%\begin{abstract}

In this chapter various TGD based ideas related to the role of super-conductivity in bio-systems are studied. TGD inspired theory of

consciousness provides several motivations for this.

\vm{\it 1. Empirical evidence for high \$T_c\$ superconductivity in bio-systems} \vm

There is evidence for super-conductivity in bio-systems. DNA should be

insulator but under some circumstances it becomes conductor and perhaps

even high \$T_c\$ quantum critical super-conductor. Also evidence for Josephson effect has been reported. The so called ORMEs patented by Hudson

are claimed to behave like superconductors: unfortunately the academic

world has not taken these claims seriously enough to test them. The claimed

properties of ORMEs conform with high quantum critical \$T_c\$ super-conductivity and superfluidity. The strange findings about the strange quantal behavior of ionic currents through cell membranes suggest

the presence of ionic supra currents.

\vm {\it 2. Model for high \$T_c\$ superconductivity} \vm

A model for high \$T_c\$ super-conductivity as quantum critical phenomenon is

developed. The relies on the notions of quantum criticality, dynamical

quantized Planck constant requiring a generalization of the 8-D imbedding

space to a book like structure, and many-sheeted space-time. In particular,

the notion of magnetic flux tube as a carrier of supra current of central concept.

With a sufficient amount of twisting and weaving these basic ideas one

ends up to concrete model for high \$T_c\$ superconductors as
quantum

critical superconductors consistent with the qualitative facts that I am

personally aware. The following minimal model looks the most realistic

option found hitherto.

\begin{enumerate}

\item The general idea is that magnetic flux tubes are carriers of supra

currents. In anti-ferromagnetic phases these flux tube structures form

small closed loops so that the system behaves as an insulator. Some mechanism leading to a formation of long flux tubes must exist. Doping

creates holes located around stripes, which become positively charged and

attract electrons to the flux tubes.

\item The basic mechanism for the formation of Cooper pairs is simple.

Magnetic flux tubes would be carriers of dark particles and magnetic fields

would be crucial for super-conductivity. Two parallel flux tubes carrying

magnetic fluxes in opposite directions is the simplest candidate for super-conducting system. This conforms with the observation that antiferromagnetism is somehow crucial for high temperature super-conductivity. The spin interaction energy is proportional to Planck

constant and can be above thermal energy: if the hypothesis that dark

cyclotron energy spectrum is universal is accepted, then the energies would

be in bio-photon range and high temperature super-conductivity is obtained.

If fluxes are parallel spin \$S=1\$ Cooper pairs are stable. \$L=2\$ states are

in question since the members of the pair are at different flux tubes.

\item The higher critical temperature $T_{c1}\$ corresponds to a formation

local configurations of parallel spins assigned to the holes of stripes

giving rise to a local dipole fields with size scale of the order of the

length of the stripe. Conducting electrons form Cooper pairs at the magnetic flux tube structures associated with these dipole fields.

elongated structure of the dipoles favors angular momentum L=2 for the

pairs. The presence of magnetic field favors Cooper pairs with
spin
\$S=1\$.

\item Stripes can be seen as 1-D metals with delocalized electrons. The

interaction responsible for the energy gap corresponds to the

transversal

oscillations of the magnetic flux tubes inducing oscillations of the nuclei

of the stripe. These transverse phonons have spin and their exchange is

a good candidate for the interaction giving rise to a mass gap. This could

explain the BCS type aspects of high \$T_c\$ super-conductivity.

\item Above \$T_c\$ supra currents are possible only in the length scale of

the flux tubes of the dipoles which is of the order of stripe length. The

reconnections between neighboring flux tube structures induced by the

transverse fluctuations give rise to longer flux tubes structures making

possible finite conductivity. These occur with certain temperature dependent probability p(T,L) depending on temperature and distance L

between the stripes. By criticality p(T,L) depends on the dimensionless

variable $x=TL/\hor sonly: p=p(x)$. At critical temperature T_c transverse fluctuations have large amplitude and makes $p(x_c)$ so large

that very long flux tubes are created and supra currents can run. The

phenomenon is completely analogous to percolation.

\item The critical temperature $T_c = x_c \$ is predicted to be

proportional to \$\hbar\$ and inversely proportional to \$L\$ (, which
is

indeed to be the case). If flux tubes correspond to a large value of \$\hbar\$, one can understand the high value of \$T_c\$. Both Cooper pairs and

magnetic flux tube structures represent dark matter in TGD sense.

\item The model allows to interpret the characteristic spectral lines in

terms of the excitation energy of the transversal fluctuations and gap

energy of the Cooper pair. The observed 50 meV threshold for the onset of

photon absorption suggests that below \$T_c\$ also \$S=0\$ Cooper pairs are

possible and have gap energy about 9 meV whereas \$S=1\$ Cooper pairs would

have gap energy about 27 meV. The flux tube model indeed predicts

\$S=0\$ Cooper pairs become stable below \$T_c\$ since they cannot anymore

transform to \$S=1\$ pairs. Their presence could explain the BCS type aspects

of high \$T_c\$ super-conductivity. The estimate for \$\hbar/\hbar_0= r\$ from

critical temperature T_{c1} is about r=3 contrary to the original

expectations inspired by the model of of living system as a superconductor

suggesting much higher value. An unexpected prediction is that coherence

length is actually \$r\$ times longer than the coherence length predicted by

conventional theory so that type I super-conductor could be in question

with stripes serving as duals for the defects of type I superconductor in

nearly critical magnetic field replaced now by ferromagnetic phase.

At qualitative level the model explains various strange features of high

\$T_c\$ superconductors. One can understand the high value of \$T_c\$

ambivalent character of high \$T_c\$ super conductors, the existence
of

pseudogap and scalings laws for observables above \$T_c\$, the role of stripes and doping and the existence of a critical doping, etc...

\end{enumerate}

\vm {\it 3. The model for superconductivity in living matter} \vm

The model for high \$T_c\$ superconductivity was inspired by the model of

bio-superconductivity in which the flux tubes of magnetic fields are carriers of supra currents and the large value of Planck constant guarantees that gap energy and critical temperature are high enough. The

transversal fluctuations of flux tubes provide the counterpart of phonons

generating energy gap. Besides dark Cooper pairs also the Bose-Einstein

condensates of dark bosonic ions define candidates for superconducting

phases provided that the gap energies in longitudinal and transversal

magnetic degrees of freedom are high enough. High enough values of Planck

constant can guarantee this.