of
useless calculation. All this could have been avoided with more precise definition of basic notions.
The following view has distilled through several failures and might be taken as starting point.

The basic challenge is to translate the QFT description of gauge boson massivation to micro-
scopic description.

1. One can say that gauge bosons “eat” the components of Higgs. In unitary gauge one gauge
rotates Higgs field to electromagnetically neutral direction defined by the vacuum expectation
value of Higgs. The rotation matrix codes for the degrees of freedom assignable to non-
neutral part of Higgs and they are transferred to the longitudinal components of Higgs in
gauge transformation. This gives rise to the third polarization direction for gauge boson.
Photon remains massless because em charge commutes with Higgs.

2. The generation of vacuum expectation value has two functions: to make weak gauge bosons
massive and to define the electromagnetically neutral direction to which Higgs field is rotated
in the transition to the unitary gauge. In TGD framework only the latter function remains for
Higgs if p-adic thermodynamics takes care of massivation. The notion of induced gauge field
together with CP2 geometry uniquely defines the electromagnetically neutral direction so
that vacuum expectation is not needed. Of course, the essential element is gauge invariance
of the Higgs gauge boson couplings. In twistor Grassmann approach gauge invariance is
replaced with Yangian symmetry, which is excellent candidate also for basic symmetry of
TGD.

3. The massivation of gauge bosons (all particles) involves two contributions. The contribution
from p-adic thermodynamics in CP2 scale (wormhole throat) and the stringy contribution in
weak scale more generally, in hadronic scale. The latter contribution cannot be calculated yet.
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The generalization of p-adic thermodynamics to that for Yangian symmetry instead of mere
super-conformal symmetry is probably necessary to achieve this and the construction WCW
geometry and spinor structure strongly supports the interpretation in terms of Yangian.

One can look at the situation also at quantitative level.

1. W/Z mass ratio is extremely sensitive test for any model for massivation. In the recent case
this requires that string tension for weak gauge boson depends on boson and is proportional
to the appropriate gauge coupling strength depending on Weinberg angle. This is natural if
the contribution to mass squared can be regarded as perturbative.

2. Higgs mechanism is characterized by the parameter m2
0 defining the originally tachyonic mass

of Higgs, the dimensionless coupling constant λ defining quartic self-interaction of Higgs.
Higgs vacuum expectation is given by µ2 = m2

0/λ, Higgs mass squared by m2
0 = µ2λ, and

weak boson mass squared is proportional g2µ2. In TGD framework λ takes the role of g2 in
stringy picture and the string tensions of bosons are proportional to g2

w, g
2
Z , λ respectively.

3. Whether λ in TGD framework actually corresponds to the quartic self-coupling of Higgs
or just to the numerical factor in Higgs string tension, is not clear. The problem of Higgs
mechanism is that the mass of observed Higgs is somewhat too low. This requires fine tuning
of the parameters of the theory and SUSY, which was hoped to come in rescue, did not solve
the problem. TGD approach promises to solve the problem.

8.3 Elementary Particles In ZEO

Let us first summarize what kind of picture ZEO suggests about elementary particles.

1. Kähler magnetically charged wormhole throats are the basic building bricks of elementary
particles. The lines of generalized Feynman diagrams are identified as the Euclidian regions
of space-time surface. The weak form of electric magnetic duality forces magnetic monopoles
and gives classical quantization of the Kähler electric charge. Wormhole throat is a carrier
of many-fermion state with parallel momenta and the fermionic oscillator algebra gives rise
to a badly broken large N SUSY [?].

2. The first guess would be that elementary fermions correspond to wormhole throats with
unit fermion number and bosons to wormhole contacts carrying fermion and anti-fermion
at opposite throats. The magnetic charges of wormhole throats do not however allow this
option. The reason is that the field lines of Kähler magnetic monopole field must close. Both
in the case of fermions and bosons one must have a pair of wormhole contacts (see Fig.
http://tgdtheory.fi/appfigures/wormholecontact.jpg or Fig. ?? in the appendix of
this book) connected by flux tubes. The most general option is that net quantum numbers are
distributed amongst the four wormhole throats. A simpler option is that quantum numbers
are carried by the second wormhole: fermion quantum numbers would be carried by its
second throat and bosonic quantum numbers by fermion and anti-fermion at the opposite
throats. All elementary particles would therefore be accompanied by parallel flux tubes and
string world sheets.

3. A cautious proposal in its original form was that the throats of the other wormhole contact
could carry weak isospin represented in terms of neutrinos and neutralizing the weak isospin
of the fermion at second end. This would imply weak neutrality and weak confinement above
length scales longer than the length of the flux tube. This condition might be un-necessarily
strong.

