This chapter represents the most recent view about elementary particle

massivation in TGD framework. This topic is necessarily quite extended

since many several notions and new mathematics is involved. Therefore the

calculation of particle masses involves five chapters. In the following my

goal is to provide an up-to-date summary whereas the chapters are unavoidably a story about evolution of ideas.

The identification of the spectrum of light particles reduces to two tasks:

the construction of massless states and the identification of the states

which remain light in p-adic thermodynamics. The latter task is relatively straightforward. The thorough understanding of the massless

spectrum requires however a real understanding of quantum TGD. It would be

also highly desirable to understand why p-adic thermodynamics combined

with p-adic length scale hypothesis works. A lot of progress has taken

place in these respects during last years.

Zero energy ontology providing a detailed geometric view about bosons and

fermions, the generalization of SS-matrix to what I call MS-matrix, the

notion of finite measurement resolution characterized in terms of inclusions of von Neumann algebras, the derivation of p-adic coupling

constant evolution and p-adic length scale hypothesis from the first

principles, the realization that the counterpart of Higgs mechanism involves generalized eigenvalues of the K\"ahler-Dirac operator: these

are represent important steps of progress during last years with a direct

relevance for the understanding of particle spectrum and massivation

although the predictions of p-adic thermodynamics are not affected.

Since 2010 a further progress took place. These steps of progress relate

closely to ZEO, bosonic emergence, the discovery of the weak form of electric-magnetic duality, the realization of the importance

of twistors in TGD, and the discovery that the well-definedness of

em

charge forces the modes of K\"ahler-Dirac operator to 2-D surfaces - string

world sheets and possibly also partonic 2-surfaces. This allows to assign $% \left(1\right) =\left(1\right) +\left(1\right) +$

to elementary particle closed string with pieces at two parallel space—time

sheets and accompanying a K\"ahler magnetic flux tube carrying monopole flux.

Twistor approach and the understanding of the solutions of $K\$

Dirac operator served as a midwife in the process giving rise to the birth

of the idea that all fundamental fermions are massless and that both

ordinary elementary particles and string like objects emerge from them.

Even more, one can interpret virtual particles as being composed of

these massless on mass shell particles assignable to wormhole throats.

Four-momentum conservation poses extremely powerful constraints on loop

integrals but does not make them manifestly finite as believed first.

String picture is necessary for getting rid of logarithmic divergences.

The weak form of electric-magnetic duality led to the realization that

elementary particles correspond to bound states of two wormhole throats

with opposite K\"ahler magnetic charges with second throat carrying weak

isospin compensating that of the fermion state at second wormhole throat.

Both fermions and bosons correspond to wormhole contacts: in the case of

fermions topological condensation generates the second wormhole throat.

This means that altogether four wormhole throats are involved with both

fermions, gauge bosons, and gravitons (for gravitons this is unavoidable in

any case). For p-adic thermodynamics the mathematical counterpart of $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

string corresponds to a wormhole contact with size of order \$CP_2\$ size

with the role of its ends played by wormhole throats at which the signature of the induced 4-metric changes. The key observation is that for

massless states the throats of spin 1 particle must have opposite

three-momenta so that gauge bosons are necessarily massive, even photon and

other particles usually regarded as massless must have small mass which in

turn cancels infrared divergences and give hopes about exact Yangian symmetry generalizing that of ${\cal N}=4$ SYM. A the level of effective space—time assiged to many—sheeted space—time this symmetry

is broken. Besides this there is weak

\blockquote{stringy} contribution to the mass assignable to the
magnetic flux tubes

connecting the two wormhole throats at the two space-time sheets.

 $\mbox{vm{\it 1. Physical states as representations of super-symplectic and Super}$

Kac-Moody algebras}\vm

The basic constraint is that the super-conformal algebra involved must have

five tensor factors. The precise identification of the Kac-Moody type

algebra has however turned out to be a surprisingly difficult task. The

latest view is as follows. Electroweak algebra \$U(2)_{ew}
=SU(2)_L\times

U(1)\$ and symplectic isometries of light-cone boundary
(\$SU(2)_{rot}\times

SU(3)_c\$) give 2+2 factors and full supersymplectic algebra involving

only covariantly constant right-handed neutrino mode would give 1 factor.

This algebra could be associated with the 2-D surfaces \$X^2\$ defined by the

intersections of light-like 3-surfaces with $\delta M^4_{\pm}\times CP_2$.

These 2-surfaces have interpretation as partons.

