
In this chapter the results of the calculation  of elementary 
particle
masses will be used to construct   a model predicting hadron masses.

\vm{\it 1. Topological mixing of quarks}\vm

In TGD framework CKM mixing is induced by topological mixing of  
quarks
(that is 2-dimensional topologies characterized by genus). Number
theoretical constraints on topological mixing can be realized by 
assuming
that topological mixing leads to a thermodynamical equilibrium. This 
gives
an upper bound of 1200 for the number of different $U$ and $D$ 
matrices and
the input from top quark mass and $\pi^+-\pi^0$ mass difference 
implies
that physical $U$ and $D$ matrices can be constructed as small
perturbations of matrices expressible as direct sum of essentially 
unique
$2\times 2$ and $1\times 1$ matrices. The maximally entropic 
solutions can
be found numerically by using the fact that only the probabilities 
$p_{11}$
and $p_{21}$ can be varied freely. The solutions are unique in the 
accuracy
used, which suggests that the system allows only single 
thermodynamical
phase.

The  matrices $U$ and $D$ associated with the probability matrices 
can be
deduced straightforwardly in the standard gauge.  The $U$ and $D$ 
matrices
derived from the probabilities determined by  the entropy 
maximization turn
out to be unitary for most values of $n_1$ and $n_2$. This is a 
highly
non-trivial result and means that mass and probability constraints 
together
with entropy maximization define a sub-manifold of $SU(3)$ regarded 
as a
sub-manifold in 9-D complex space. The choice $(n(u),n(c))=(4,n)$, 
$n<9$,
does not allow unitary $U$ whereas $(n(u),n(c))=(5,6)$ does. This 
choice is
still consistent with top quark mass and together with $n(d)=n(s)=5$ 
it
leads to a rather reasonable CKM matrix with a value of CP breaking
invariant within experimental limits. The elements $V_{i3}$ and 
$V_{3i}$,
$i=1,2$ are however roughly twice larger than their experimental 



values
deduced assuming standard model. $V_{31}$ is too large by a factor 
$1.6$.
The possibility of scaled up variants of light quarks could  lead to 
too
small experimental estimates for these matrix elements. The whole 
parameter
space has not been scanned so that  better candidates for CKM 
matrices
might well exist.

\vm{\it 2. Higgs contribution to fermion masses is negligible}\vm

There are good reasons to believe that Higgs expectation for the 
fermionic
space-time sheets is vanishing although fermions couple to Higgs. 
Much
later good reasons for believing that Higgs expectaton does not play 
any
role in massivation in TGD famework have emerged. Thus p-adic
thermodynamics would explain fermion masses completely.  This 
together with
the fact that the prediction of the model for the top quark mass is
consistent with the most recent limits on it, fixes the $CP_2$ mass 
scale
with a high accuracy to the maximal one obtained if second order
contribution to electron's p-adic mass squared vanishes. This is 
very
strong constraint on the model.

\vm {\it 3. The p-adic length scale of quark is dynamical}\vm

The assumption about the presence of scaled up variants of light 
quarks in
light hadrons leads to a surprisingly successful model for pseudo 
scalar
meson masses using  only quark masses and the assumption mass 
squared is
additive for quarks with same p-adic length scale and mass for 
quarks
labelled by different primes $p$.  This conforms with the idea that 
pseudo
scalar mesons are Goldstone bosons in the sense that color Coulombic 
and
magnetic contributions to the mass cancel each other. Also the mass
differences between hadrons containing different numbers of strange 
and
heavy quarks can be understood if $s, b$ and $c$ quarks appear as 
several 
scaled up versions.

This hypothesis yields surprisingly good fit for meson masses but 
for some



mesons the predicted mass is slightly too high. The reduction of 
$CP_2$
mass scale to cure the situation is not possible since top quark 
mass would
become too low. In case of diagonal mesons for which quarks 
correspond to
same p-adic prime,   quark contribution to mass squared can be 
reduced by
ordinary color interactions and in the case of non-diagonal mesons 
one can
require that quark contribution is not larger than meson mass.

\vm{\it 4. Super-symplectic bosons at hadronic space-time sheet can 
explain
the constant contribution to baryonic masses}\vm

Quarks explain only a small fraction of the baryon mass and that 
there is
an additional contribution which in a good approximation does not 
depend on
baryon. This contribution should correspond to the non-perturbative 
aspects
of QCD.

Classically this contribution would naturally be assigned with the 
K\"ahler
magnetic energy of color magnetic flux tubes connecting valence 
quarks.
A possible quantal identification of this contribution is in terms 
of
super-symplectic gluons predicted by TGD. Baryonic space-time sheet 
with
$k=107$ would contain a many-particle state of super-symplectic 
gluons with
net conformal weight of 16 units. This leads to a model of baryons 
masses
in which masses are predicted with an accuracy better than 1 per 
cent.
Super-symplectic gluons also provide a possible solution to the spin 
puzzle
of proton.

Hadronic string model provides a phenomenological description of
non-perturbative aspects of QCD and a connection with the hadronic 
string
model indeed emerges.  Hadronic string tension is predicted 
correctly from
the additivity of mass squared for $J=2$ bound states of super-
symplectic
quanta. If the topological mixing for super-symplectic bosons is 
equal to
that for $U$ type quarks then a 3-particle state formed by  2
super-symplectic quanta from the first generation and 1 quantum from 
the  



second generation  would define baryonic ground state with 16 units 
of
conformal weight.

In the case of mesons pion could contain super-symplectic boson of 
first
generation preventing the large negative contribution of the color 
magnetic
spin-spin interaction to make pion a tachyon. For heavier bosons
super-symplectic boson need not to be assumed. The preferred role of 
pion
would relate to the fact that its mass scale is below QCD $\Lambda$.

\vm{\it 5. Description of color magnetic spin-spin splitting in 
terms of
conformal weight}\vm

What remains to be understood are the contributions of   color 
Coulombic
and magnetic interactions to the mass squared. There are 
contributions
coming from both ordinary gluons and super-symplectic gluons and the 
latter
is expected to  dominate by the large value of color coupling 
strength.

Conformal weight replaces energy as the basic variable but group
theoretical structure of color magnetic contribution to the 
conformal
weight associated with hadronic space-time sheet ($k=107$) is same 
as in
case of energy. The predictions for the masses of mesons are not so 
good 
than for baryons, and one might criticize the application of the 
format of
perturbative QCD in an essentially non-perturbative situation.

The  comparison of the super-symplectic conformal weights associated 
with
spin 0 and spin 1 states and spin 1/2 and spin 3/2 states shows that 
the
different masses of   these states could be understood in terms of 
the
super-symplectic particle contents  of the state correlating with  
the total
quark spin. The resulting model allows excellent predictions also 
for the
meson masses and implies that only pion and kaon can be regarded as
Goldstone boson like states. The model based on spin-spin splittings 
is
consistent with  the model.



To sum  up, the model provides a satisfcatory understanding of 
baryon and
meson masses. This success is highly non-trivial since the fit 
involves
only the integers characterizing the p-adic length scales of quarks 
and the
integers characterizing color magnetic spin-spin splitting plus  p-
adic
thermodynamics and topological mixing for super-symplectic gluons. 
The next
challenge would be to predict the correlation of hadron spin with
super-symplectic particle content in case of long-lived hadrons.
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