The realization of the weak neutrality using pair of left handed neutrino and right handed
antineutrino or a conjugate of this state is possible if one allows right-handed neutrino to have
also unphysical helicity. The weak screening of a fermion at wormhole throat is possible if νR
is a constant spinor since in this case Dirac equation trivializes and allows both helicities as
solutions. The new element from the solution of the Kähler-Dirac equation is that νR would
be interior mode de-localized either to the other wormhole contact or to the Minkowskian
flux tube. The state at the other end of the flux tube is spartner of left-handed neutrino.

http://tgdtheory.fi/appfigures/wormholecontact.jpg
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It must be emphasized that weak confinement is just a proposal and looks somewhat complex:
Nature is perhaps not so complex at the basic level. To understand this better, one can think
about how M89 mesons having quark and antiquark at the ends of long flux tube returning
back along second space-time sheet could decay to ordinary quark and antiquark.

8.4 Virtual And Real Particles And Gauge Conditions In ZEO

ZEO and twistor Grassmann approach force to build a detailed view about real and virtual particles.
ZEO suggests also new approaches to gauge conditions in the attempts to build detailed connection
between QFT picture and that provided by TGD. The following is the most conservative one. Of
course, also this proposal must be taken with extreme cautiousness.

1. In ZEO all wormhole throats - also those associated with virtual particles - can be regarded
as massless. In twistor Grassmann approach [K19] this means that the fermionic propaga-
tors can be by residue integration transformed to their inverses which correspond to online
massless states but having an unphysical polarization so that the internal lines do not vanish
identically.

2. This picture inspired by twistorial considerations is consistent with the simplest picture about
Kähler-Dirac action. The boundary term for K-D action is

√
g4ΨΓnK−DΨd3x and due to the

localization of spinor modes to 2-D surfaces reduces to a term localized at the boundaries
of string world sheets. The normal component ΓnK−D of the Kähler-Dirac gamma matrices
defined by the canonical momentum currents of Kähler action should define the inverse of
massless fermionic propagator. If the action of this operator on the induced spinor mode at
stringy curves satisfies

√
g4ΓnΨ = pkγkΨ ,

this reduction is achieved. One can pose the condition g4 = constant as a coordinate condi-
tion on stringy curves at the boundaries of CD and the condition would correlate the spinor
modes at stringy curve with incoming quantum numbers. This is extremely powerful sim-
plification giving hopes about calculable theory. The residue integral for virtual momenta
reduces the situation to integral over on mass shell momenta and only non-physical helicities
contribute in internal lines. This would generalize twistorial formulas to fermionic context.

One however ends up with an unexpected prediction which has bothered me for a long time.
Consider the representation of massless spin 1 gauge bosons as pairs as wormhole throat carrying
fermion and antifermion having net quantum numbers of the boson. Neglect the effects of the
second wormhole throat. The problem is that for on-mass shell massless fermion and antifermion
with physical helicities the boson has spin 0. Helicity 1 state would require that second fermion
has unphysical helicity. What does this mean?

1. Are all on mass shell gauge bosons - including photon - massive? Or is on mass shell massless
propagation impossible? Massivation is achieved if the fermion and antifermion have different
momentum directions: for instance opposite 3-momen but same sign of energy. Higher order
contributions in p-adic thermodynamics could make also photon massive. The 4-D world-
lines of fermion and antifermion would not be however parallel, which does not conform with
the geometric optics based prejudices.

2. Or could on mass shell gauge bosons have opposite four-momenta so that the second gauge bo-
son would have negative energy? In this manner one could have massless on mass shell states.
ZEO ontology certainly allows the identification massless gauge bosons as on mass shell states
with opposite directions of four-momenta. This would however require the weakening of the
hypothesis that all incoming (outgoing) fundamental fermions have positive (negative) ener-
gies to the assumption that only the incoming (outgoing) particles have positive (negative)
energies. In the case of massless gauge boson the gauge condition p · ε = 0 would be satisfied
by the momenta of both fermion and antifermion. With opposite 3-momenta (massivation)
but same energy the condition ptot ·ε = 0 is satisfied for three polarization since in cm system
ptot has only time component.
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3. The problem is present also for internal lines. Since by residue argument only the unphys-
ical fermion helicities contribute in internal lines, both fermion and antifermion must have
unphysical helicity. For the same sign of energy the wormhole throat would behave as scalar
particle. Therefore it seems that the energies must have different sign or momenta cannot
be strictly parallel. This is required also by the possibility of space-like momenta for virtual
bosons.

8.5 The Role Of String World Sheets And Magnetic Flux Tubes In
Massivation

What is the role of string world sheets and flux tubes in the massivation? At the fundamental level
one studies correlation functions for particles and finite correlation length means massivation.

1. String world sheets define as essential element in 4-D description. All particles are basically
bi-local objects: pairs of string at parallel space-time sheets extremely near to each other
and connected by wormhole contacts at ends. String world sheets are expected to represent
correlations between wormhole throats.