For conformal algebra there are several candidates. For symplectic algebra

radial light-like coordinate of light-cone boundary replaces complex coordinate. Light-cone boundary $S^2\times R_+$ allows extended conformal

symmetries which can be interpreted as conformal transformations of \$5^2\$

depending parametrically on the light-like coordinate of \$R_+\$. There is

infinite—D subgroup of conformal isometries with \$S^2\$ dependent radial

scaling compensating for the conformal scaling in \$S^2\$. K\"ahler-Dirac

equation allows ordinary conformal symmetry very probably liftable to

imbedding space. The light-like orbits of partonic 2-surface are expected

to allow super-conformal symmetries presumably assignable to quantum criticality and hierarchy of Planck constants. How these conformal symmetries integrate to what is expected to be 4-D analog of 2-D conformal

symmetries remains to be understood.

Yangian algebras associated with the super-conformal algebras and motivated

by twistorial approach generalize the super-conformal symmetry and make it

multi-local in the sense that generators can act on several partonic

2-surfaces simultaneously. These partonic 2-surfaces generalize the

vertices for the external massless particles in twistor Grassmann diagrams.

The implications of this symmetry are yet to be deduced but one thing is clear: Yangians are tailor made for the description of massive bound states formed from several partons identified as partonic

2-surfaces.

\vm{\it 2. Particle massivation}\vm

Particle massivation can be regarded as a generation of thermal mass

squared and due to a thermal mixing of a state with vanishing conformal

weight with those having higher conformal weights. The obvious objection

is that Poincare invariance is lost. One could argue that one calculates

just the vacuum expectation of conformal weight so that this is not case.

If this is not assumed, one would have in positive energy ontology superposition of ordinary quantum states with different four-momenta and

breaking of Poincare invariance since eigenstates of four-momentum are not

in question. In Zero Energy Ontology this is not the case since all states

have vanishing net quantum numbers and one has superposition of time evolutions with well-defined four-momenta. Lorentz invariance with respect

to the either boundary of CD is achieved but there is small breaking of

Poincare invariance characterized by the inverse of p-adic prime \$p\$

characterizing the particle. For electron one has $1/p=1/M_{127}\simeq 1$

10^{-38}\$.

One can imagine several microscopic mechanisms of massivation. The following proposal is the winner in the fight for survival between several competing scenarios.

\begin{enumerate}

\item Instead of energy, the Super Kac-Moody Virasoro (or equivalently

super-symplectic) generator L_0 (essentially mass squared) is thermalized

in p-adic thermodynamics (and also in its real version assuming it exists).

That mass squared, rather than energy, is

a fundamental quantity at \$CP_2\$ length scale is also suggested by a

simple dimensional argument (Planck mass squared is proportional to \$\hbar\$

so that it should correspond to a generator of some Lie-algebra (Virasoro

generator \$L_0\$!)). What basically matters is the number of tensor
factors

involved and five is the favored number.

\item There is also a modular contribution to the mass squared, which can

be estimated using elementary particle vacuum functionals in the conformal

modular degrees of freedom of the partonic 2-surface. It dominates for

higher genus partonic 2-surfaces. For bosons both Virasoro and modular

contributions seem to be negligible and could be due to the smallness of

the p-adic temperature.

\item A natural identification of the non-integer contribution to the

conformal weight is as stringy contributions to the vacuum conformal

weight (strings are now \blockquote{weak strings}). TGD predicts
Higgs particle and

Higgs is necessary to give longitudinal polarizations for gauge bosons. The

notion of Higgs vacuum expectation seems to replaced by an analog of Higgs

vacuum expectation which gives space—time correlate for the stringy mass

formula in case of fundamental fermions. Also gauge bosons usually regarded as exactly massless particles would naturally receive small mass

from p-adic thermodynamics. The theoretetical motivation for a small mass

would be exact Yangian symmetry which broken at the QFT limit of the theory using GRT limit of many-sheeted space-time.

\item Hadron massivation requires the understanding of the CKM mixing of $\ensuremath{\mathsf{CKM}}$

quarks reducing to different topological mixing of U and D type quarks.

Number theoretic vision suggests that the mixing matrices are rational or

algebraic and this together with other constraints gives strong constraints

on both mixing and masses of the mixed quarks.

\end{enumerate}

p-Adic thermodynamics is what gives to this approach its predictive power.

\begin{enumerate}

\item p-Adic temperature is quantized by purely number theoretical constraints (Boltzmann weight $\exp(-E/kT)$) is replaced with

 p^{L_0/T_p} , $1/T_p$ integer) and fermions correspond to $T_p=1$ whereas $T_p=1/n$, n>1, seems to be the only reasonable choice for gauge bosons.

\item p-Adic thermodynamics forces to conclude that \$CP_2\$ radius is

essentially the p-adic length scale $R \simeq L$ and thus of order R

 $10^{3.5} \sqrt{9.5}$

larger than the naive guess. Hence p-adic thermodynamics describes the

mixing of states with vanishing conformal weights with their Super Kac-Moody Virasoro excitations having masses of order \$10^{-3.5}\$ Planck

mass.

\end{enumerate}