In this chapter p-adic physics, p-adic length scale hypothesis, and special features of p-adic numbers are discussed from the point of view of biosystems. The identification of $p-adic\ physics\ as\ physics\ of\ cognition$ tentatively identified as a cognitive simulation of real physics is the basic philosophical quide line. Second key idea is that living matter in very general sense lives in the intersection of real and p-adic worlds making among other things possible negentropic entanglement so that Negentropy Maximization Principle drives the formation of increasingly larger structures with negentropic entanglement. The justification of the p-adic length scale hypothesis in zero energy ontology (ZEO) is discussed and the application of the hypothesis is discussed: both primary p-adic length scales and secondary p-adic length scales emerging naturally in zero energy ontology are discussed and it is found that the secondary p-adic scales assignable to elementary particles are in general macroscopic so that a connection between elementary particle physics and macroscopic physics suggests itself. Small-p p-adicity is also highly attractive idea and it is demonstrated that dark matter hierarchy characterized by hierarchy of Planck constants provides a first principle realization of this idea. The characteristic features of p-adic physics are due to p-adic ultra-metricity, p-adic non-determinism, and to some exotic properties of p-adic probability and are expected to characterize also cognition. It is however too early to take too strong views concerning the interpretation of p-adics. Therefore also speculative ideas about the role of p-adic numbers in biology, which are only marginally consistent with the cognitive interpretation, are discussed in the sequel. Also some speculations about possible role of so called exotic representations of super-conformal algebra are included. These speculations rely heavily on the assumption that canonical correspondence between p-adic and real masses holds true in full generality. The prediction is the existence of a hierarchy of p-adic states for which p-adic masses have extremely small real counterparts whereas the corresponding real states have super-astronomical masses. These strange states have huge degeneracies and the original speculation was that they are crucial for the understanding of biological life. Later however came the realization that the states of the super-symplectic representations associated with light-like boundaries of massless extremals (MEs) have also gigantic almost-degeneracies. In particular, there is no need to assume the highly questionable p-adic--real correspondence at the level of masses for them. Therefore the cautious conclusion is that biology can do without the exotic super-conformal representations.