2. Correlation length for the propagator of the gauge boson characterizes its mass. Correlation
length can be estimated by calculating the correlation function. For bosons this reduces to the
calculation of fermionic correlations functions assignable to string world sheets connecting the
upper and lower boundaries of CD and having four external fermions at the ends of CD. The
perturbation theory reduces to functional integral over space-time sheets and deformation
of the space-time sheet inducing the deformation of the induced spinor field expressible as
convolution of the propagator associated with the Kähler-Dirac operator with vertex factor
defined by the deformation multiplying the spinor field. The external vertices are braid
ends at partonic 2-surfaces and internal vertices are in the interior of string world sheet.
Recall that the conjecture is that the restriction to the wormhole throat orbits implies the
reduction to diagrams involving only propagators connecting braid ends. The challenge is
to understand how the coherent state assigned to the Euclidian pion field induces the finite
correlation length in the case of gauge bosons other than photon.

3. The non-vanishing commutator of the gauge boson charge matrix with the vacuum expec-
tation assigned to the Euclidian pion must play a key role. The study of the Kähler-Dirac
operator suggests that the braid strands contain the Abelianized variant of non-integrable
phase factor defined as exp(i

∫
Adx). If A is identified as string world sheet Hodge dual of

Kac-Moody charge the opposite edges of string world sheet with geometry of square given
contributions which compensate each other by conservation of Kac-Moody charge if A com-
mutes with the operators building the coherent Higgs state. For photon this would be true.
For weak gauge bosons this would not be the case and this gives hopes about obtaining
destructive interference leading to a finite correlation length.

One can also consider try to build more concrete ways to understand the finite correlation
length.

1. Quantum classical correspondence suggests that string with length of order L ∼ ~/E, E =√
p2 +m2 serves as a correlate for particle defined by a pair of wormhole contacts. For

massive particle wave length satisfies L ≤ ~/m. Here (p,m) must be replaced with (pL,mL)
if one takes the notion of longitudinal mass seriously. For photon standard option gives L = λ
or L = λL and photon can be a bi-local object connecting arbitrarily distant objects. For
the second option small longitudinal mass of photon gives an upper bound for the range of
the interaction. Also gluon would have longitudinal mass: this makes sense in QCD where
the decomposition M4 = M2 × E2 is basic element of the theory.

2. The magnetic flux tube associated with the particle carries magnetic energy. Magnetic energy
grows as the length of flux tube increases. If the flux is quantized magnetic field behaves
like 1/S, where S is the area of the cross section of the flux tube, the total magnetic energy
behaves like L/S. The dependence of S on L determines how the magnetic energy depends
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on L. If the magnetic energy increases as function of L the probability of long flux tubes is
small and the particle cannot have large size and therefore mediates short range interactions.
For S ∝ Lα ∼ λα, α > 1, the magnetic energy behaves like λ−α+1 and the thickness of
the flux tube scales like

√
λα. In case of photon one might expect this option to be true.

Note that for photon string world sheet one can argue that the natural choice of string is as
light-like string so that its length vanishes.

What kind of string world sheets are possible? One can imagine two options.

1. All strings could connect only the wormhole contacts defining a particle as a bi-local object
so that particle would be literally the geometric correlate for the interaction between two
objects. The notion of free particle would be figment of imagination. This would lead to
a rather stringy picture about gauge interactions. The gauge interaction between systems
S1 and S2 would mean the emission of gauge bosons as flux tubes with charge carrying end
at S1 and neutral end. Absorption of the gauge boson would mean that the neutral end of
boson and neutral end of charge particle fuse together line the lines of Feynman diagram at
3-vertex.

2. Second option allows also string world sheets connecting wormhole contacts of different par-
ticles so that there is no flux tube accompanying the string world sheet. In this case particles
would be independent entities interacting via string world sheets. In this case one could con-
sider the possibility that photon corresponds to string world sheet (or actually parallel pair
of them) not accompanied by a magnetic flux tube and that this makes the photon massless
at least in excellent approximation.

The first option represents the ontological minimum.
Super-conformal symmetry involves two conformal weight like integers and these correspond to

the conformal weight assignable to the radial light-like coordinate appearing in the role of complex
coordiante in super-symplectic Hamiltonians and to the spinorial conformal weight assignable to
the solutions of Kähler Dirac equation localized to string world sheets. These conformal weights
are independent quantum numbers unless one can use the light-like radial coordinate as string
coordinate, which is certainly not possible always. The latter conformal weight should correspond
to the stringy contribution to the masses of elementary particles and hadron like states. In fact, it
is difficult to distinguish between elementary particles and hadrons at the fundamental level since
both involve the stringy aspect.

The Yangian symmetry variant of conformal symmetry is highly suggestive and brings in poly-
locality with respect to partonic 2-surfaces. This integer would count the number of partonic
2-surfaces to which the generator acts and need not correspond to spinorial conformal weight as
one might think first. In any case, Yangian variant of p-adic termodynamics provides an attractive
approach concerning the mathematical realization of this vision.

8.6 Weak Regge Trajectories

The weak form of electric-magnetic duality suggests strongly the existence of weak Regge trajec-
tories.

1. The most general mass squared formula with spin-orbit interaction term M2
L−SL ·S reads as

M2 = nM2
1 +M2

0 +M2
L−SL · S , n = 0, 2, 4 or n = 1, 3, 5, ..., . (8.1)

M2
1 corresponds to string tension and M2

0 corresponds to the thermodynamical mass squared
and possible other contributions. For a given trajectory even (odd) values of n have same
parity and can correspond to excitations of same ground state. From ancient books written
about hadronic string model one vaguely recalls that one can have several trajectories (satel-
lites) and if one has something called exchange degeneracy, the even and odd trajectories
define single line in M2 − J plane. As already noticed TGD variant of Higgs mechanism
combines together n = 0 states and n = 1 states to form massive gauge bosons so that the
trajectories are not independent.



8.6 Weak Regge Trajectories 72

2. For fermions, possible Higgs, and pseudo-scalar Higgs and their super partners also p-adic
thermodynamical contributions are present. M2

0 must be non-vanishing also for gauge bosons
and be equal to the mass squared for the n = L = 1 spin singlet. By applying the formula
to h = ±1 states one obtains

M2
0 = M2(boson) . (8.2)

The mass squared for transversal polarizations with (h, n, L) = (±1, n = L = 0, S = 1)
should be same as for the longitudinal polarization with (h = 0, n = L = 1, S = 1, J = 0)
state. This gives

M2
1 +M2

0 +M2
L−SL · S = M2

0 . (8.3)

From L · S = [J(J + 1)− L(L+ 1)− S(S + 1)] /2 = −2 for J = 0, L = S = 1 one has

M2
L−S = −M

2
1

2
. (8.4)

Only the value of weak string tension M2
1 remains open.

3. If one applies this formula to arbitrary n = L one obtains total spins J = L + 1 and L − 1
from the tensor product. For J = L− 1 one obtains

M2 = (2n+ 1)M2
1 +M2

0 .

For J = L + 1 only M2
0 contribution remains so that one would have infinite degeneracy of

the lightest states. Therefore stringy mass formula must contain a non-linear term making
Regge trajectory curved. The simplest possible generalization which does not affect n=0 and
n=1 states is of from

M2 = n(n− 1)M2
2 + (n− L · S

2
)M2

1 +M2
0 . (8.5)

The challenge is to understand the ratio of W and Z0 masses, which is purely group theoretic
and provides a strong support for the massivation by Higgs mechanism.

1. The above formula and empirical facts require

M2
0 (W )

M2
0 (Z)

=
M2(W )

M2(Z)
= cos2(θW ) . (8.6)

in excellent approximation. Since this parameter measures the interaction energy of the
fermion and anti-fermion decomposing the gauge boson depending on the net quantum num-
bers of the pair, it would look very natural that one would have

M2
0 (W ) = g2

WM
2
SU(2) , M2

0 (Z) = g2
ZM

2
SU(2) . (8.7)

Here M2
SU(2) would be the fundamental mass squared parameter for SU(2) gauge bosons.

p-Adic thermodynamics of course gives additional contribution which is vanishing or very
small for gauge bosons.
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2. The required mass ratio would result in an excellent approximation if one assumes that the
mass scales associated with SU(2) and U(1) factors suffer a mixing completely analogous to
the mixing of U(1) gauge boson and neutral SU(2) gauge boson W3 leading to γ and Z0. Also
Higgs, which consists of SU(2) triplet and singlet in TGD Universe, would very naturally
suffer similar mixing. Hence M0(B) for gauge boson B would be analogous to the vacuum
expectation of corresponding mixed Higgs component. More precisely, one would have

M0(W ) = MSU(2) ,

M0(Z) = cos(θW )MSU(2) + sin(θW )MU(1) ,

M0(γ) = −sin(θW )MSU(2) + cos(θW )MU(1) . (8.8)

The condition that photon mass is very small and corresponds to IR cutoff mass scale gives
M0(γ) = εcos(θW )MSU(2), where ε is very small number, and implies

MU(1)

M(W )
= tan(θW ) + ε ,

M(γ)

M(W )
= ε× cos(θW ) ,

M(Z)

M(W )
=

1 + ε× sin(θW )cos(θW )

cos(θW )
. (8.9)

There is a small deviation from the prediction of the standard model for W/Z mass ratio but
by the smallness of photon mass the deviation is so small that there is no hope of measuring
it. One can of course keep mind open for ε = 0. The formulas allow also an interpretation
in terms of Higgs vacuum expectations as it must. The vacuum expectation would most
naturally correspond to interaction energy between the massless fermion and anti-fermion
with opposite 3-momenta at the throats of the wormhole contact and the challenge is to
show that the proposed formulas characterize this interaction energy. Since CP2 geometry
codes for standard model symmetries and their breaking, it would not be surprising if this
would happen. One cannot exclude the possibility that p-adic thermodynamics contributes
to M2

0 (boson). For instance, ε might characterize the p-adic thermal mass of photon.

If the mixing applies to the entire Regge trajectories, the above formulas would apply also
to weak string tensions, and also photons would belong to Regge trajectories containing high
spin excitations.

3. What one can one say about the value of the weak string tension M2
1 ? The näıve order of

magnitude estimate is M2
1 ' m2

W ' 104 GeV2 is by a factor 1/25 smaller than the direct
scaling up of the hadronic string tension about 1 GeV2 scaled up by a factor 218. The above
argument however allows also the identification as the scaled up variant of hadronic string
tension in which case the higher states at weak Regge trajectories would not be easy to
discover since the mass scale defined by string tension would be 512 GeV to be compared
with the recent beam energy 7 TeV. Weak string tension need of course not be equal to the
scaled up hadronic string tension. Weak string tension - unlike its hadronic counterpart-
could also depend on the electromagnetic charge and other characteristics of the particle.

8.7 Low Mass Exotic Mesonic Structures As Evidence For Dark Scaled
Down Variants Of Weak Bosons?

During last years reports about low mass exotic mesonic structures have appeared. It is interesting
to combine these bits of data with the recent view about TGD analog of Higgs mechanism and
find whether new predictions become possible. The basic idea is to derive understanding of the
low mass exotic structures from LHC data by scaling and understanding of LHC data from data
about mesonic structures by scaling back.
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1. The article Search for low-mass exotic mesonic structures: II. attempts to understand the ex-
perimental results by Taticheff and Tomasi-Gustafsson (see http://tinyurl.com/ybq323yy)
[C21] mentions evidence for exotic mesonic structures. The motivation came from the ob-
servation of a narrow range of dimuon masses in Σ+ → pP 0, P 0 → µ−µ+ in the decays
of P 0 with mass of 214.3 ± .5 MeV: muon mass is 105.7 MeV giving 2mµ = 211.4 MeV.
Mesonlike exotic states with masses M = 62, 80, 100, 181, 198, 215, 227.5, and 235 MeV are
reported. This fine structure of states with mass difference 20-40 MeV between nearby states
is reported for also for some baryons.

2. The preprint Observation of the E(38) boson by Kh.U. Abraamyan et al (see http://

tinyurl.com/y7zer8dw) [C2, C3, C9] reports the observation of what they call E(38) boson
decaying to gamma pair observed in d(2.0 GeV/n)+C,d(3.0 GeV/n)+Cu and p(4.6 GeV)+C
reactions in experiments carried in JINR Nuclotron.

If these results can be replicated they mean a revolution in nuclear and hadron physics. What
strongly suggests itself is a fine structure for ordinary hadron states in much smaller energy scale
than characterizing hadronic states. Unfortunately the main stream, in particular the theoreticians
interested in beyond standard model physics, regard the physics of strong interactions and weak
interactions as closed chapters of physics, and are not interested on results obtained in nuclear
collisions.

In TGD framework situation is different. The basic characteristic of TGD Universe is fractality.
This predicts new physics in all scales although standard model symmetries are fundamental unlike
in GUTs and are reduced to number theory. p-Adic length scale hypothesis characterizes the
fractality.

1. In TGD Universe p-adic length scale hypothesis predicts the possibility of scaled versions
of both strong and weak interactions. The basic objection against new light bosons is that
the decay widths of weak bosons do not allow them. A possible manner to circumvent the
objection is that the new light states correspond to dark matter in the sense that the value
of Planck constant is not the standard one but its integer multiple [K5].

The assumption that only particles with the same value of Planck constant can appear in
the vertex, would explain why weak bosons do not decay directly to light dark particles.
One must however allow the transformation of gauge bosons to their dark counterparts. The
2-particle vertex is characterized by a coupling having dimensions of mass squared in the case
of bosons, and p-adic length scale hypothesis suggests that the primary p-adic mass scale
characterizes the parameter (the secondary p-adic mass scale is lower by factor 1/

√
p and

would give extremely small transformation rate).

2. Ordinary strong interactions correspond to Mersenne primeMn, n = 2107−1, in the sense that
hadronic space-time sheets correspond to this p-adic prime. Light quarks correspond to space-
time sheets identifiable as color magnetic flux tubes, which are much larger than hadron itself.
M89 hadron physics has hadronic mass scale 512 times higher than ordinary hadron physics
and should be observed at LHC. There exist some pieces of evidence for the mesons of this
hadron physics but masked by the Higgsteria. The expectation is that Minkowskian M89 pion
has mass around 140 GeV assigned to CDF bump (see http://tinyurl.com/yc98cau6) [C4].

3. In the leptonic sector there is evidence for lepto-hadron physics for all charged leptons labelled
by Mersenne primes M127, MG,113 (Gaussian Mersenne), and M107 [K20]. One can ask
whether the above mentioned resonance P 0 decaying to µ−µ+ pair motivating the work
described in [C21] could correspond to pion of muon-hadron physics consisting of a pair of
color octet excitations of muon. Its production would presumably take place via production
of virtual gluon pair decaying to a pair of color octet muons.

Returning to the observations of [C21]: the reported meson-like exotic states seem to be ar-
ranged along Regge trajectories but with string tension lower than that for the ordinary Regge
trajectories with string tension T = .9 GeV2. String tension increases slowly with mass of meson
like state and has three values T/GeV 2 ∈ {1/390, 1/149.7, 1/32.5} in the piecewise linear fit dis-
cussed in the article. The TGD inspired proposal is that IR Regge trajectories assignable to the

http://tinyurl.com/ybq323yy
http://tinyurl.com/y7zer8dw
http://tinyurl.com/y7zer8dw
http://tinyurl.com/yc98cau6
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color magnetic flux tubes accompanying quarks are in question. For instance, in hadrons u and d
quarks - understood as constituent quarks - would have k = 113 quarks and string tension would
be by näıve scaling by a factor 2107−113 = 1/64 lower: as a matter of fact, the largest value of
the string tension is twice this value. For current quark with mass scale around 5 MeV the string
tension would be by a factor of order 2107−121 = 2−16 lower.

Clearly, a lot of new physics is predicted and it begins to look that fractality - one of the key
predictions of TGD - might be realized both in the sense of hierarchy of Planck constants (scaled
variants with same mass) and p-adic length scale hypothesis (scaled variants with varying masses).
Both hierarchies would represent dark matter if one assumes that the values of Planck constant
and p-adic length scale are same in given vertex. The testing of predictions is not however expected
to be easy since one must understand how ordinary matter transforms to dark matter and vice
versa. Consider only the fact, that only recently the exotic meson like states have been observed
and modern nuclear physics regarded often as more or less trivial low energy phenomenology was
born born about 80 years ago when Chadwick discovered neutron.

8.8 Cautious Conclusions

The discussion of TGD counterpart of Higgs mechanism gives support for the following general
picture.

1. p-Adic thermodynamics for wormhole contacts contributes to the masses of all particles in-
cluding photon and gluons: in these cases the contributions are however small. For fermions
they dominate. For weak bosons the contribution from string tension of string connecting
wormhole contacts as the correct group theoretical prediction for the W/Z mass ratio demon-
strates. The mere spin 1 character for gauge bosons implies that they are massive in 4-D
sense unless massless fermion and anti-fermion have opposite signs of energy. Higgs provides
the longitudinal components of weak bosons by gauge invariance and CP2 geometry defines
unitary gauge so that Higgs vacuum expectation value is not needed. The non-existence of
covariantly constant CP2 vector field does not mean absence of Higgs like particle as believed
first but only the impossibility of Higgs vacuum expectation value.

The usual space-time SUSY associated with embedding space in TGD framework is not
needed, and there are strong arguments suggesting that it is not present [?] For space-time
regarded as 4-surfaces one obtains 2-D super-conformal invariance for fermions localized
at 2-surfaces and for right-handed neutrino it extends to 4-D superconformal symmetry
generalizing ordinary SUSY to infinite-D symmetry.

2. The basic predictions to LHC are following. M89 hadron physics, whose pion was first
proposed to be identifiable as Higgs like particle, will be discovered. The findings from RHIC
and LHC concerning collisions of heavy ions and protons and heavy ions already provide
support for the existence of string like objects identifiable as mesons of M89 physics. Fermi
satellite has produced evidence for a particle with mass around 140 GeV and this particle
could correspond to the pion of M89 physics. This particle should be observed also at LHC
and CDF reported already earlier evidence for it. There has been also indications for other
mesons of M89 physics from LHC discussed in [K8].

3. Fermion and boson massivation by Higgs mechanism could emerge unavoidably as a theoreti-
cal artefact if one requires the existence of QFT limit leading unavoidably to a description in
terms of Higgs mechanism. In the real microscopic theory p-adic thermodynamics for worm-
hole contacts and strings connecting them would describe fermion massivation, and might
describe even boson massivation in terms of long parts of flux tubes. Situation remains open
in this respect. Therefore the observation of decays of Higgs at expected rate to fermion
pairs cannot kill TGD based vision.

The new view about Higgs combined with the stringy vision about twistor Grassmannian [K19]
allows to see several conjectures related to ZEO in new light and also throw away some conjectures
such as the idea about restriction of virtual momenta to plane M2 ⊂M4.
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1. The basic conjecture related to the perturbation theory is that wormhole throats are mass-
less on mass shell states in embedding space sense: this would hold true also for virtual
particles and brings in mind what happens in twistor program. The recent progress [K22] in
the construction of n-point functions leads to explicit general formulas for them expressing
them in terms of a functional integral over four-surfaces. The deformation of the space-time
surface fixes the deformation of basis for induced spinor fields and one obtains a perturba-
tion theory in which correlation functions for embedding space coordinates and fermionic
propagator defined by the inverse of the Kähler-Dirac operator appear as building bricks and
the electroweak gauge coupling of the Kähler-Dirac operator define the basic vertex. This
operator is indeed 2-D for all other fermions than right-handed neutrino.

2. The functional integral gives some expressions for amplitudes which resemble twistor am-
plitudes in the sense that the vertices define polygons and external fermions are massless
although gauge bosons as their bound states are massive. This suggests a stringy gener-
alization of twistor Grassmannian approach [K19]. The residue integral would replace 4-D
integrations of virtual fermion momenta to integrals over massless momenta. The outcome
would be non-vanishing for non-physical helicities of virtual fermion. Also the problem due to
the fact that fermionic Super Virasoro generator carries fermion number in TGD framework
disappears.

3. There are two conformal weights involved. The conformal weight associated with the light-like
radial coordinate of δM4

± and the spinorial conformal weight associated with the fermionic
string connecting wormhole throats and throats of wormhole contact. Are these conformal
weights independent or not? For instance, could one use radial light-like coordinate as string
coordinate in the generic situation so that the conformal weights would not define independent
quantum numbers? This does not look feasible. The Yangian variant of conformal algebra
[A1] [?, ?, ?] involves two integers. Second integer would naturally be the number of partonic
2-surfaces acted by the generator characterizing the poly-locality of Yangian generators, and
it is not clear whether it has anything to do with the spinorial conformal weight. One can of
course consider also three integers! This would be in accordance with the idea that the basic
objects are 3-dimensional.

If the conjecture that Yangian invariance realized in terms of Grassmannians makes sense,
it could allow to deduce the outcome of the functional integral over four-surfaces and one
could hope that TGD can be transformed to a calculable theory. Also p-adic mass calcula-
tions should be formulated using p-adic thermodynamics assuming Yangian invariance and
enlargened conformal algebra.

9 Calculation Of Hadron Masses And Topological Mixing
Of Quarks

The calculation of quark masses is not enough since one must also understand CKM mixing of
quarks in order to calculate hadron massess. A model for CKM matrix and hadron masses is
constructed in [K12] and here only a brief summary about basic ideas involved is given.

9.1 Topological Mixing Of Quarks

In TGD framework CKM mixing is induced by topological mixing of quarks (that is 2-dimensional
topologies characterized by genus). The strongest number theoretical constraint on mixing matrices
would be that they are rational. Perhaps a more natural constraint is that they are expressible in
terms of roots of unity for some finite dimensional algebraic extension of rationals and therefore
also p-adic numbers.

Number theoretical constraints on topological mixing can be realized by assuming that topolog-
ical mixing leads to a thermodynamical equilibrium subject to constraints from the integer valued
modular contributions remaing integer valued in the mixing. This gives an upper bound of 1200
for the number of different U and D matrices and the input from top quark mass and π+ − π0

mass difference implies that physical U and D matrices can be constructed as small perturbations
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of matrices expressible as direct sum of essentially unique 2×2 and 1×1 matrices. The maximally
entropic solutions can be found numerically by using the fact that only the probabilities p11 and
p21 can be varied freely. The solutions are unique in the accuracy used, which suggests that the
system allows only single thermodynamical phase.

The matrices U and D associated with the probability matrices can be deduced straightfor-
wardly in the standard gauge. The U and D matrices derived from the probabilities determined
by the entropy maximization turn out to be unitary for most values of integers n1 and n2 charac-
terizing the lowest order contribution to quark mass. This is a highly non-trivial result and means
that mass and probability constraints together with entropy maximization define a sub-manifold of
SU(3) regarded as a sub-manifold in 9-D complex space. The choice (n(u), n(c)) = (4, n), n < 9,
does not allow unitary U whereas (n(u), n(c)) = (5, 6) does. This choice is still consistent with top
quark mass and together with n(d) = n(s) = 5 it leads to a rather reasonable CKM matrix with a
value of CP breaking invariant within experimental limits. The elements Vi3 and V3i, i = 1, 2 are
however roughly twice larger than their experimental values deduced assuming standard model.
V31 is too large by a factor 1.6. The possibility of scaled up variants of light quarks could lead to
too small experimental estimates for these matrix elements. The whole parameter space has not
been scanned so that better candidates for CKM matrices might well exist.

9.2 Higgsy Contribution To Fermion Masses Is Negligible

There are good reasons to believe that Higgs expectation for the fermionic space-time sheets is
vanishing although fermions couple to Higgs. Thus p-adic thermodynamics would explain fermion
masses completely. This together with the fact that the prediction of the model for the top quark
mass is consistent with the most recent limits on it, fixes the CP2 mass scale with a high accuracy to
the maximal one obtained if second order contribution to electron’s p-adic mass squared vanishes.
This is very strong constraint on the model.

9.3 The P-Adic Length Scale Of Quark Is Dynamical

The assumption about the presence of scaled up variants of light quarks in light hadrons leads
to a surprisingly successful model for pseudo scalar meson masses using only quark masses and
the assumption mass squared is additive for quarks with same p-adic length scale and mass for
quarks labelled by different primes p. This conforms with the idea that pseudo scalar mesons are
Goldstone bosons in the sense that color Coulombic and magnetic contributions to the mass cancel
each other. Also the mass differences between hadrons containing different numbers of strange and
heavy quarks can be understood if s, b and c quarks appear as several scaled up versions.

This hypothesis yields surprisingly good fit for meson masses but for some mesons the predicted
mass is slightly too high. The reduction of CP2 mass scale to cure the situation is not possible
since top quark mass would become too low. In case of diagonal mesons for which quarks corre-
spond to same p-adic prime, quark contribution to mass squared can be reduced by ordinary color
interactions and in the case of non-diagonal mesons one can require that quark contribution is not
larger than meson mass.

It should be however made clear that the notion of quark mass is problematic. One can speak
about current quark masses and constituent quark masses. For u and d quarks constituent quark
masses have scale 102 GeV are much higher than current quark masses having scale 10 GeV. For
current quarks the dominating contribution to hadron mass would come from super-symplectic
bosons at quantum level and at more phenomenological level from hadronic string tension. The
open question is which option to choose or whether one should regard the two descriptions as
duals of each other based on M8 − H duality. M8 description would be natural at low energies
since SO(4) takes the role of color group. One could also say that current quarks are created in
de-confinement phase transition which involves change of the p-adic length scale characterizing
the quark. Somewhat counter intuitively but in accordance with Uncertainty Principle this length
scale would increase but one could assign it the color magnetic field body of the quark.



9.4 Super-Symplectic Bosons At Hadronic Space-Time Sheet Can Explain The
Constant Contribution To Baryonic Masses 78

9.4 Super-Symplectic Bosons At Hadronic Space-Time Sheet Can Ex-
plain The Constant Contribution To Baryonic Masses

Current quarks explain only a small fraction of the baryon mass and that there is an additional
contribution which in a good approximation does not depend on baryon. This contribution should
correspond to the non-perturbative aspects of QCD which could be characterized in terms of
constituent quark masses in M8 picture and in terms of current quark masses and string tension
or super-symplectic bosons in M4 × CP2 picture.

Super-symplectic gluons provide an attractive description of this contribution. They need not
exclude more phenomenological description in terms of string tension. Baryonic space-time sheet
with k = 107 would contain a many-particle state of super-symplectic gluons with net conformal
weight of 16 units. This leads to a model of baryons masses in which masses are predicted with an
accuracy better than 1 per cent. Super-symplectic gluons also provide a possible solution to the
spin puzzle of proton.

Hadronic string model provides a phenomenological description of non-perturbative aspects of
QCD and a connection with the hadronic string model indeed emerges. Hadronic string tension is
predicted correctly from the additivity of mass squared for J = 2 bound states of super-symplectic
quanta. If the topological mixing for super-symplectic bosons is equal to that for U type quarks
then a 3-particle state formed by 2 super-symplectic quanta from the first generation and 1 quantum
from the second generation would define baryonic ground state with 16 units of conformal weight.

In the case of mesons pion could contain super-symplectic boson of first generation preventing
the large negative contribution of the color magnetic spin-spin interaction to make pion a tachyon.
For heavier bosons super-symplectic boson need not to be assumed. The preferred role of pion
would relate to the fact that its mass scale is below QCD Λ.

9.5 Description Of Color Magnetic Spin-Spin Splitting In Terms Of
Conformal Weight

What remains to be understood are the contributions of color Coulombic and magnetic inter-
actions to the mass squared. There are contributions coming from both ordinary gluons and
super-symplectic gluons and the latter is expected to dominate by the large value of color coupling
strength.

Conformal weight replaces energy as the basic variable but group theoretical structure of color
magnetic contribution to the conformal weight associated with hadronic space-time sheet (k = 107)
is same as in case of energy. The predictions for the masses of mesons are not so good than for
baryons, and one might criticize the application of the format of perturbative QCD in an essentially
non-perturbative situation.

The comparison of the super-symplectic conformal weights associated with spin 0 and spin 1
states and spin 1/2 and spin 3/2 states shows that the different masses of these states could be
understood in terms of the super-symplectic particle contents of the state correlating with the
total quark spin. The resulting model allows excellent predictions also for the meson masses and
implies that only pion and kaon can be regarded as Goldstone boson like states. The model based
on spin-spin splittings is consistent with the model.

To sum up, the model provides an excellent understanding of baryon and meson masses. This
success is highly non-trivial since the fit involves only the integers characterizing the p-adic length
scales of quarks and the integers characterizing color magnetic spin-spin splitting plus p-adic ther-
modynamics and topological mixing for super-symplectic gluons. The next challenge would be to
predict the correlation of hadron spin with super-symplectic particle content in case of long-lived
hadrons.
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